SET DEFINITIONS

Item	Definition	Designation	example
set	collection of objects	{1,3, 5,7}	my deck of cards is a set of cards
Empty set	a set has nothing in it	Ø	
Subset	A is a subset of B, designated by $A \subset B$ or $B \supset A$ if all members of A are members of B	$U = \{x \in \mathbb{Z}: P(x)\}$ where $P(x)$ means $1 \le x \le 7$, x is odd this uses subsets to define the sets	
Equal sets	Two sets are equal if they contain the same elements, i.e., $A \subset B$ and $B \subset A$		
Proper subset	$A \subset B$ and $B \not\subset A$		

Number designations

${\mathbb R}$ or ${\mathcal R}$		
\mathbb{Q} or \mathcal{Q}		
\mathbb{Z} or \mathcal{Z}	collection of integers:, -2, -1, 0, 1, 2,	
$\mathbb N$ or $\mathcal N$	\mathbb{N} or \mathcal{N} collection of positive integer (does not include 0): 1, 2,	

Intervals

Let a,b $\in \mathbb{R}$

$(a,b) = \{x \in \mathbb{R}: a < x < b\}$	bounded open interval	$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$	bounded closed interval
$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$	bounded half-open	$(a,b] = \{x \in \mathbb{R}: a < x \le b\}$	bounded half-open
	interval	, -	interval
$(a,\infty)=\{x\in\mathbb{R}\colon x>a\}$	unbounded open interval	$(-\infty,b) = \{x \in \mathbb{R} \colon x < b\}$	unbounded open interval
$[a,\infty)=\{x\in\mathbb{R}:x\geq a\}$	bounded open interval	$(-\infty,b] = \{x \in \mathbb{R}: x \le b\}$	bounded open interval

Definition 1.2

Let U be a set and let A, B, and E be subsets of U

- a) The **complement** of E, $E^C = \{x: x \notin E\}$
- b) The **intersection** of A and B is $A \cap B = \{x: x \in A \text{ and } x \in B\}$
- c) The **union** of A and B is A U B = $\{x: x \in A \text{ or } x \in B\}$

Proposition 1.1: De Morgan's Laws

Let A and B be subsets of U, Then

a)
$$(A \cup B)^c = A^c \cap B^c$$

b)
$$(A \cap B)^c = A^c \cup B^c$$

Proposition 1.2. Distributive Laws

Let A, B, and C be subsets of U, Then

a)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

b) A U (B
$$\cap$$
 C) = (A U B) \cap (A U C)

Proposition 1.3: Associative and Commutative Laws

Let A, B, and C be subsets of U, Then

a)
$$A \cap B = B \cap A$$

b)
$$AUB = BUA$$

c)
$$A \cap (B \cap C) = (A \cap B) \cap C$$

d)
$$A U (B U C) = (A U B) U C$$

Definition 1.3

Let U be a set

a) for a finite collection, A₁, A₂, ..., A_N of subsets of U

$$\bigcap_{n=1}^{N} A_n = \{x : x \in A_n \text{ for all } n = 1, 2, ..., N\}$$

$$\bigcap_{n=1}^{N} A_n = \{x : x \in A_n \text{ for all } n = 1, 2, ..., N\}$$

$$\bigcup_{n=1}^{N} A_n = \{x : x \in A_n \text{ for some } n = 1, 2, ..., N\}$$

b) if we have a countably infinite collection $A_1, A_2, ...$ of sets, we have

Intersection

$$\bigcap_{n=1}^{\infty} A_n = \{x : x \in A_n \text{ for all } n = 1, 2, \dots, N\}$$

$$\bigcup_{n=1}^{\infty} A_n = \{x : x \in A_n \text{ for some } n = 1, 2, \dots, N\}$$

Proposition 1.4 de Morgan's Laws

Let A_1 , A_2 , ... be subsets of U, Then

$$a)\left(\bigcap_n A_n\right)^c = \bigcup_n A_n^c$$

$$b)\left(\bigcup_{n}A_{n}\right)^{c}=\bigcap_{n}A_{n}^{c}$$

Proposition 1.5. Distributive Laws

Let B and $A_1, A_2, ...$ be subsets of U, Then

$$a) B \cap \left(\bigcup_{n} A_{n}\right) = \bigcup_{n} (B \cap A_{n})$$

b)
$$B \cup \left(\bigcap_{n} A_{n}\right) = \bigcap_{n} (B \cup A_{n})$$

Disjoint sets

Definition 1.4 Two sets, A and B are said to be **disjoint** if $A \cap B = \emptyset$, that is, they have no elements in common. Sets $A_1, A_2, ...$ are said to be **pairwise disjoint** if $A_n \cap A_m = \emptyset$ when $m \neq n$.

Example:

Let $U = \mathbb{R}$

a) Are the sets \mathbb{Z} and (2,3) disjoint?

Yes because (2,3) does not contain any integers.

b) Are the sets \mathbb{Z} and [2,3) disjoint?

No because [2,3) contains the element 2 which is an integer.

Cartesian Product

Definition 1.5: Let A and B be two sets. The Cartesian product of A and B, denoted by A X B is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$. If $A_1, A_2, ..., A_n$ are sets, the **Cartesian** product is

2

$$X_{n=1}^{N} A_{n} = \{ (a_{1}, a_{2}, ..., a_{N}) : a_{n} \in A_{N}, 1 \le n \le N \}$$

Example:

Let A =
$$\{a,b\}$$
 and B = $\{1,2\}$, then A X B = $\{(a,1),(a,2),(b,1),(b,2)\}$