
Individualized Inference using Bayesian Quantile
Directed Acyclic Graphical Models

Ksheera Sagar K. N**

Department of Statistics
Purdue University

August 11, 2022

**collaborative work with Veera B (UMich), Yang Ni (Texas A&M) and Anindya Bhadra
(Purdue).

JSM-2022 Quantile DAGs August 11, 2022



Outline

1 Quantile DAGs
Introduction and motivation
Intuition to the model
Related works and our contributions
qDAGx: The model
Prior formulation
Synthetic data and simulation settings
Simulation results
Application of qDAGx in lung cancer data

2 Conclusion and future scope

JSM-2022 Quantile DAGs August 11, 2022



1 Quantile DAGs
Introduction and motivation
Intuition to the model
Related works and our contributions
qDAGx: The model
Prior formulation
Synthetic data and simulation settings
Simulation results
Application of qDAGx in lung cancer data

2 Conclusion and future scope

JSM-2022 Quantile DAGs August 11, 2022



Introduction and motivation

Challenges with GGMs:
● What if the interacting variables are not jointly Gaussian?
● And consequent lack of robustness in model misspecification.

Our solution:
● Circumvent the Gaussian assumption on the likelihood.
● Model association between variables at any given quantile level,
τ ∈ (0,1).

Real life motivation:
● Directed acyclic graphs are important to understand protein–protein

interaction (PPI) networks.
● Personalized PPI’s can help in a better understanding of diseases like

cancer, and therefore finding applications in precision medicine.
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Intuition to the model

Figure: The directed acyclic graph QG(τ), for two observations, on four vertices
Y = (Y1, Y2,Y3, Y4) is presented, for univariate X and for given quantile levels
τ = 0.1, 0.5 and 0.9.
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Related works and our contributions

Related works inspired by varying coefficient models (Hastie and Tibshirani,
1993):

● DAG inference using node conditional varying coefficient models (Ni
et al., 2019). Drawbacks: Gaussian likelihood and known ordering
assumption.

● Varying coefficient Bayesian quantile regression (Das et al., 2021).
Drawbacks: lack of support to graphical models.

Related work in quantile-graphs:
● Undirected quantile-graphs constructed from node-wise quantile

regression (Guha et al., 2020). Drawbacks: not individualized.
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Related works and our contributions (cont.)

Figure: A sample DAG which is
Topologically sorted.

Figure: Labels given to nodes WLOG in
the topologically sorted DAG.

Picture credits: https://en.wikipedia.org/wiki/Directed_acyclic_graph
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Related works and our contributions (cont.)

Our contributions:

1 qDAGx: Learning individual-specific DAG’s at any quantile level
τ ∈ (0, 1), with no assumptions on the data likelihood or on the
ordering of nodes.

2 Infer for the first time individual-specific protein–protein interaction
networks in patients with lung adenocarcinoma and lung squamous cell
carcinoma.
● Model the protein-protein association in each patient at a quantile level

τ , as a function of external covariates mRNA and methylation.

3 Structural identifiability of the quantile-DAGs, properties of prior
which aid in sparse quantile DAG discovery and posterior consistency
of node conditional fitted densities.
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qDAGx: The model
Notations:
● First level covariates: Y1, . . . ,Yp and for h ∈ {1, . . . , p}, Yh ∈ Rn.
● Second level covariates: X1, . . . ,Xq and for k ∈ {1, . . . , q}, Xk ∈ Rn.
● Yih, Xik: first, second level covariate values for ith observation,
i ∈ {1, . . . , n} .

Model for conditional quantile:

QYih
(τ ∣ Yij , Xi⋅) = β

(τ)
h0 (Xi⋅) + ∑

j∈pa(h)

Yijβ
(τ)
hj (Xi⋅)

β
(τ)
hj (Xi⋅) = θ

(τ)
hj (Xi⋅) ⋅ 1l(∣θ

(τ)
hj (Xi⋅)∣ > thj) where,

θ
(τ)
hj (Xi⋅) =

q

∑
k=1

f
(τ)
hjk(Xik).
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qDAGx: The model (cont.)

Union-DAG condition: Let QG(τ)i be the adjacency matrix of
quantile-DAG of ith observation at quantile level τ . Then,

QG
(τ)
u =

n

⋃
i=1

QG
(τ)
i is a DAG, where QG(τ)i = ((βhj(Xi⋅) ≠ 0)).

loss function → negative log-likelihood of ALD (Koenker and Bassett Jr,
1978) → Joint likelihood.

Joint likelihood:

π(Y ∣X, β(τ), τ) =
n

∏
i=1

p

∏
h=1

τ(1 − τ) exp
⎛
⎝
−ψτ

⎛
⎝
Yih − β(τ)h0 (Xi⋅) − ∑

j∈pa(h)

Yijβ
(τ)
hj (Xi⋅)

⎞
⎠
⎞
⎠

× 1l (QG(τ)u is a DAG) .

Where, ψτ(x) = τ1l(x ≥ 0) − (1 − τ)1l(x < 0).
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Prior formulation

θ
(τ)
hj (X) =

q

∑
k=1

f
(τ)
hjk(Xk) = µhj1n +

q

∑
k=1

X̃k
∗

α∗hjk +
q

∑
k=1

Xkα
0
hjk ,

peNMHS ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗hjk = ηhjkξhjk , ηhjk ∼ N(0, T
2
hjL

2
hjk),

ξhjk = (ξ
(1)
hjk, . . . , ξ

(B∗k)

hjk )
T
,

ξ
(l)
hjk ∼ N(m

(l)
hjk,1) , for l ∈ {1, . . . ,B∗k},

m
(l)
hjk ∼ 0.5 ⋅ δ1(m

(l)
hjk) + 0.5 ⋅ δ−1(m

(l)
hjk),

Thj ∼ C+(0,1), Lhjk ∼ C
+(0,1).

α0
hjk ∼ peNMHS prior analogous to α∗hjk.

µhj ∼ N(0, σ
2
µ) and thj ∼ Gamma(shape = a, rate = b), 1 ≤ h, j ≤ p.
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Synthetic data and simulation settings
Problem dimensions: n ∈ {100,250}, p ∈ {25,50,100}, q ∈ {2,5}.

Data generating mechanism:
● X1, . . . ,Xq from a multivariate normal N(0,Iq).
● WLOG, true order is Y1, . . . ,Yp and for each Yh choose

max{1, ⌊p−h5 ⌋} number of parents from {Yh+1, . . . ,Yp}.

● Compute values of corresponding θhj(⋅)’s where j ∈ pa(h), which are
functions of τ, X
● When q = 2, all thresholds = 0.5 and when q = 5, all thresholds = 1.
● Compute β

(τ)
hj (Xi⋅) = θ

(τ)
hj (Xi⋅) ⋅ 1l(∣θ

(τ)
hj (Xi⋅)∣ > thj)

● Generate n random samples for Yh:

QYih
(τ ∣ Yij , Xi⋅) = β

(τ)
h0 (Xi⋅) + ∑

j∈pa(h)

Yijβ
(τ)
hj (Xi⋅).
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Simulation results
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Figure: p = 25, q = 5, n = 250. Kendall’s’ T for the misspecified sequence is 0.5
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qDAGx in Lung Cancer data

Overview:

● Protein expressions of 67 proteins, analogous to Y1, . . . ,Yp=67.
● X1, X2: mRNA expression and methylation.
● n = 306 patients: Lung adenocarcinoma (LUAD).
● n = 278 patients: Lung squamous cell carcinoma (LUSC).
● Estimate quantile-DAGs at τ ∈ {0.1, . . . ,0.9}.
● Aggregate DAGs at each quantile level for visualization proposes and

show edges present in ≥ n/2 patients and node size ∝ in-degree.
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qDAGx in Lung Cancer data (cont.)
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Figure: Graph of E(0.1)LUAD.
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Figure: Graph of E(0.1)LUSC.
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qDAGx in Lung Cancer data (cont.)
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Figure: Graph of E(0.5)LUAD.
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Figure: Graph of E(0.5)LUSC.
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qDAGx in Lung Cancer data (cont.)
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Figure: Graph of E(0.9)LUAD.
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Figure: Graph of E(0.9)LUSC.
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qDAGx in Lung Cancer data (cont.)

Table: Directed edges in quantile-DAG estimates which are present in at least
50% of patients and across five out of nine quantile levels, τ ∈ {0.1, . . . ,0.9}.
Common edges in LUAD and LUSC are highlighted.

Lung adenocarcinoma (LUAD) Lung squamous cell carcinoma (LUSC)
BAK1←BID BAD←ATK1S1 BID←ERBB3 BAK1←BID AKT1, AKT2, AKT3←AKT1S1 CAV1←PGR

CAV1←COL6A1 EGFR←ERBB2 GAPDH←CDH2 CAV1←COL6A1 EGFR←ERBB2 CCNB1←COL6A1
JUN←ERBB3 MAPK1, MAPK3←MAP2K1 MYH11←COL6A1 MTOR←PGR MAPK1, MAPK3←MAP2K1 MYH11←COL6A1
PCNA←CHEK1 RPS6KB1←PGR MYH11←FOXM1 RPS6KB1←PGR RAD51←PGR

Table: Percentage of edges, mean (sd), influenced by second level covariates in
quantile-DAG estimates of all patients, across the quantiles τ ∈ {0.1, . . . ,0.9}.

only mRNA only methylation both
LUAD 13.7 (0.78) 28 (0.86) 58.3 (1.55)
LUSC 13.6 (0.66) 28.1 (0.61) 58.3 (0.85)
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qDAGx in Lung Cancer data (cont.)

Lung adenocarcinoma (LUAD) Lung squamous cell carcinoma (LUSC)

Figure: Prevalence of CAV1←COL6A1 and MYH11←COL6A1 in LUAD and LUSC.
Boldness of the edge is proportional to the number of patients in whom the edge
was inferred at the specific quantile level τ .
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Conclusion and future scope

Contributions:
● qDAGx: quantile-DAG learning framework with neither assumptions

on likelihood nor on ordering of the nodes.
● Individualized inference via a varying coefficient framework.
● Demonstration of qDAGx in patients with LUAD and LUSC →

usefulness in precision medicine.
Future work:
● Theoretical guarantees of estimating quantile-DAG structure similar

to Cao et al. (2019); DAG estimation consistency in GGMs.
● Incorporate conditions for preserving increasing nature of quantile

estimates (Ali et al., 2016; Yang and Tokdar, 2017).
● Mixture quantile-DAG modeling, possibly by modeling threshold

parameter thj as function of categorical variables like type of cancer,
gender etc. And/or relaxing the union-DAG condition.
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Supplementary Material

Functional formulation of θ(τ)hj (Xi⋅) in simulations:

1 For q∗ = 0, {θ(τ)hj (Xi⋅)} = (1 + τ
2)1n , where

1n is the unit vector of dimension n.

2 For q∗ = 1, {θ(τ)hj (Xi⋅)} =X
2
k1
+ log((1 + τ2)1n), where

k1 is randomly chosen from {1, . . . , q}.

3 For q∗ = 2, {θ(τ)hj (Xi⋅)} =X
2
k1
+ log((1 + τ2)1n) + exp(Xk2), where

k1, k2 are distinct and randomly chosen from {1, . . . , q}.

4 For q∗ = 3,
{θ
(τ)
hj (Xi⋅)} =X

2
k1
+ log((1 + τ2)1n) + exp(Xk2) + log ∣Xk3 ∣, where

k1, k2, k3 are distinct and randomly chosen from {1, . . . , q}.
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Supplementary Material (cont.)
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Method: qDAGx0 qDAGx qDAGxm

Figure: p = 50, q = 2, n = 250. Kendall’s’ T for the misspecified sequence is 0.25
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