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Introduction
Precision matrix estimation under N (0,Ωp×p) is a key for network
estimation. It has major applications in:
● Gene Regulatory Networks (GRNs)
● Econometrics
● Neuroscience etc.

Say X = (x1, x2, . . . , xp) ∼ N (0,Ωp×p), where Σ−1 = Ω = ((ωij)) then for
any i ∈ {1,2, . . . , p},

xi∣x−i ∼ N
⎛

⎝
∑

j∈{1,2,...,p}∖{i}
xjβij ,

1

ωii

⎞

⎠

βij = −
ωij

ωii

If ωij = 0 then βij = 0 and there is no ‘edge’ between xi, xj .
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Introduction (cont.)

If we have n copies of X = (x1, x2, . . . , xp) and n << (
p
2
), we aim to

construct the network with a ‘penalized’ estimate of Ω. Some important
works in the area of penalized estimates are:
● Graphical LASSO (Friedman et al., 2008)
● Graphical SCAD (Fan et al., 2009)
● CLIME estimator (Cai et al., 2011)
● Bayesian Graphical LASSO (Wang, 2012)
● Spike and slab with double exponential priors (Gan et al., 2019)
● Graphical horseshoe (Li et al., 2019)
● . . .

So why estimate Ω with one more prior (Horseshoe-like)?

GGMs with HSL prior



Introduction (cont.)

Graphical horseshoe outperformed older methods like BGL, GSCAD and
GLASSO etc. but the drawbacks were:
● posterior concentration properties were unknown and
● fast point estimation algorithms were unavailable, so it was not
scalable.

Hence we resolve these two issues in the current work by proposing the
graphical horseshoe-like prior, which is an extension of horseshoe-like prior
(Bhadra et al., 2019) to Gaussian graphical models.
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Horseshoe-like prior

Horseshoe prior has no closed form:

ωij ∣ λij , τ ∼ N (0, λ2ijτ
2) , π(λ2ij) ∼ C

+
(0,1), π(τ2) ∼ C+(0,1).

Whereas horseshoe-like prior has, π(ωij ∣ a) = (2πa1/2)−1 log (1 + a/ω2
ij)

and can be written with the hierarchy as follows:

ωij ∣ νij , a ∼ N (0,
a

2νij
) , π(νij) ∼

1 − exp(−νij)

2π1/2ν3/2ij

.

● It also closely approximates the horseshoe prior.
● With the hierarchy above, one can arrive at a point estimate of Ω
using Expectation-Maximization type of algorithms.
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Horseshoe-like prior (cont.)
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(a) Marginal prior densities
near the origin
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(b) Marginal prior densities
in the tails
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(c) Induced penalty
functions

With the prior specification above, the log-posterior L thus becomes,

L∝
n

2
log ∣Ω∣ −

n

2
tr(SΩ) + ∑

i,j∶i<j

⎧⎪⎪
⎨
⎪⎪⎩

log (1 − exp(−νij)) − log νij −
νijω

2
ij

a

⎫⎪⎪
⎬
⎪⎪⎭

.
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ECM and MCMC estimation

E Step: ν(t)ij = E(νij ∣ ω
(t)
ij , a) = (log(1 + a

(ω(t)ij )2
))

−1
a2

((ω(t)ij )2+a)((ω
(t)
ij )2)

.

CM Step: Use coordinate descent algorithm proposed by Wang (2014).

We compute a using the effective model size technique proposed by
Piironen and Vehtari (2017) and keep it fixed throughout the ECM
estimation.

MCMC Estimation: With a different hierarchy, ωij ∣ tij , τ ∼

N (0, τ2/t2ij) , π(tij ,mij) =
1

2(2π)1/2 exp(
−t2ijmij

2 )I(0 <mij < 1), τ2 > 0,

and following the remaining updates from the graphical horseshoe sampler
of Li et al. (2019), the complete MCMC scheme for the graphical
horseshoe-like is attained.
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Theoretical properties

Assumption

(1) p = nb, b ∈ (0,1), and (p + s) log p/n = o(1).

Assumption

(2) The true precision matrix Ω0 belongs to the parameter space given by

U(ε0, s) = {Ω ∈M
+
p ∶ ∑

1≤i<j≤p
I(ωij ≠ 0) ≤ s,

0 < ε−10 ≤ eig1(Ω0) ≤ ⋯ ≤ eigp(Ω0) ≤ ε0 <∞}.

Assumption

(3) The bound [L−1, L] on the eigenvalues of Ω satisfies L > ε0, or, in
other words, ε0 = cL, for some c ∈ (0,1).
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Theoretical properties (cont.)

Assumption

(4) The global shrinkage parameter a satisfies the condition,
a1/2 < n−1/2p−b1 , for some constant b1 > 0.

Theorem

Let X(n) = (X1, . . . ,Xn)
T be a random sample from a p-dimensional

normal distribution with mean 0 and covariance matrix Σ0 = Ω−10 , where
Ω0 ∈ U(ε0, s). Under prior specifications and assumptions on the prior as
given in Assumptions (1)–(4), the posterior distribution of Ω satisfies

E0 [P{∥Ω −Ω0∥2 >Mεn ∣X(n)}]→ 0,

for εn = n−1/2(p + s)1/2(log p)1/2 and a sufficiently large constant M > 0.
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Theoretical properties (cont.)

Corollary

Under similar conditions as theorem above, the posterior distribution of Ω
has the posterior convergence rate εn = n−1/2(p + s)1/2(log p)1/2 around Ω0

with respect to the Frobenius norm under the graphical horseshoe prior.

Theorem

Under similar conditions of theorem above, the MAP estimator of Ω, given
by Ω̂MAP is consistent, in the sense that

∥Ω̂MAP
−Ω0∥2 = OP (εn),

where εn = n−1/2(p + s)1/2(log p)1/2.
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Simulation results

Simulation Setting:

Random Hubs Cliques

Hubs+Random Cliques+Random Hubs+CliquesFigure: Visualization of true precision matrices under 3 different structures.
Credits: Zhang et al. (2021).

We demonstrate results for n = 120, p = 100 for hub structure. Detailed
simulation results for all other settings are available in our preprint:
https://arxiv.org/abs/2104.10750
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Simulation results (cont.)
Hubs

90 nonzero pairs out of 4950
nonzero elements = 0.25

GL1 GL2 GSCAD BGL GHS ECM MCMC
Stein’s loss 5.255 6.328 5.213 43.042 5.101 4.22 5.310

(0.263) (0.414) (0.261) (0.802) (0.455) (0.369) (0.485)
F norm 3.018 3.432 3.003 4.295 2.544 2.415 2.687

(0.091) (0.112) (0.093) (0.156) (0.126) (0.103) (0.141)
TPR .995 .986 .998 .995 .872 0.985 0.754

(.007) (.017) (.002) (.008) (.04) (.014) (0.004)
FPR .101 .045 .983 .186 .003 .062 0.003

(.016) (.008) (.012) (.007) (.001) (0.005) (0.001)
MCC 0.373 0.523 0.016 0.27 0.85 0.458 0.775

(.027) (.039) (.006) (.006) (.027) (.015) (.033)
Avg CPU time 1.739 1.76 48.54 549.196 252.94 5.811 537.604

Next we analyze Reverse Phase Protein Array (RPPA) data of 33 patients
with lymphoid neoplasm “Diffuse Large B-cell Lymphoma” to infer the
protein interaction network.
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Figure: (a), (b), (c) and (d) correspond to RPPA networks for ECM, MCMC,
GHS and PRECISE. The nodes are numbered from 1 to 67, which are proteins.
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Conclusion and future scope

Contributions:
● Fully analytical prior-penalty dual termed the graphical horseshoe-like.
● First ever optimality results for both the frequentist point estimate as
well as the fully Bayesian posterior for graphical horseshoe-like and for
fully Bayesian posterior in graphical horseshoe.

● Simulation studies clearly establish that the family of horseshoe based
priors perform the best among state-of-the-art competitors.

Future work:
● 2-means (Bhattacharya et al., 2015) or shrinkage factor thresholding
(Tang et al., 2018) for variable selection in MCMC based methods.

● Establish Bayes risk under 0-1 loss.
● Extend to GLMs, e.g. graphical models with exponential families as
node-conditional distributions (Yang et al., 2012).
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