Full EQS
model fitting of the yeast cell cycle example in the article
Covariance Structure Models for Gene Expression Microarray Data
By Xie and Bentler
Gene Variable
Notations
CLN3 V1
CDC28 V2
RFA1 V3
POL30 V4
CDC45 V5
PMS1 V6
RFA2 V7
CDC21 V8
CLB5 V9
CLB6 V10
PDS1 V11
ORC1 V12
ORC3 V13
MCM6 V14
MCM2 V15
MCM3 V16
1
EQS, A STRUCTURAL EQUATION PROGRAM MULTIVARIATE SOFTWARE, INC.
COPYRIGHT BY P.M. BENTLER VERSION 6.1 (C) 1985 -
2003. (B50)
PROGRAM CONTROL INFORMATION
1
/TITLE
2
Model built by EQS 6 for Windows
3
/SPECIFICATIONS
4
DATA='U:\eqs\yeast\table3.ess';
5
VARIABLES=16; CASES=79;
6
METHOD=ML,robust; ANALYSIS=COVARIANCE; MATRIX=RAW;
7
/LABELS
8
V1=V1; V2=V2; V3=V3; V4=V4; V5=V5;
9
V6=V6; V7=V7; V8=V8; V9=V9; V10=V10;
10
V11=V11; V12=V12; V13=V13; V14=V14; V15=V15;
11
V16=V16;
12
/EQUATIONS
13
V3 = F1 + E3;
14
V4 = *F1 + *V1 + *V2 + E4;
15
V5 = *F1 + *V1 + E5;
16
V6 = *v9+*F1 + *V1 + E6;
17
V7 = *F1 + E7;
18
V8 = *F1 + *V2 + E8;
19
V9 = F2 + E9;
20
V10 = *F2 + E10;
21
V11 = *F2 + *V1 + E11;
22
V12 = F3 + *V1 + E12;
23
V13 = *F3 + E13;
24
V14 = *F2 + *F4 + *V2 +
E14;
25
V15 = *F4 + *V2 + E15;
26
V16 = F4 + *V1 + E16;
27
F1 = *V1 + D1;
28
F2 = *F1 + *V1 + D2;
29
F3 = *F1 + *F2 + *V2 + D3;
30
F4 = *F1 + *F2 + D4;
31
/VARIANCES
32
V1 = *;
33
V2 = *;
34
E3 = *;
35
E4 = *;
36
E5 = *;
37
E6 = *;
38
E7 = *;
39
E8 = *;
40
E9 = *;
41
E10 = *;
42
E11 = *;
43
E12 = *;
44
E13 = *;
45
E14 = *;
46
E15 = *;
47
E16 = *;
48
D1 = *;
49
D2 = *;
50
D3 = *;
51
D4 = *;
52
/COVARIANCES
PAGE : 2
EQS Licensee:
TITLE:
Model built by EQS 6 for Windows
53
v1,v2=*;
54
V2,E10=*;
55
E3,E8=*;
56
E8,D4=*;
57
!E9,D4=*;
58
E9,D1=*;
59
E4,D4=*;
60
D3,D4=*;
61
E10,E9=*;
62
E11,E12=*;
63
E13,E15=*;
64
!E16,D2=*;
65
!E5,D3=*;
66
!E12,D1=*;
67
/PRINT
68
FIT=ALL;
69
correlation=yes;
70
/lmtest
71
set=pee, PVV, PFV, PFF, PDD, GVV, GVF, GFV, GFF, BVF, BFF, bfv,
bvv;
72
73
/wtest
74
/END
74 RECORDS OF INPUT MODEL FILE WERE
READ
DATA IS READ FROM
U:\eqs\yeast\table3.ess
THERE ARE
16 VARIABLES AND 79 CASES
IT IS A RAW DATA ESS FILE
PAGE : 3
EQS Licensee:
TITLE:
Model built by EQS 6 for Windows
SAMPLE STATISTICS BASED ON COMPLETE CASES
UNIVARIATE
STATISTICS
---------------------
VARIABLE V1
V2 V3 V4 V5
MEAN .0000
.0000 .0000 .0000 .0000
SKEWNESS (G1) -1.1981 -.2797 1.1527 .7091 1.4788
KURTOSIS (G2) 1.9692 .4391 2.9222 .6740 3.4352
STANDARD DEV. .8120 .4154 .8982 1.0876 .6323
VARIABLE V6
V7 V8 V9 V10
MEAN .0000
.0000 .0000 .0000 .0000
SKEWNESS (G1) -1.8442 1.5815 .8092 1.6311 1.2547
KURTOSIS (G2) 13.7188 3.6501 1.9799 2.5212 2.1407
STANDARD DEV. .8344 .7471 .7555 .9439 1.1789
VARIABLE V11
V12 V13 V14 V15
MEAN .0000
.0000 .0000 .0000 .0000
SKEWNESS (G1) 2.1608 1.9944 1.7616 1.2376 .2761
KURTOSIS (G2) 4.4580 5.0504 4.4710 3.1702 .6935
STANDARD DEV. 1.1317 .7546
.7428 .5754 .5542
VARIABLE V16
MEAN .0000
SKEWNESS (G1) .2553
KURTOSIS (G2) .5364
STANDARD DEV. .6626
MULTIVARIATE
KURTOSIS
---------------------
MARDIA'S COEFFICIENT (G2,P) = 83.9120
NORMALIZED ESTIMATE = 15.5380
BONETT-WOODWARD-RANDALL TEST SHOWS
SIGNIFICANT EXCESS KURTOSIS
INDICATIVE OF NON-NORMALITY AT A ONE-TAIL
.05 LEVEL.
ELLIPTICAL THEORY KURTOSIS ESTIMATES
------------------------------------
MARDIA-BASED KAPPA = .2914 MEAN SCALED UNIVARIATE KURTOSIS
= 1.0798
MARDIA-BASED KAPPA IS USED IN COMPUTATION.
KAPPA= .2914
CASE NUMBERS WITH LARGEST CONTRIBUTION TO
NORMALIZED MULTIVARIATE KURTOSIS:
---------------------------------------------------------------------------
CASE NUMBER 35 40 42 56 78
ESTIMATE 258.3777
183.7473 769.5465 160.3841 365.1100
PAGE : 4
EQS Licensee:
TITLE:
Model built by EQS 6 for Windows
COVARIANCE
MATRIX TO BE ANALYZED: 16
VARIABLES (SELECTED FROM 16 VARIABLES)
BASED ON
79 CASES.
V1 V2 V3 V4 V5
V 1
V 2 V 3 V
4 V 5
V1
V 1 .659
V2
V 2 .114 .173
V3
V 3 -.432 -.040 .807
V4
V 4 -.392 .026 .840 1.183
V5
V 5 -.179 -.007 .432 .512 .400
V6
V 6 -.257 -.034 .536 .585 .358
V7
V 7 -.365 -.044 .577 .653 .354
V8
V 8 -.292 .020 .472 .614 .312
V9
V 9 -.415 -.027 .617 .724 .349
V10
V 10 -.422 .021 .594 .745 .353
V11
V 11 -.643 -.079 .769 .776 .378
V12
V 12 -.331 -.020 .313 .256 .114
V13
V 13 -.239 .013 .296 .344 .122
V14
V 14 -.232 -.067 .339 .331 .211
V15
V 15 -.064 .033 .226 .222 .173
V16
V 16 -.079 -.029 .275 .289 .194
V6 V7 V8 V9 V10
V 6
V 7 V 8 V
9 V 10
V6
V 6 .696
V7
V 7 .452 .558
V8
V 8 .409 .439 .571
V9
V 9 .521 .506 .456 .891
V10
V 10 .542 .446 .505 .929 1.390
V11
V 11 .523 .614 .532 .935 .917
V12
V 12 .210 .271 .230 .512 .516
V13
V 13 .214 .268 .237 .538 .593
V14
V 14 .262 .303 .185 .284 .234
V15
V 15 .190 .178 .130 .115 .069
V16
V 16 .257 .256 .133 .191 .117
V11 V12 V13 V14 V15
V 11 V 12
V 13 V 14 V 15
V11
V 11 1.281
V12
V 12 .708 .569
V13
V 13 .654 .469 .552
V14
V 14 .366 .192 .150 .331
V15
V 15 .101 .031 -.027 .203 .307
V16
V 16 .156 .056 .053 .268 .279
V16
V 16
V16
V 16 .439
BENTLER-WEEKS STRUCTURAL REPRESENTATION:
NUMBER OF DEPENDENT VARIABLES = 18
DEPENDENT V'S : 3
4 5 6 7 8
9 10 11 12
DEPENDENT V'S : 13
14 15 16
DEPENDENT F'S : 1
2 3 4
NUMBER OF INDEPENDENT VARIABLES = 20
INDEPENDENT V'S : 1
2
INDEPENDENT E'S : 3
4 5 6 7 8
9 10 11 12
INDEPENDENT E'S : 13
14 15 16
INDEPENDENT D'S : 1
2 3 4
NUMBER OF FREE PARAMETERS = 60
NUMBER OF FIXED NONZERO PARAMETERS
= 22
3RD STAGE OF COMPUTATION REQUIRED 280483 WORDS OF MEMORY.
PROGRAM ALLOCATED 2000000 WORDS
DETERMINANT OF INPUT MATRIX IS .31902D-11
IN ITERATION # 1, MATRIX W_CFUNCT MAY NOT BE POSITIVE DEFINITE.
YOU HAVE BAD START VALUES TO BEGIN WITH.
IF ABOVE MESSAGE APPEARS ON EVERY ITERATION,
PLEASE PROVIDE BETTER START VALUES AND RE-RUN THE JOB.
IN ITERATION # 2, MATRIX W_CFUNCT MAY NOT BE POSITIVE DEFINITE.
*** NOTE *** RESIDUAL-BASED STATISTICS CANNOT
BE
CALCULATED BECAUSE OF PIVOTING
PROBLEMS.
PARAMETER ESTIMATES APPEAR IN ORDER,
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING
OPTIMIZATION.
RESIDUAL COVARIANCE MATRIX (S-SIGMA) :
V1
V2 V3 V4 V5
V 1
V 2 V 3 V
4 V 5
V1
V 1 .000
V2
V 2 .002 .001
V3
V 3 -.001 .033 .004
V4
V 4 -.009 .035 .033 .029
V5
V 5 -.002 .023 .003 .007 .001
V6
V 6 -.003 .009 -.002 -.039 .021
V7
V 7 -.014 .015 -.005 -.004 .004
V8
V 8 -.005 .018 .017 .010 -.001
V9
V 9 -.003 .043 .003 .043 -.010
V10
V 10 .014 .046 .009 .089 .020
V11
V 11 -.003 .029 .015 -.026 -.035
V12
V 12 .008 .009 -.013 -.085 -.052
V13
V 13 -.003 .021 .025 .045 -.026
V14
V 14 -.007 .002 -.019 -.018 -.002
V15
V 15 .027 -.008 -.011 -.030 .020
V16
V 16 .015 -.014 -.014 .007 .004
V6 V7 V8 V9 V10
V 6
V 7 V 8 V
9 V 10
V6
V 6 .003
V7
V 7 .014 .003
V8
V 8 .019 .020 .010
V9
V 9 .006 .006 .017 .005
V10
V 10 .048 -.031 .074 .019 .031
V11
V 11 -.058 .000 .001 -.004 -.028
V12
V 12 -.049 .006 -.005 -.005 -.026
V13
V 13 -.021 .047 .036 .046 .078
V14
V 14 -.004 .011 -.003 -.012 -.039
V15
V 15 .016 -.015 .010 -.007 -.051
V16
V 16 .043
.021 .013 .050 .001
V11 V12 V13 V14 V15
V 11 V 12 V 13 V 14 V 15
V11
V 11 -.008
V12
V 12 -.011 .001
V13
V 13 .035 .026 .046
V14
V 14 -.002 .010 -.005 -.002
V15
V 15 -.035 -.034 -.023 .001 -.003
V16
V 16 .005 -.002 .009 .003 -.001
V16
V 16
V16
V 16 .002
AVERAGE ABSOLUTE COVARIANCE
RESIDUALS = .0184
AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE
RESIDUALS = .0196
PAGE : 5
EQS Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
STANDARDIZED RESIDUAL MATRIX:
V1 V2 V3 V4 V5
V 1
V 2 V 3 V
4 V 5
V1
V 1 .000
V2
V 2 .006 .004
V3 V 3
-.002 .088 .005
V4
V 4 -.010 .077 .034 .025
V5
V 5 -.005 .086 .006 .011 .003
V6
V 6 -.004 .025 -.002 -.043 .040
V7
V 7 -.024 .048 -.008 -.005 .009
V8
V 8 -.008 .056 .025 .013 -.002
V9
V 9 -.004 .109 .004 .042 -.017
V10
V 10 .015 .095 .009 .069 .027
V11
V 11 -.003 .062 .014 -.021 -.049
V12
V 12 .012 .028 -.019 -.103 -.108
V13
V 13 -.005 .067 .037 .056 -.055
V14
V 14 -.014 .007 -.038 -.029 -.005
V15
V 15 .060 -.035 -.022 -.049 .057
V16
V 16 .028 -.049 -.023 .010 .010
V6
V7 V8 V9 V10
V 6
V 7 V 8 V
9 V 10
V6
V 6 .005
V7
V 7 .022 .005
V8
V 8 .031 .036 .018
V9
V 9 .008 .009 .024 .005
V10
V 10 .049 -.035 .083 .017 .022
V11
V 11 -.062 .001 .001 -.004 -.021
V12
V 12 -.077 .011 -.009 -.007 -.030
V13
V 13 -.034 .084 .064 .066 .090
V14
V 14 -.008 .024 -.006 -.023 -.058
V15
V 15 .035 -.037 .023 -.013
-.078
V16
V 16 .077 .042 .026 .080 .002
V11 V12 V13 V14 V15
V 11 V 12 V 13 V 14 V 15
V11 V 11 -.006
V12
V 12 -.013 .002
V13
V 13 .042 .047 .084
V14
V 14 -.003 .023 -.011 -.005
V15
V 15 -.055 -.081 -.055 .003 -.010
V16 V 16 .007 -.003 .018 .008 -.001
V16
V 16
V16
V 16 .005
AVERAGE ABSOLUTE
STANDARDIZED RESIDUALS = .0300
AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS =
.0323
LARGEST STANDARDIZED RESIDUALS:
NO.
PARAMETER ESTIMATE NO.
PARAMETER ESTIMATE
---
--------- -------- ---
--------- --------
1 V9, V2 .109 11 V15, V12 -.081
2
V12, V5 -.108 12
V16, V9 .080
3
V12, V4 -.103 13
V15, V10 -.078
4
V10, V2 .095 14
V4, V2 .077
5
V13, V10 .090 15
V12, V6 -.077
6
V3, V2 .088 16 V16, V6 .077
7
V5, V2 .086 17 V10, V4 .069
8
V13, V7 .084 18
V13, V2 .067
9
V13, V13 .084 19
V13, V9 .066
10
V10, V8 .083 20
V13, V8 .064
PAGE : 6
EQS Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
DISTRIBUTION OF STANDARDIZED RESIDUALS
----------------------------------------
! !
80- * -
! * !
! * !
! * !
! * !
RANGE FREQ PERCENT
60- * -
! * * ! 1 -0.5 -
-- 0 .00%
! * * ! 2 -0.4 -
-0.5 0 .00%
! * * ! 3 -0.3 -
-0.4 0 .00%
! * * ! 4 -0.2 -
-0.3 0 .00%
40- * * - 5 -0.1 -
-0.2 2 1.47%
! * * ! 6 0.0 -
-0.1 55 40.44%
! * * ! 7 0.1 -
0.0 78 57.35%
! * * ! 8 0.2 -
0.1 1 .74%
! * * ! 9 0.3 -
0.2 0 .00%
20- * * - A 0.4 -
0.3 0 .00%
!
* * ! B 0.5
- 0.4 0 .00%
! * * ! C ++ -
0.5 0 .00%
! * * ! -------------------------------
! * * * !
TOTAL 136 100.00%
----------------------------------------
1
2 3 4 5 6
7 8 9 A B
C EACH "*"
REPRESENTS 4 RESIDUALS
PAGE : 7
EQS Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
MODEL CORRELATION MATRIX FOR MEASURED AND
LATENT VARIABLES
V1 V2 V3 V4 V5
V 1
V 2 V 3 V
4 V 5
V1
V 1 1.000
V2
V 2 .332 1.000
V3
V 3 -.592 -.197 1.000
V4 V 4 -.439 -.019 .838 1.000
V5
V 5 -.344 -.114 .758 .744 1.000
V6
V 6 -.376 -.125 .721 .698 .640
V7
V 7 -.580 -.193 .873 .821 .742
V8
V 8 -.472 .006 .678 .750 .661
V9
V 9 -.539 -.179 .728 .673 .604
V10
V 10 -.461 -.053 .560 .524 .453
V11
V 11 -.695 -.231 .742 .658 .577
V12
V 12 -.554 -.092 .482 .420 .348
V13
V 13 -.410 -.027 .426 .392 .329
V14
V 14 -.481 -.286 .694 .563 .585
V15
V 15 -.202 .179 .476 .420 .435
V16
V 16 -.175 -.058 .488 .397 .455
F1
F 1 -.627 -.208 .944 .888 .803
F2
F 2 -.619 -.206 .752 .684 .608
F3
F 3 -.436 -.029 .454 .417 .350
F4
F 4 -.337 -.112 .610 .489 .536
V6
V7 V8 V9 V10
V 6
V 7 V 8 V
9 V 10
V6
V 6 1.000
V7
V 7 .706 1.000
V8
V 8 .625 .750 1.000
V9 V 9
.657 .712 .622 1.000
V10
V 10 .509 .548 .494 .829 1.000
V11
V 11 .615 .726 .625 .878 .714
V12
V 12 .411 .471 .416 .729 .617
V13
V 13 .397 .417 .379 .735 .621
V14
V 14 .553 .679 .434 .546 .406
V15
V 15 .376 .466 .289 .232 .185
V16 V 16 .389 .478 .243 .227 .150
F1
F 1 .763 .924 .811 .771 .593
F2
F 2 .646 .736 .639 .922 .745
F3
F 3 .422 .444
.403 .783 .661
F4
F 4 .471 .597 .330 .323 .229
V11 V12 V13 V14 V15
V 11 V 12 V 13 V 14 V 15
V11
V 11 1.000
V12
V 12 .841 1.000
V13
V 13 .767 .825 1.000
V14
V 14 .562 .417 .378 1.000
V15
V 15 .214 .154 -.011 .628 1.000
V16
V 16 .201 .115 .093 .695 .760
F1
F 1 .785 .510 .452 .735 .504
F2
F 2 .958 .814 .817 .564 .211
F3
F 3 .816 .878 .939 .402 .141
F4
F 4 .319 .206 .161 .812 .839
V16 F1 F2 F3 F4
V 16 F
1 F 2
F 3 F 4
V16
V 16 1.000
F1
F 1 .517 1.000
F2
F 2 .201 .797 1.000
F3
F 3 .099 .481 .869 1.000
F4
F 4 .891 .646 .308 .172 1.000
PAGE : 8
EQS Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
GOODNESS OF FIT SUMMARY FOR METHOD = ML
INDEPENDENCE MODEL CHI-SQUARE =
1405.735 ON 120 DEGREES OF
FREEDOM
INDEPENDENCE AIC = 1165.73495 INDEPENDENCE
CAIC = 761.40120
MODEL AIC = -54.46869 MODEL
CAIC = -310.54673
CHI-SQUARE = 97.531 BASED ON
76 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE
STATISTIC IS .04873
THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML
SOLUTION IS 83.013.
FIT INDICES
-----------
BENTLER-BONETT NORMED FIT INDEX =
.931
BENTLER-BONETT NON-NORMED FIT INDEX = .974
COMPARATIVE FIT INDEX (CFI) = .983
BOLLEN
(IFI) FIT INDEX = .984
MCDONALD (MFI) FIT INDEX = .873
LISREL
GFI FIT INDEX = .883
LISREL
AGFI FIT INDEX = .790
ROOT MEAN-SQUARE RESIDUAL (RMR) =
.026
STANDARDIZED RMR =
.041
ROOT MEAN-SQUARE ERROR OF APPROXIMATION
(RMSEA) = .060
90%
CONFIDENCE INTERVAL OF RMSEA ( .005, .092)
RELIABILITY COEFFICIENTS
------------------------
CRONBACH'S ALPHA =
.902
GREATEST LOWER BOUND RELIABILITY = .986
BENTLER'S DIMENSION-FREE LOWER BOUND
RELIABILITY = .986
SHAPIRO'S LOWER BOUND RELIABILITY FOR A
WEIGHTED COMPOSITE = .993
WEIGHTS THAT ACHIEVE SHAPIRO'S LOWER BOUND:
V1
V2 V3 V4 V5 V6
-.200
-.022 .329 .350 .177 .229
V7
V8 V9 V10 V11 V12
.278 .228 .348 .312 .400 .202
V13
V14 V15 V16
.200 .174 .100 .126
GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST
ROBUST INDEPENDENCE MODEL CHI-SQUARE = 508.722 ON 120 DEGREES OF FREEDOM
INDEPENDENCE AIC = 268.72231 INDEPENDENCE
CAIC = -135.61143
MODEL AIC = -67.05865 MODEL
CAIC = -323.13668
SATORRA-BENTLER SCALED CHI-SQUARE = 84.9414 ON 76 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE
STATISTIC IS .22597
FIT INDICES
-----------
BENTLER-BONETT NORMED FIT INDEX =
.833
BENTLER-BONETT NON-NORMED FIT INDEX = .964
COMPARATIVE FIT INDEX (CFI) = .977
BOLLEN
(IFI) FIT INDEX = .979
MCDONALD (MFI) FIT INDEX = .945
ROOT MEAN-SQUARE ERROR OF APPROXIMATION
(RMSEA) = .039
90% CONFIDENCE INTERVAL OF RMSEA (
.000, .077)
ITERATIVE SUMMARY
PARAMETER
ITERATION ABS CHANGE
ALPHA FUNCTION
1 .657755
.50000 16.63447
2 .324515
.50000 12.35812
3 .211685
1.00000 6.61750
4 .150348
1.00000 4.16398
5 .077710
1.00000 2.04804
6 .041927
1.00000 1.33318
7 .012797
1.00000 1.25232
8 .002193
1.00000 1.25053
9 .000471 1.00000 1.25040
PAGE : 9
EQS Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
MEASUREMENT EQUATIONS WITH STANDARD ERRORS
AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE
MARKED WITH @.
(ROBUST STATISTICS IN PARENTHESES)
V3
=V3 = 1.000 F1 + 1.000 E3
V4
=V4 = 1.283*F1 + .195*V1
+ .368*V2 + 1.000 E4
.099 .093 .144
12.994@ 2.098@ 2.553@
( .109) ( .079)
( .152)
( 11.799@ ( 2.470@ (
2.414@
V5
=V5 = .723*F1 + .205*V1
+ 1.000 E5
.070 .067
10.398@ 3.076@
( .099) ( .080)
( 7.305@ ( 2.552@
V6
=V6 = .173*V9 + .718*F1
+ .192*V1 + 1.000 E6
.101 .126 .095
1.714 5.684@ 2.009@
( .053) ( .149)
( .077)
( 3.294@ ( 4.807@
( 2.479@
V7
=V7 = .814*F1 + 1.000
E7
.051
16.040@
( .046)
( 17.852@
V8
=V8 = .752*F1 + .331*V2
+ 1.000 E8
.077 .123
9.718@ 2.687@
( .074) ( .131)
( 10.119@
( 2.521@
V9
=V9 = 1.000 F2 + 1.000 E9
V10
=V10 = 1.061*F2 + 1.000 E10
.096
11.033@
( .134)
( 7.927@
V11
=V11 = 1.187*F2 -
.230*V1 + 1.000 E11
.100 .074
11.928@
-3.122@
( .079) ( .083)
( 14.996@ ( -2.765@
V12
=V12 = 1.000 F3 -
.196*V1 + 1.000 E12
.061
-3.186@
( .068)
( -2.858@
V13
=V13 = 1.126*F3 + 1.000 E13
.112
10.068@
( .123)
( 9.160@
V14
=V14 = .225*F2 +
.649*F4 - .197*V2
+ 1.000 E14
.050 .069 .087
4.540@ 9.382@ -2.259@
( .045) (
.071) ( .096)
( 5.014@ ( 9.168@
( -2.052@
MEASUREMENT EQUATIONS WITH STANDARD ERRORS
AND TEST STATISTICS (CONTINUED)
PAGE : 10 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
(ROBUST STATISTICS IN PARENTHESES)
V15
=V15 = .781*F4 +
.371*V2 + 1.000 E15
.070 .083
11.085@ 4.448@
( .070) ( .094)
( 11.134@ (
3.962@
V16
=V16 = 1.000 F4 +
.116*V1 + 1.000 E16
.060
1.912
( .069)
( 1.668)
PAGE : 11 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND
TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE
MARKED WITH @.
(ROBUST STATISTICS IN PARENTHESES)
F1
=F1 = -.653*V1 + 1.000
D1
.096
-6.811@
( .133)
( -4.898@
F2
=F2 = .651*F1 - .199*V1
+ 1.000 D2
.105 .096
6.195@ -2.073@
( .091) ( .140)
( 7.119@ ( -1.421)
F3
=F3 = -.395*F1 + .974*F2
+ .187*V2 + 1.000 D3
.081 .121 .084
-4.848@ 8.059@ 2.218@
( .087) ( .109)
( .094)
( -4.564@ (
8.939@ ( 1.995@
F4
=F4 = .804*F1 - .429*F2
+ 1.000 D4
.133
.133
6.026@ -3.210@
( .131) ( .124)
( 6.143@ ( -3.448@
PAGE : 12 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
VARIANCES OF INDEPENDENT VARIABLES
----------------------------------
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE
MARKED WITH @.
V F
--- ---
V1
- V1 .659*I I
.106 I I
6.245@I I
( .147)I I
( 4.490@I I
I I
V2
- V2 .172*I I
.027 I I
6.257@I I
( .030)I I
( 5.747@I I
I I
PAGE : 13 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
VARIANCES OF INDEPENDENT VARIABLES
----------------------------------
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE
MARKED WITH @.
E D
--- ---
E3
- V3 .087*I D1
- F1 .434*I
.019 I .079 I
4.638@I 5.473@I
( .019)I (
.084)I
( 4.549@I (
5.144@I
I I
E4
- V4 .197*I D2
- F2 .229*I
.038 I .050 I
5.170@I 4.543@I
( .044)I (
.067)I
( 4.513@I (
3.424@I
I I
E5
- V5 .125*I D3
- F3 .037*I
.021 I .017 I
5.932@I 2.215@I
( .027)I (
.022)I
( 4.598@I (
1.679)I
I I
E6
- V6 .267*I D4
- F4 .180*I
.044 I .043 I
6.109@I 4.204@I
(
.206)I
( .047)I
( 1.292)I (
3.814@I
I I
E7
- V7 .081*I I
.015 I I
5.552@I I
( .015)I I
( 5.239@I I
I I
E8
- V8 .174*I
I
.031 I I
5.579@I I
( .044)I I
( 3.983@I I
I I
E9
- V9 .135*I I
.027 I I
4.927@I I
( .032)I I
(
4.174@I
I
I I
E10 -
V10 .605*I I
.101 I I
5.970@I I
( .109)I I
( 5.527@I I
I I
E11 -
V11 .084*I I
.025 I I
3.307@I I
( .035)I I
( 2.421@I I
I I
E12 -
V12 .110*I I
.026 I I
4.296@I I
( .026)I I
( 4.141@I I
I I
E13 -
V13 .059*I I
.027 I I
2.191@I I
( .035)I I
( 1.715)I I
I I
E14 -
V14 .071*I I
.013 I I
5.278@I I
( .013)I I
( 5.643@I I
I I
PAGE : 14 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
VARIANCES OF INDEPENDENT VARIABLES
(CONTINUED)
----------------------------------------------
E15 -
V15 .068*I I
.016 I I
4.153@I I
( .014)I I
( 5.007@I I
I I
E16 -
V16 .082*I I
.022 I I
3.693@I I
( .025)I I
( 3.234@I I
I I
PAGE : 15 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
COVARIANCES AMONG INDEPENDENT VARIABLES
---------------------------------------
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE
MARKED WITH @.
V F
--- ---
V2
- V2 .112*I I
V1
- V1 .040 I I
2.806@I I
( .030)I I
( 3.746@I I
I I
E10 -
V10 .048*I I
V2
- V2 .029 I I
1.672 I I
( .026)I I
( 1.901)I I
I I
PAGE : 16 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
COVARIANCES AMONG INDEPENDENT VARIABLES
---------------------------------------
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE
MARKED WITH @.
E D
--- ---
E8
- V8 -.059*I D4
- F4 .050*I
E3
- V3 .018 I D3
- F3 .017 I
-3.316@I 2.883@I
( .022)I (
.016)I
( -2.716@I ( 3.173@I
I I
D4
- F4 -.065*I I
E4
- V4 .028 I I
-2.309@I I
( .034)I I
( -1.915)I I
I I
D4
- F4 -.092*I I
E8
- V8 .027 I I
-3.361@I I
( .022)I I
( -4.175@I I
I I
E10 -
V10 .156*I I
E9
- V9 .042 I I
3.752@I I
( .042)I I
( 3.745@I I
I I
D1
- F1 .062*I I
E9
- V9 .031 I I
1.980@I I
( .020)I I
( 3.095@I I
I I
E12 -
V12 .045*I I
E11 -
V11 .021 I I
2.146@I I
(
.022)I
I
( 2.054@I I
I I
E15 -
V15 -.057*I I
E13 -
V13 .014 I I
-4.061@I I
( .014)I I
( -4.071@I I
I I
PAGE : 17 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
STANDARDIZED SOLUTION:
R-SQUARED
V3
=V3 = .944 F1 + .330 E3 .891
V4
=V4 = 1.010*F1 + .148*V1 + .142*V2 + .413 E4 .829
V5
=V5 = .968*F1 + .263*V1 + .560 E5 .687
V6
=V6 = .196*V9 + .730*F1 + .187*V1 + .620
E6 .615
V7
=V7 = .924*F1 + .382 E7 .854
V8
=V8 = .849*F1 + .183*V2 + .557 E8 .690
V9
=V9 = .870 F2 + .391 E9 .847
V10
=V10 = .745*F2 + .667 E10 .555
V11
=V11 = .856*F2 - .165*V1 + .255 E11 .935
V12
=V12 = .786 F3 - .211*V1 + .439 E12 .807
V13
=V13 = .939*F3 + .343 E13 .882
V14
=V14 = .320*F2 + .698*F4 - .142*V2 + .461
E14 .788
V15
=V15 = .870*F4 + .276*V2 + .469 E15 .780
V16
=V16 = .939 F4 + .142*V1 + .433 E16 .812
F1
=F1 = -.627*V1 + .779 D1 .393
F2
=F2 = .673*F1 - .198*V1 + .585 D2 .658
F3
=F3 = -.564*F1 +1.345*F2 + .131*V2 + .324 D3 .895
F4
=F4 = 1.096*F1 - .565*F2 + .683 D4 .534
PAGE : 18 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
CORRELATIONS AMONG INDEPENDENT VARIABLES
---------------------------------------
V F
--- ---
V2
- V2 .332*I I
V1
- V1 I I
I I
E10 -
V10 .150*I I
V2
- V2 I I
I I
PAGE : 19 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
CORRELATIONS AMONG INDEPENDENT VARIABLES
---------------------------------------
E D
--- ---
E8
- V8 -.477*I D4
- F4 .616*I
E3
- V3 I D3
- F3 I
I I
D4
- F4 -.344*I I
E4
- V4 I I
I I
D4
- F4 -.519*I I
E8
- V8 I I
I I
E10 -
V10 .546*I I
E9
- V9 I I
I I
D1
- F1 .256*I I
E9
- V9 I I
I I
E12 -
V12 .468*I I
E11 -
V11 I I
I I
E15 -
V15 -.895*I I
E13 -
V13 I I
I I
-------------------------------------------------------------------------------
E N D O F
M E T H O D
-------------------------------------------------------------------------------
PAGE : 20 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION
THEORY)
WALD TEST (FOR DROPPING PARAMETERS)
ROBUST INFORMATION MATRIX USED IN THIS WALD
TEST
MULTIVARIATE WALD TEST BY SIMULTANEOUS
PROCESS
CUMULATIVE MULTIVARIATE
STATISTICS UNIVARIATE
INCREMENT
---------------------------------- --------------------
STEP
PARAMETER CHI-SQUARE D.F.
PROBABILITY CHI-SQUARE PROBABILITY
---- ----------- ---------- ---- ----------- ----------
-----------
1
E6,E6 1.668 1
.196 1.668 .196
2
F2,V1 3.366 2
.186 1.697 .193
3
E13,E13 5.615 3
.132 2.250 .134
4
D3,D3 7.675 4
.104 2.060 .151
PAGE : 21 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
LAGRANGE MULTIPLIER TEST (FOR ADDING
PARAMETERS)
ORDERED UNIVARIATE TEST STATISTICS:
HANCOCK STANDAR-
CHI- 76 DF PARAMETER DIZED
NO
CODE PARAMETER SQUARE PROB. PROB. CHANGE
CHANGE
--
------ --------- ------ ----- --------
--------- --------
1
2 6 E12,E4 8.466 .004
1.000 -.051 -.346
2
2 19 V12,V4 7.849 .005
1.000 -.124 -.153
3
2 19 V13,V10 6.212 .013
1.000 .127 .153
4
2 6 E16,E9 5.035 .025
1.000 .030 .289
5
2 6 E10,E7 4.953 .026
1.000 -.047 -.214
6
2 19 V13,V9 4.700 .030
1.000 .285 .427
7
2 21 F2,V6 4.657 .031
1.000 -.445 -.654
8
2 19 V13,V4 4.624 .032
1.000 .102 .133
9
2 20 V6,F2 4.577 .032
1.000 -.518 -.760
10
2 19 V4,V12 4.561 .033
1.000 -.196 -.242
11
2 19 V10,V11 4.560 .033
1.000 -.673 -.509
12 2 19 V6,V4 4.557 .033 1.000 -.288
-.323
13
2 19 V16,V9 4.294 .038
1.000 .124 .200
14
2 6 E6,E4 4.293 .038
1.000 -.061 -.267
15
2 19 V9,V16 4.275 .039 1.000 .139 .224
16
2 6 E9,E3 4.173 .041
1.000 -.026 -.238
17
2 19 V9,V11 4.124 .042
1.000 .522 .488
18
2 6 E11,E3 4.038
.044 1.000 .027 .314
19
2 19 V6,V11 3.939 .047
1.000 -.265 -.280
20
2 6 E13,E10 3.772 .052
1.000 .044 .234
21
2 19 V14,V12 3.685 .055
1.000 .156 .359
22
2 19 V4,V6 3.586 .058
1.000 -.209 -.234
23
2 6 E15,E8 3.495 .062
1.000 .025 .227
24
2 19 V15,V12 3.494 .062
1.000 -.106 -.252
25
2 19 V14,V11 3.453 .063
1.000 .260 .397
26
2 19 V13,V8 3.294 .070
1.000 .114 .215
27
2 20 V15,F3 3.282 .070
1.000 -.141 -.428
28 2 19 V15,V13 3.282 .070 1.000 -.125
-.317
29
2 20 V6,F3 3.207 .073
1.000 -.326 -.661
30
2 6 E15,E7 3.195 .074
1.000 -.016 -.219
31
2 19 V12,V9 3.176 .075 1.000 -.237
-.334
32
2 19 V3,V4 3.173 .075
1.000 .174 .180
33
2 19 V5,V13 3.112 .078
1.000 -.118 -.264
34
2 19 V4,V15 3.001
.083 1.000 -.321
-.536
35
2 19 V6,V13 2.952 .086
1.000 -.223 -.377
36
2 21 F2,V13 2.866 .090
1.000 .523 .899
37
2 6 E9,E8 2.802 .094
1.000 -.026 -.171
38
2 6 E10,E8 2.801 .094
1.000 .051 .157
39
2 6 E14,E12 2.542 .111
1.000 .017 .198
40
2 21 F3,V7 2.517 .113
1.000 .194 .440
41
2 6 E4,E3 2.483 .115
1.000 .039 .301
42
2 19 V7,V10 2.466 .116
1.000 -.058 -.067
43
2 21 F3,V11 2.439 .118
1.000 -.650 -.966
44 2 19 V15,V11 2.422 .120 1.000 -.068
-.107
45
2 19 V7,V14 2.411 .120
1.000 .145 .336
46
2 19 V14,V9 2.383 .123
1.000 -.157 -.290
47
2 19 V3,V16 2.351 .125 1.000 -.117
-.197
48
2 19 V5,V12 2.321 .128
1.000 -.105 -.220
49
2 19 V3,V11 2.318 .128
1.000 .095 .093
50
2 19 V7,V13 2.272
.132 1.000 .084 .159
51
2 20 V13,F1 2.270 .132
1.000 .118 .196
52
2 20 V12,F1 2.270 .132
1.000 -.105 -.164
53
2 21 F1,V11 2.221 .136
1.000 -.747 -.778
54
2 19 V12,V5 2.213 .137
1.000 -.102 -.215
55
2 20 V5,F3 2.196 .138
1.000 -.126 -.337
56
2 19 V8,V15 2.160 .142
1.000 .261 .626
57
2 20 V15,F2 2.150 .143
1.000 -.089 -.196
58
2 20 V16,F2 2.150 .143
1.000 .114 .211
59
2 6 E12,E7 2.142 .143
1.000 .016 .168
60 2 21 F2,V12 2.076 .150 1.000 .535 .867
61
2 20 V16,F3 2.048 .152
1.000 .134 .343
62
2 20 V13,F2 2.020 .155
1.000 .243 .417
63
2 19 V12,V11 2.020 .155 1.000 -.182
-.212
64
2 20 V12,F2 2.020 .155
1.000 -.216 -.349
65
2 21 F3,V10 2.012 .156
1.000 .067 .097
66
2 6 E13,E4 1.997
.158 1.000 .023 .216
67
2 6 E11,E9 1.940 .164
1.000 .030 .280
68
2 6 E11,E10 1.883 .170
1.000 -.035 -.154
69
2 20 V9,F4 1.881 .170
1.000 .107 .183
70
2 6 E11,E6 1.861 .173
1.000 -.026 -.176
71
2 19 V7,V12 1.859 .173
1.000 .074 .132
72
2 11 V15,V1 1.856 .173
1.000 .082 .181
73
2 19 V16,V13 1.848 .174
1.000 .105 .223
74
2 21 F3,V12 1.833 .176
1.000 -.715 -1.599
75
2 19 V13,V12 1.833 .176
1.000 -.805 -1.502
76 2 19 V10,V8 1.824 .177 1.000 .185 .212
77
2 6 E14,E7 1.817 .178
1.000 .013 .174
78
2 19 V10,V7 1.793 .181
1.000 -.210 -.242
79
2 19 V12,V3 1.786 .181 1.000 -.079
-.118
80
2 19 V4,V3 1.777 .183
1.000 .324 .336
81
2 19 V15,V16 1.776 .183
1.000 .368 .999
82
2 19 V11,V10 1.769
.183 1.000 -.077
-.058
83
2 19 V11,V6 1.765 .184
1.000 -.090 -.095
84
2 20 V3,F4 1.747 .186
1.000 -.127 -.228
85
2 21 F3,V8 1.739 .187
1.000 .105 .237
86
2 19 V3,V14 1.732 .188
1.000 -.142 -.276
87
2 19 V13,V7 1.728 .189
1.000 .099 .187
88
2 19 V12,V10 1.672 .196
1.000 -.066 -.075
89
2 19 V9,V12 1.642 .200
1.000 .181 .254
90
2 21 F2,V5 1.631 .202
1.000 -.215 -.417
91
2 20 V5,F2 1.631 .202
1.000 -.117 -.227
92 2 6 E11,E7 1.555 .212 1.000 -.014
-.173
93
2 19 V9,V15 1.541 .215
1.000 .098 .188
94
2 19 V7,V3 1.538 .215
1.000 -.179 -.268
95
2 19 V11,V3 1.533 .216 1.000 .126 .124
96
2 21 F4,V13 1.526 .217
1.000 -.382 -.865
97
2 19 V8,V7 1.526 .217
1.000 .279 .499
98
2 6 E8,E7 1.526
.217 1.000 .023 .190
99
2 6 E16,E5 1.522 .217
1.000 -.018 -.177
100
2 21 F3,V9 1.493 .222
1.000 .289 .519
101
2 6 E14,E8 1.491 .222
1.000 -.017 -.154
102
2 6 E13,E9 1.459 .227
1.000 -.022 -.241
103
2 21 F3,V5 1.425 .233
1.000 -.108 -.288
104
2 19 V15,V7 1.418 .234
1.000 -.081 -.194
105
2 6 E15,E3 1.399 .237
1.000 .012 .156
106
2 19 V5,V11 1.395 .238
1.000 -.078 -.109
107
2 19 V15,V9 1.354 .245
1.000 -.055 -.105
108 2 19
V6,V12 1.329 .249
1.000 -.143 -.228
109
2 6 E16,E3 1.306 .253
1.000 -.016 -.185
110
2 6 E9,E4 1.304 .253
1.000 .020 .123
111
2 6 E16,E7 1.304 .254 1.000 .014 .171
112
2 19 V7,V4 1.303 .254
1.000 -.089 -.111
113
2 19 V10,V16 1.278 .258
1.000 -.132 -.171
114
2 19 V10,V15 1.259
.262 1.000 -.160
-.247
115
2 19 V6,V5 1.217 .270
1.000 .190 .362
116
2 6 E6,E5 1.217 .270
1.000 .024 .130
117
2 19 V3,V8 1.208 .272
1.000 .220 .327
118
2 19 V3,V12 1.192 .275
1.000 .070 .103
119
2 19 V8,V10 1.189 .275
1.000 .058 .066
120
2 22 F2,F3 1.189 .276
1.000 .796 1.641
121
2 19 V16,V7 1.179 .277
1.000 .095 .194
122
2 6 E14,E13 1.166 .280
1.000 -.013 -.207
123
2 21 F1,V12 1.153 .283
1.000 -.241 -.377
124 2 19
V11,V7 1.138 .286
1.000 -.118 -.140
125
2 19 V15,V14 1.117 .290
1.000 -.199 -.620
126
2 19 V5,V15 1.098 .295
1.000 .094 .268
127
2 19 V4,V10 1.094 .296 1.000 .063 .050
128
2 21 F1,V13 1.073 .300
1.000 .297 .494
129
2 21 F2,V16 1.009 .315
1.000 .197 .363
130
2 21 F4,V9 1.001
.317 1.000 .179 .307
131
2 21 F1,V7 .998 .318
1.000 -.424 -.673
132
2 19 V9,V6 .974 .324
1.000 .077 .099
133
2 19 V12,V8 .962 .327
1.000 -.060 -.107
134
2 19 V4,V11 .950 .330
1.000 -.087 -.071
135
2 19 V13,V3 .947 .330
1.000 .063 .100
136
2 19 V16,V11 .945 .331
1.000 .056 .075
137
2 19 V10,V12 .945 .331
1.000 -.177 -.202
138
2 6 E16,E10 .938 .333
1.000 -.024 -.110
139
2 19 V5,V6 .910 .340
1.000 .076 .145
140 2 11
V14,V1 .903 .342
1.000 -.054 -.115
141
2 21 F3,V4 .900 .343
1.000 -.073 -.115
142
2 19 V7,V8 .898 .343
1.000 .082 .147
143
2 6 E16,E8 .895 .344 1.000 -.017
-.140
144
2 19 V16,V6 .895 .344
1.000 .057 .104
145
2 20 V3,F2 .888 .346
1.000 .085 .115
146
2 6 E9,E6 .869
.351 1.000 .020 .107
147
2 20 V10,F4 .863 .353
1.000 -.125 -.172
148
2 19 V9,V4 .862 .353
1.000 .065 .064
149
2 19 V14,V16 .850 .356
1.000 -.191 -.502
150
2 6 E13,E8 .849 .357
1.000 .014 .134
151
2 19 V10,V13 .846 .358
1.000 .178 .215
152
2 19 V13,V11 .835 .361
1.000 .128 .158
153
2 20 V7,F3 .832 .362
1.000 .065 .147
154
2 6 E9,E7 .827 .363
1.000 .010 .094
155
2 11 V3,V2 .819 .365
1.000 .094 .253
156 2 19
V7,V16 .805 .370
1.000 .058 .119
157
2 19 V16,V10 .804 .370
1.000 .038 .049
158
2 21 F3,V15 .798 .372
1.000 -.120 -.364
159
2 6 E7,E4 .798 .372 1.000 -.017
-.135
160
2 19 V4,V7 .798 .372
1.000 -.211 -.264
161
2 15 F4,V2 .797 .372
1.000 -.136 -.529
162
2 11 V16,V2 .797
.372 1.000 -.136
-.497
163
2 22 F4,F3 .797 .372
1.000 -.729 -1.980
164
2 19 V9,V7 .779 .377
1.000 .086 .123
165
2 19 V10,V14 .771 .380
1.000 -.139 -.207
166
2 19 V14,V15 .768 .381
1.000 .161 .500
167
2 19 V9,V8 .762 .383
1.000 -.067 -.095
168
2 6 E14,E9 .760 .383
1.000 -.009 -.093
169
2 6 E8,E5 .754 .385
1.000 -.017 -.116
170
2 19 V14,V10 .750 .387
1.000 -.037 -.056
171
2 20 V3,F3 .741 .389
1.000 .071 .134
172 2 19
V6,V16 .740 .390
1.000 .099 .181
173
2 6 E7,E6 .727 .394
1.000 .015 .104
174
2 19 V6,V7 .727 .394
1.000 .189 .305
175
2 19 V14,V8 .723 .395 1.000 -.052
-.119
176
2 19 V4,V9 .716 .398
1.000 .081 .080
177
2 20 V6,F4 .699 .403
1.000 .121 .234
178
2 6 E10,E6 .671
.413 1.000 .031 .076
179
2 20 V8,F3 .660 .416
1.000 .083 .186
180
2 10 D3,D1 .659 .417
1.000 .037 .295
181
2 19 V6,V10 .656 .418
1.000 .074 .077
182
2 19 V14,V6 .656 .418
1.000 -.045 -.095
183
2 21 F1,V14 .636 .425
1.000 -.217 -.445
184
2 21 F1,V6 .635 .425
1.000 -.441 -.626
185
2 19 V8,V6 .626 .429
1.000 .077 .123
186
2 22 F1,F3 .624 .430
1.000 .361 .720
187
2 6 E13,E6 .616 .433
1.000 -.014 -.111
188
2 19 V11,V16 .613 .434
1.000 -.064 -.086
189
2 19 V10,V6 .611 .435
1.000 .094 .097
190
2 6 E13,E11 .609 .435
1.000 -.029 -.410
191
2 19 V7,V15 .607 .436 1.000 -.059
-.143
192
2 6 E13,E5 .605 .437
1.000 -.010 -.112
193
2 19 V3,V7 .603 .437
1.000 -.141 -.211
194
2 6 E7,E3 .603
.437 1.000 -.011
-.136
195
2 19 V8,V12 .603 .437
1.000 .061 .107
196
2 15 F2,V2 .599 .439
1.000 .118 .348
197
2 6 E10,E3 .591 .442
1.000 .018 .081
198
2 6 E10,E5 .587 .444
1.000 .020 .072
199
2 6 E16,E15 .584 .445
1.000 .022 .290
200
2 21 F1,V8 .582 .446
1.000 .194
.307
201
2 19 V16,V14 .578 .447
1.000 .178 .467
202
2 6 E14,E5 .568 .451
1.000 .009 .094
203
2 6 E8,E6 .558 .455
1.000 .020 .093
204
2 6 E12,E10 .546 .460
1.000 -.017 -.064
205
2 6 E16,E11 .541 .462
1.000 -.011 -.131
206
2 19 V12,V14 .538 .463
1.000 .062 .143
207
2 19 V9,V10 .538 .463 1.000 .275 .251
208
2 21 F3,V3 .498 .480
1.000 -.088 -.165
209
2 11 V6,V2 .497 .481
1.000 -.109 -.315
210
2 19 V15,V8 .496
.481 1.000 .036 .085
211
2 19 V16,V12 .494 .482
1.000 .051 .103
212
2 15 F1,V2 .484 .486
1.000 .135 .385
213
2 19 V5,V9 .480 .489
1.000 -.049 -.083
214
2 19 V8,V5 .476 .490
1.000 -.099 -.210
215
2 19 V11,V8 .471 .492
1.000 -.056 -.066
216
2 19 V10,V5 .466 .495
1.000 .108 .147
217
2 6 E16,E4 .466 .495
1.000 .014 .107
218
2 21 F2,V11 .466 .495
1.000 .402 .433
219
2 19 V7,V6 .453 .501
1.000 .044 .070
220
2 15 F4,V1 .449 .503
1.000 .066 .131
221
2 10 D4,D2 .449 .503
1.000 .076 .373
222
2 21 F4,V3 .445 .505
1.000 -.179 -.322
223
2 19 V13,V14
.443 .506 1.000
-.062 -.152
224
2 21 F4,V11 .430 .512
1.000 -.169 -.240
225
2 21 F2,V3 .428 .513
1.000 .145 .198
226
2 11 V7,V1 .419 .518 1.000 -.037
-.061
227
2 19 V6,V15 .407 .523
1.000 .085 .183
228
2 11 V13,V1 .406 .524
1.000 .060 .103
229
2 15 F3,V1 .406 .524
1.000 .053 .110
230
2 10 D3,D2 .406 .524
1.000 .061 .662
231
2 20 V8,F4 .405 .525
1.000 .145 .313
232
2 19 V8,V14 .403 .525
1.000 -.121 -.279
233
2 6 E15,E12 .401 .527
1.000 -.008 -.093
234
2 21 F3,V13 .401 .527
1.000 .141 .336
235
2 19 V12,V13 .401 .527
1.000 .141 .264
236
2 22 F3,F4 .400 .527
1.000 -.096 -.262
237
2 20 V14,F1 .400 .527
1.000 -.060 -.124
238
2 11 V9,V2 .399 .528
1.000 .073 .188
239
2 6 E12,E6
.397 .529 1.000 .012 .069
240
2 19 V15,V5 .393 .531
1.000 .041 .116
241
2 6 E12,E5 .384 .535
1.000 -.008 -.069
242
2 6 E12,E9 .381 .537 1.000 .011 .094
243
2 19 V16,V4 .370 .543
1.000 .031 .043
244
2 6 E15,E10 .368 .544
1.000 .011 .056
245
2 20 V7,F4 .366 .545
1.000 .049 .106
246
2 6 E14,E3 .364 .546
1.000 -.007 -.085
247
2 19 V4,V14 .361 .548
1.000 -.123 -.198
248
2 6 E15,E9 .359 .549
1.000 -.006 -.065
249
2 6 E16,E14 .359 .549
1.000 -.012 -.155
250
2 6 E16,E13 .355 .551
1.000 .010 .150
251
2 21 F4,V7 .348 .555
1.000 .146 .316
252
2 21 F2,V15 .337 .561
1.000 -.112 -.246
253
2 19 V11,V13 .332 .564
1.000 -.083 -.103
254
2 19 V14,V4 .329 .567
1.000 -.028 -.045
255
2 20 V4,F4
.326 .568 1.000
-.120 -.180
256
2 21 F1,V3 .326 .568
1.000 .243 .321
257
2 6 E15,E5 .320 .572
1.000 .006 .067
258
2 19 V4,V8 .316 .574 1.000 -.085
-.106
259
2 20 V11,F4 .310 .578
1.000 -.057 -.081
260
2 19 V10,V4 .305 .581
1.000 .058 .047
261
2 19 V15,V10 .296 .587
1.000 -.018 -.027
262
2 19 V13,V5 .289 .591
1.000 .039 .086
263
2 6 E10,E4 .285 .593
1.000 .018 .053
264
2 19 V16,V5 .284 .594
1.000 -.045 -.107
265
2 19 V11,V12 .276 .599
1.000 -.121 -.141
266
2 20 V11,F3 .276 .599
1.000 -.121 -.179
267
2 19 V16,V15 .275 .600
1.000 -.121 -.329
268
2 6 E15,E4 .265 .607
1.000 -.008 -.066
269
2 20 V16,F1 .264 .608
1.000 .045 .080
270
2 20 V8,F2 .263 .608
1.000 .057 .093
271
2 21 F1,V10
.258 .611 1.000 .060 .061
272
2 20 V4,F3 .247 .619
1.000 -.057 -.089
273
2 19 V14,V7 .234 .628
1.000 .041 .094
274
2 20 V7,F2 .228 .633 1.000 .036 .060
275
2 19 V5,V7 .225 .635
1.000 .075 .159
276
2 6 E7,E5 .225 .635
1.000 .006 .060
277
2 19 V12,V6 .225 .636 1.000 -.025
-.040
278
2 19 V5,V8 .222 .637
1.000 -.047 -.099
279
2 19 V12,V7 .218 .640
1.000 -.033 -.058
280
2 19 V14,V3 .216 .642
1.000 -.035 -.067
281
2 21 F1,V9 .198 .656
1.000 .178 .224
282
2 19 V9,V3 .197 .657
1.000 -.039 -.046
283
2 19 V8,V11 .188 .665
1.000 .033 .039
284
2 6 E16,E6 .175 .676
1.000 .009 .059
285
2 6 E5,E3 .175 .676
1.000 -.006 -.062
286
2 6 E16,E12 .174 .676
1.000 -.006 -.060
287
2 11 V12,V2
.166 .683 1.000
-.045 -.145
288
2 11 V13,V2 .166 .683
1.000 .051 .174
289
2 19 V12,V15 .164 .686
1.000 -.033 -.078
290
2 20 V5,F4 .157 .692 1.000 .038 .096
291
2 6 E14,E11 .156 .693
1.000 .004 .058
292
2 11 V10,V1 .154 .694
1.000 .048 .050
293
2 11 V10,V2 .154 .694 1.000 .282 .583
294
2 19 V6,V8 .153 .695
1.000 .055 .088
295
2 19 V9,V14 .149 .700
1.000 .033 .061
296
2 20 V10,F3 .148 .700
1.000 .110 .159
297
2 20 V14,F3 .147 .702
1.000 .053 .156
298
2 6 E12,E8 .143 .706
1.000 .006 .042
299
2 11 V5,V2 .141 .707
1.000 .041 .157
300
2 21 F4,V6 .140 .708
1.000 .040 .077
301
2 19 V5,V14 .139 .709
1.000 .041 .112
302
2 19 V8,V13 .138 .711
1.000 .030 .056
303
2 19 V11,V15
.136 .712 1.000
-.035 -.056
304
2 19 V7,V11 .133 .715
1.000 .019 .022
305
2 11 V11,V2 .127 .721
1.000 -.044 -.093
306
2 21 F4,V14
.121 .728 1.000
-.107 -.298
307
2 21 F4,V10 .118 .732
1.000 -.024 -.034
308
2 19 V10,V9 .114 .735
1.000 .391 .356
309
2 19 V13,V6 .113 .736 1.000 .018 .031
310
2 11 V7,V2 .111 .739
1.000 -.031 -.100
311
2 19 V3,V9 .104 .747
1.000 -.023 -.027
312
2 19 V6,V3 .103 .748
1.000 -.071 -.095
313
2 11 V8,V1 .103 .749
1.000 .029 .047
314
2 10 D2,D1 .102 .750
1.000 .062 .197
315
2 20 V9,F1 .102 .750
1.000 .037 .047
316
2 11 V9,V1 .102 .750
1.000 -.024 -.032
317
2 22 F1,F2 .102 .750
1.000 .271 .391
318
2 21 F4,V16 .100 .751
1.000 .112 .274
319
2 21 F2,V7
.098 .754 1.000 .069 .113
320
2 21 F2,V8 .098 .754
1.000 .043 .070
321
2 11 V3,V1 .097 .756
1.000 .024 .032
322
2 19 V3,V10
.096 .757 1.000 .013 .013
323
2 19 V3,V13 .091 .763
1.000 .020 .031
324
2 21 F3,V16 .087 .767
1.000 -.033 -.085
325
2 19 V3,V5 .085 .770 1.000 -.033
-.059
326
2 20 V9,F3 .084 .772
1.000 .050 .089
327
2 20 V13,F4 .083 .773
1.000 -.025 -.056
328
2 6 E11,E4 .083 .774
1.000 -.005 -.041
329
2 21 F1,V16 .081 .776
1.000 -.064 -.115
330
2 6 E14,E10 .075 .785
1.000 -.006 -.027
331
2 19 V11,V4 .072 .789
1.000 -.019 -.015
332
2 21 F2,V9 .069 .793
1.000 -.071 -.092
333
2 19 V15,V4 .069 .793
1.000 -.010 -.017
334
2 19 V6,V14 .066 .797
1.000 .040 .083
335
2 21 F4,V4
.059 .808 1.000
-.072 -.107
336
2 6 E14,E6 .059 .809
1.000 -.004 -.030
337
2 6 E13,E7 .053 .818
1.000 .002 .034
338
2 20 V4,F2
.051 .821 1.000
-.028 -.032
339
2 21 F2,V14 .049 .824
1.000 -.058 -.123
340
2 19 V7,V5 .047 .828
1.000 .020 .044
341
2 19 V5,V16 .046 .830 1.000 -.017
-.040
342
2 21 F1,V4 .043 .835
1.000 -.077 -.085
343
2 21 F4,V15 .042 .837
1.000 .051 .149
344
2 19 V4,V13 .037 .848
1.000 .017 .023
345
2 19 V8,V16 .034 .853
1.000 -.029 -.058
346
2 19 V4,V5 .034 .854
1.000 -.031 -.046
347
2 6 E5,E4 .034 .854
1.000 -.004 -.025
348
2 19 V12,V16 .034 .855
1.000 -.012 -.024
349
2 19 V14,V13 .033 .856
1.000 -.017 -.042
350
2 6 E14,E4 .030 .863
1.000 -.003 -.023
351
2 21 F4,V5
.029 .864 1.000 .027 .070
352
2 19 V15,V6 .026 .871
1.000 -.008 -.016
353
2 19 V13,V15 .023 .881
1.000 -.016 -.040
354
2 21 F2,V10
.022 .881 1.000 .014 .015
355
2 20 V11,F1 .021 .884
1.000 -.021 -.022
356
2 19 V11,V9 .021 .885
1.000 -.049 -.046
357
2 19 V5,V10 .021 .886 1.000 .006 .009
358
2 21 F4,V12 .020 .888
1.000 -.025 -.054
359
2 19 V9,V13 .020 .889
1.000 .017 .025
360
2 20 V15,F1 .019 .890
1.000 -.009 -.020
361
2 19 V16,V8 .018 .892
1.000 -.009 -.018
362
2 19 V16,V3 .018 .893
1.000 .010 .017
363
2 6 E11,E5 .017 .895
1.000 .002 .017
364
2 22 F1,F4 .016 .901
1.000 -.036 -.069
365
2 6 E15,E6 .015 .902
1.000 -.002 -.014
366
2 21 F3,V6 .013 .908
1.000 -.007 -.014
367
2 19 V8,V4
.008 .929 1.000 .012 .015
368
2 6 E13,E3 .008 .931
1.000 -.001 -.014
369
2 21 F3,V14 .008 .931
1.000 .011 .032
370
2 6 E12,E3
.007 .932 1.000 .001 .011
371
2 21 F4,V8 .007 .936
1.000 -.025 -.053
372
2 19 V3,V15 .005 .942
1.000 .006 .013
373
2 19 V10,V3 .005 .943 1.000 -.010
-.009
374
2 19 V9,V5 .004 .951
1.000 .006 .010
375
2 22 F2,F4 .003 .955
1.000 -.015 -.029
376
2 6 E9,E5 .003 .959
1.000 -.001 -.005
377
2 21 F1,V5 .003 .959
1.000 .038 .071
378
2 19 V11,V14 .003 .959
1.000 -.006 -.008
379
2 19 V11,V5 .002 .962
1.000 .005 .006
380
2 10 D4,D1 .002 .964
1.000 .003 .010
381
2 6 E6,E3 .002 .965
1.000 .001 .006
382
2 19 V3,V6 .002 .966
1.000 .003 .004
383
2 6 E15,E14
.002 .969 1.000
-.001 -.009
384
2 6 E15,E11 .001 .970
1.000 .000 .006
385
2 19 V5,V3 .001 .970
1.000 .006 .010
386
2 19 V7,V9
.001 .974 1.000
-.002 -.003
387
2 20 V12,F4 .001 .978
1.000 -.002 -.005
388
2 19 V5,V4 .001 .978
1.000 -.003 -.004
389
2 21 F1,V15 .000 .984 1.000 -.005
-.010
390
2 19 V14,V5 .000 .986
1.000 -.001 -.004
391
2 19 V15,V3 .000 .988
1.000 -.001 -.002
392
2 19 V13,V16 .000 .988
1.000 .001 .002
393
2 19 V4,V16 .000 .990
1.000 .002 .003
394
2 20 V10,F1 .000 .991
1.000 -.002 -.002
395
2 21 F2,V4 .000 .991
1.000 -.002 -.002
396
2 6 E11,E8 .000 .991
1.000 .000 -.001
397
2 19 V8,V9 .000 .996
1.000 .000 .001
398
2 6 E8,E4 .000 .997
1.000 .000 -.001
399
2 19 V8,V3
.000 1.000 1.000 .000 .000
400
2 0 V3,F1 .000 1.000
1.000 .000 .000
401
2 0 V9,F2 .000 1.000
1.000 .000 .000
402
2 6 E13,E12
.000 1.000 1.000 .000 .000
403
2 0 V12,F3 .000 1.000
1.000 .000 .000
404
2 0 V16,F4 .000 1.000
1.000 .000 .000
PAGE : 22 EQS
Licensee:
TITLE:
Model built by EQS 6 for Windows
MAXIMUM LIKELIHOOD SOLUTION (NORMAL
DISTRIBUTION THEORY)
MULTIVARIATE LAGRANGE MULTIPLIER TEST BY
SIMULTANEOUS PROCESS IN STAGE 1
PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS
STAGE ARE:
PVV PFV PFF PEE PDD GVV GVF GFV GFF BVV
BVF BFV BFF
CUMULATIVE MULTIVARIATE
STATISTICS UNIVARIATE INCREMENT
----------------------------------
------------------------------
HANCOCK'S
SEQUENTIAL
STEP
PARAMETER CHI-SQUARE D.F.
PROB. CHI-SQUARE PROB.
D.F. PROB.
----
----------- ---------- ----
----- ---------- -----
---- -----
1
E12,E4 8.466 1
.004 8.466 .004
76 1.000
2
E11,E3 15.128 2
.001 6.663 .010
75 1.000
3
V13,V10 20.668 3
.000 5.540 .019
74 1.000
4
V6,V4 25.635 4
.000 4.967 .026
73 1.000
5
V16,V9 30.314 5
.000 4.679 .031
72 1.000
6
E10,E7 34.946 6
.000 4.633 .031
71 1.000
7
F2,V6 38.977 7
.000 4.031 .045
70 1.000
LAGRANGIAN MULTIPLIER TEST REQUIRED 254540 WORDS OF MEMORY.
PROGRAM ALLOCATES 2000000 WORDS.
1
Execution begins at 10:47:46
Execution ends at
10:47:49
Elapsed time = 3.00 seconds