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1.1 Introduction

Regression is a simple but the most useful statistical method in data anal-
ysis. The goal of regression analysis is to discover the relationship between
a response y and a set of predictors x1, x2, . . . , xp. When fitting a regression
model, besides prediction accuracy, parsimony is another important criterion
of goodness. Simpler models are preferred by researchers for easier interpre-
tation of the relationship between x and y. Moreover, discarding irrelevant
predictors often improves prediction accuracy [13]. Variable selection meth-
ods have long been used in regression analysis, for example forward selection,
backward elimination, best subset regression. The number of variables p in the
traditional setting is typically 10 or at most a few dozens. Modern scientific
technology, led by the microarray, has produced data dramatically above the
conventional scale. We have p = 1, 000 to 10,000 in gene expression microarray
data, and p up to 500,000 in single nucleotide polymorphism (SNP) data.

To make things more complicated, the large number of variables in the
biological data are dependent. For example, it is well known that for genes
that share a common biological function or participate in the same metabolic
pathway, the pairwise correlations among them can be very high [14]. Tradi-
tional variable selection methods that select variables one by one may miss
important group effects on pathways. Consequently, when traditional variable
selection methods are applied in multiple data sets from a common biological
system, the selected variables from the multiple studies may show little over-
lap. To overcome the challenges, we have developed a series of group variable
selection methods, which construct highly correlated genes into a group and
select the whole group once one gene among them is in the model. In this
chapter, we introduce the idea of group variable selection and illustrate its
utility by applying the methods to genomic data analysis.
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1.2 Background

1.2.1 Existing variable selection methods

We consider a linear regression model

y = x1β1 + x2β2 + · · ·+ xpβp + ε

where the response y is predicted by p predictors x1, . . . ,xp. Without loss
of generality, the response and the predictors are all centered so that there
is no intercept in the model. Assume n observations and the error term ε =
(ε1, . . . , εn) are i.i.d. with mean 0 and variance σ2. The regression model is
often expressed in a matrix format

y = Xβ + ε

where y ∈ Rn, X ∈ Rn×p, and β ∈ Rp.
A traditional variable selection method is known as the best subset se-

lection. The procedure first determines a criterion of model goodness, for
example, residual sum of squares, adjusted R2, Mallow’s Cp, the Akaike in-
formation criterion (AIC), or the Bayesian information criterion (BIC). Then
all possible subsets of variables are evaluated by the criterion and the subset
that optimizes the criterion is selected. However, when the number of vari-
ables p is large, the best subset selection is computationally intensive. Huo
and Ni [5] prove that the best subset selection is an NP-hard (nondetermin-
istic polynomial-time hard) problem. That is, the best subset solution cannot
be obtained in computation times as a polynomial of the number of variables.
Alternatively, sequential approaches can be used, including forward selection,
backward elimination, and stepwise regression. The sequential approaches are
computationally less demanding than the best subset selection. However, their
heuristic searches of variables cannot guarantee an optimal solution to the re-
gression model.

More recently, penalized least squares methods have been used for variable
selection. The most popular one is Lasso (Least absolute shrinkage and selec-
tion operator) proposed by Tibshirani [17]. The Lasso estimators are defined
by

β̂Lasso = argminβ ||y −Xβ||2 + λ

p∑

j=1

|βj |,

where λ is a nonnegative regularization parameter. The second term of the sum
of the absolute regression coefficients is usually called L1 penalty. Equivalently,
Lasso is a constrained ordinary least squares that minimizes

||y −Xβ||2 subject to
p∑

j=1

|βj | ≤ s,
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where s is a corresponding regularization parameter. Due to the nature of the
L1 penalty, Lasso shrinks the regression coefficients toward 0 and produces
some coefficients that are exactly 0, and hence implements variable selection.
Many researchers have studied properties of Lasso [8, 9, 24, 25]. Under certain
conditions, Lasso is shown to select the right set of variables with a probability
going to 1. However, Lasso’s conditions are violated for a group of highly
correlated variables. In this situation, Lasso tends to select only one variable
from the group and does not care which one is selected.

Efron et al. [3] propose a new variable selection algorithm, Least Angle Re-
gression (LARS), which is a less greedy version of traditional forward selection
methods. A special feature of LARS is that a simple modification of the LARS
algorithm calculates all possible Lasso estimators but uses computer times an
order of magnitude less than Lasso. The efficiency of the LARS algorithm
makes it an attractive variable selection method.

Besides Lasso, other penalized least squares approaches have been pro-
posed, using penalty functions more general than the L1 penalty. Fan and Li
[4] define a special penalty function that is singular at the origin to produce
sparse coefficient estimators; satisfies certain conditions to produce continu-
ous models; is bounded by a constant to produce nearly unbiased estimators
for large coefficients. Their penalty function is called SCAD. Fan and Li [4]
show that, with a proper choice of the regularization parameter, SCAD pos-
sesses oracle properties, which are referred to that the probability of selecting
the right set of variables (with nonzero coefficients) converges to 1 and that
the estimators of the nonzero coefficients are asymptotically normal with the
same means and covariances as if the zero coefficients were known in advance.
Kim et al. [7] also apply SCAD in certain high dimensional data.

The traditional variable selection methods and the later additions Lasso,
LARS, SCAD, do not select variable groups. In fact, they all ignore the cor-
relation between the variables. Elastic net proposed by Zou and Hastie [27] is
the first variable selection method that works for groups of predictors. Elas-
tic net is also a member of penalized least squares. The penalty function is
a linear combination of L1 and L2 penalties. By introducing a L2 penalty
term, elastic net encourages strongly correlated variables to be in or out of
the model at the same time. This phenomenon is termed “grouping effect”.
In theory, a strictly convex penalty function provides a sufficient condition for
the grouping effect. The L2 penalty guarantees strict convexity. On the other
hand, elastic net does not reveal the underlying group structure in its solution
and does not possess the properties introduced by Fan and Li [4] in SCAD.

When people have prior knowledge on variable groups, group Lasso pro-
posed by Yuan and Lin [22] is designed to select pre-defined groups of pre-
dictors. Suppose p predictors are divided into J groups with sizes k1, . . . , kJ .
The group Lasso estimators are obtained by minimizing

||y −
J∑

j=1

Xjβj ||2 + λ
J∑

j=1

||βj ||Kj
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where λ is the regularization parameter and ||z||K = (z′Kz)1/2 with a
symmetric k × k positive definite matrix K. The positive definite matrices
K1, . . . , KJ for the J groups can be chosen as identity matrices of sizes
k1, . . . , kJ respectively. Yuan and Lin [22] also propose group LARS as an
extension of LARS. Group Lasso and group LARS have been used in multi-
factor ANOVA models, in which each factor may have several levels and can
be expressed through a group of dummy variables.

In addition to the frequentist methods, Bayesian interpretations of the
penalized regression Ridge and Lasso have been proposed. It can be shown
that the Bayesian estimators of the coefficients β1, . . . , βp are equivalent to
Ridge when we assume normal prior distributions for β’s, and are equivalent to
Lasso when we assume Laplace prior distributions [11, 21]. Bayesian approach
offers an alternative framework of variable selection. Theoretically, Bayesian
methods can deal with high dimensional inter-correlated variables through
generalized prior distributions. In practice, Bayesian methods will encounter
the same difficulty as its frequentist counterpart.

1.2.2 Large scale genomic data

High-throughput gene expression microarray techniques have now been rou-
tinely used in biological applications. An array measures expression levels of
thousands of genes simultaneously. Differences between experiment conditions
(treatments) are implied by expression variations of a large number of genes.
In medical research, microarray is used to detect associations between gene
expression profiles and clinical outcomes, for example cancer types or stages.
Consider a clinical outcome as the response variable y and all genes measured
in the microarray as the predictor variables x1, . . . , xp. Then the variables
are of high dimension, with complicated dependent structures. Identifying a
subset of significant genes that affect the clinical outcome will be a good
application of our proposed group selection methods.

In one of our previous projects, we have developed a suite of statistical
methods [23] for inferring cis-regulatory modules, which are groups of tran-
scription factors binding in the promoter regions to regulate gene expression.
Our approach is an integrative analysis that combines information from multi-
ple types of biological data, including genomic DNA sequences, genome-wide
location analysis (ChIP-chip experiments), and gene expression microarray.
We first use a hidden Markov model by Wu and Xie [19] to predict a clus-
ter of transcription factor binding sites in DNA sequences. The predictions
are refined by regression analysis on gene expression microarray data and/or
ChIP-chip binding experiments. We have constructed a regression model that
describes a gene of interest as a function of its TFs. The response variable is
the gene expression level. The predictor variables are the TF binding levels
approximated by the TF gene expression values. We view a combinatorial
effect of multiple TFs on the gene through multiple regression analysis. How-
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ever, the difficulty is to select an appropriate set of TFs which has significant
effects on the gene.

Due to complicated dependence among TFs, the problem of selecting TF
covariates for a gene posts a challenge to the standard variable selection pro-
cedures. Consider a regression example of gene ACE2 versus a set of TFs
consisting of Fkh1, Fkh2, Mcm1, Ndd1, Swi4, and Swi6 using Spellman et
al.’s [16] yeast cell cycle microarray data. It is known that ACE2 was bound
by Fkh1, Fkh2, and the complex Mcm1/Fkh2/Ndd1 [15]. Hence, a good vari-
able selection method is to select the corresponding four TFs as much as
possible. The expression levels of FKH1 and FKH2 are highly correlated with
a correlation coefficient of 0.63. Using forward selection, Lasso, and elastic
net, Fkh2 always enters the model first. However, the standardized regression
coefficient of Fkh2 is 0.677 and that of Fkh1 is −0.045, when both Fkh2 and
Fkh1 are in the model. The available methods fail to select both Fkh2 and
Fkh1 as a group of covariates. In fact, variable selection in regression analysis
tends to keep only one variable in the model, whenever there is a group of
highly correlated covariates. The group variable selection methods attempt to
solve this problem.

Another application of the proposed group variable selection methods is
SNP data analysis. SNPs are the most common genetic variations in the hu-
man genome and occur once in several hundred base pairs. A SNP is a position
at which two alternative bases occur at appreciable frequency (> 1%) in the
human population. The NCBI dbSNP database currently stores 5 million hu-
man SNPs identified by comparing the DNA of different individuals, making
it possible to use them for genome-wide SNP genotyping. SNPs can serve as
genetic markers for identifying disease genes by linkage studies in families,
linkage disequilibrium in isolated populations, association analysis of patients
and controls, and loss-of-heterozygosity studies in tumors [18]. Oligonucleotide
SNP microarrays have been developed for high-throughput genotyping of hu-
man SNPs with marker number ranging from 10,000 (Mapping 10K array) to
500,000 (Mapping 500K array set). With the technique advances, genome-wide
association studies become popular to detect specific DNA variants that con-
tribute to human phenotypes and particularly human diseases. In SNP data
analysis, we assume a phenotype of interest as the response variable y, and a
large number of SNPs as the predictor variables. The proposed group variable
selection methods will be used to identify genetic variants that associate with
variation in the phenotype.

1.3 gLars and gRidge algorithms

Consider a linear regression model

y = Xβ + ε,
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where y = (y1, y2, . . . , yn)T is the response variable, X = (x1,x2, . . . ,xp)
is the predictor matrix, and ε is a vector of independent and identically dis-
tributed random errors with mean 0 and variance σ2. There are n observations
and p predictors. We center the response variable and standardize the column
vectors of the predictor matrix. Hence, there is no intercept in our model.

n∑

i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2
ij = 1 for j = 1, 2, . . . , p

The LARS algorithm proposed by Efron et al. [3] is a less greedy forward
model selection procedure. At the beginning of LARS, a predictor enters the
model if its absolute correlation with the response is the largest one among
all the predictors. The coefficient of this predictor grows in its ordinary least
squares direction until another predictor has the same correlation with the
current residual (i.e. equal-angle). Next, both coefficients of the two selected
predictors begin to move along their ordinary least squares directions until a
third predictor has the same correlation with the current residual as the first
two. The whole process continues until all predictors enter the model. In each
step, one variable adds into the model and the solution paths, which are the
coefficient estimators as functions of the tuning parameter (defined later in
Formula 1.1), are extended in a piecewise linear fashion. After all variables
enter the model, the whole LARS solution paths complete.

For data with dependent structures, we propose gLars and gRidge al-
gorithms that construct groups simultaneously along the variable selection
process. We first give a grouping definition. Predictors form a group if they
satisfy both of the two criterions:

• They are highly correlated with the response variable (or current residual);
• They are highly correlated with each other.

The correlation thresholds for the two criterions will be determined from the
data. For instance, the threshold of the first criterion is suggested to be the
75th percentile of all correlations (in absolute value) between the current
residual and unselected predictors. The correlation threshold (absolute value)
for the second criterion is either the 75th percentile of all pairwise correlations
among the predictors or chosen from a set of grids, for example 0.9, 0.8,
0.7, 0.6. An important difference of the proposed method from the standard
forward selection procedures is that our variable selection criterion has two
components hence is defined by a region in the 2-dimensional space, (t1, t2)
in Step 3 in the following algorithm. In addition, the first requirement of
selecting a variable highly correlated with the response variable is not affacted
by collinearity among predictors.

In the gLars algorithm, we start as LARS to select a predictor which has
the largest correlation with the response. We call this predictor a “leader el-
ement”. We then build a group based on this leader element and the current
residual according to the two grouping criterions. Note that both criterions



1 Group Variable Selection Methods 7

have to be satisfied when selecting a variable into a group. Once a group has
been constructed, it will be represented by a unique direction in Rn as the lin-
ear combination of the ordinary least squares directions of all variables in the
group. Next, we choose another leader element, analogous to the equal-angle
requirement of the LARS algorithm. A new group is formed again following
the grouping definition. We refine the solution paths in a piecewise linear for-
mat. The whole process continues until all predictors enter the model. The
detailed algorithm is described below.

1. Initialization: Set the step index k = 1, β[0] = 0, residual r[0] = Y , active
set A0 = ∅, inactive set AC

0 = {X1, X2, . . . , Xp}.
2. Identify the leader predictor x for the first group, where x = argmaxxi

|x′ir[k−1]|,
xi ∈ AC

k−1.
3. Construct the group Gk with the leader predictor x from Step 2 according

to the two criterions: x′jr
[k−1] > t1 and x′jx > t2, xj ∈ AC

k−1, where
t1 = 0.75th percentile of all correlations between xj and r[k−1], and t2 =
t ∈ {0.9, 0.8, 0.7, 0.6}.
Set Ak = Ak−1 ∪Gk, AC

k = AC
k−1 \Gk.

4. Compute the current direction γ with components

γAk
= (X ′

Ak
XAk

)−1X ′
Ak

r[k−1], γAC
k

= 0

where XAk
denotes the matrix comprised of the columns of X correspond-

ing to Ak.
5. Calculate how far the gLars algorithm progresses in direction γ. It divides

into two small steps:
Find xj′ in AC

k which corresponds to the smallest α ∈ (0, 1] such that

||X ′
Gj

(r[k−1] − αXγ)||L1

pj
= |x′j′(r[k−1] − αXγ)|,

where Gj is a group from Ak, pj is the number of variables in group Gj ,
and ||.||L1 represents the sum of absolute values.

Justification. As in Step 3, find the group with the leader predictor xj′

selected above and denote the group as XGj′ . Recalculate α ∈ (0, 1] for
this selected new group such that

||X ′
Gj

(r[k−1] − αXγ)||L1

pj
=
||X ′

Gj′
(r[k−1] − αXγ)||L1

pj′

Update β[k] = β[k−1] + αγ, r[k] = Y −Xβ[k].
6. Update k to k + 1, and Ak = Ak−1 ∪Gj′ , AC

k = AC
k−1 \Gj′ .

7. If AC
k 6= ∅, return to Step 4. Otherwise, set γ, β and r to be the OLS

solutions and stop.

Ordinary least squares would perform poorly when the correlations among
the predictors are high and/or the noise level is high. Since both LARS and
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gLars move towards ordinary least squares direction in each step, they face
the same shortage. Ridge estimators, on the other hand, perform better in
this situation. We propose a gRidge algorithm, which moves towards ridge
estimator direction in each step. The relationship between ridge estimator
β̂(λ) and ordinary least squares estimator β̂ can be shown as

β̂(λ) = (X ′X + λI)−1X ′Y = (X ′X(I + λ(X ′X)−1))−1X ′Y

= (I + λ(X ′X)−1)−1β̂ = Cβ̂,

where C = (I + λ(X ′X)−1)−1 and λ is the ridge parameter. The gRidge
algorithm is thus a simple modification of the gLars algorithm. When a group
is constructed, gRidge represents the group by a unique direction from the
linear combination of the ridge directions of all variables in the group. The
variable coefficients are moving towards the ridge directions.

As we run simulations, we notice that gRidge outperforms other methods
in terms of relative prediction errors (RPEs, defined below in the simulations).
However, this method is limited by its comparably larger false positives due
to an over-grouping effect. We propose to add a hard threshold δ to gRidge
estimators so that small (but nonzero) coefficients will be removed, i.e. β̃j =
β̂jI(β̂j > δ). Based on simulations, we define a threshold δ =

√
σ log(p)/n.

Hence smaller error term, smaller number of predictors, or larger sample size
give smaller threshold. We name the modified gRidge algorithm gRidge new,
with this hard threshold filtering. Simulation studies show that gRidge new
not only preserves low RPE but also greatly reduces false positives.

Both gLars and gRidge produce the entire piecewise linear solution paths
as LARS does. Groups of variables are selected when we stop the paths after
a certain number of steps. The number of step k is the tuning parameter.
Equivalently, we may use a tuning parameter as the fraction of the L1 norm
of the coefficients

s = Σj selected||β̂j ||L1/Σj ||β̂j ||L1 . (1.1)

For gLars, s (or k) is the only tuning parameter. It is determined by a stan-
dard five-fold cross-validation (CV). For gRidge, there are two tuning pa-
rameters, the ridge parameter λ in addition to s (or k). Similar to elastic
net, we cross-validate on two dimensions. First, we choose a grid for λ, say
{0.01, 0.1, 1, 10, 100, 1000}. Then for each λ, gRidge produces the entire solu-
tion path. The parameter s (or k) is selected by five-fold CV. At the end, we
choose the λ value which gives the smallest CV error.

Simulation studies

Simulation studies are used to compare the proposed gLars and gRidge with
ordinary least squares, ridge regression, LARS and elastic net. The simulated
data are generated from the true model y = Xβ + σε, ε ∼ N(0, 1). We
have studied many examples for different scenarios but only present four here
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due to the space limit. For each example, we simulate 100 data sets. Each
data set consists of a training set and a test set. The tuning parameters are
selected on the training set by five-fold cross-validation. The variable selection
methods are compared in terms of relative prediction error (RPE) [26] and
selection accuracy on the test set. The relative prediction error is defined as
RPE = (β̂ − β)T Σ(β̂ − β)/σ2, where Σ is the population covariance matrix
of X. The four scenarios are given by:

1. Example 1 (adopted from [27]), there are 100 and 200 observations
in the training and test sets respectively. The true parameter β =
(3, 1.5, 0, 0, 2, 0, 0, 0) and σ = 3. The pairwise correlation between xi and
xj is set to be corr(xi,xj) = 0.5|i−j|. This example creates a sparse model
with a few large effects and the covariates have first-order autoregressive
correlation.

2. Example 2 (adopted from Daye and Jeng unpublished), we simulate 100
and 400 observations in the training and test sets respectively. We set the
true parameters as

β = (3, . . . , 3︸ ︷︷ ︸
15

, 1.5, . . . , 1.5︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
20

)

and σ = 6. The predictors are generated as:

xi = Z + εx
i , Z ∼ N(0, 1), i = 1, . . . , 15,

xi ∼ N(0, 1), i.i.d., i = 16, . . . , 40,

where εx
i are independent identically distributed N(0, 0.01), i = 1, . . . , 15.

This example creates one group from the first 15 highly correlated covari-
ates. The next five covariates are independent but provide signals on the
response variable.

3. Example 3 (adopted from [27]), we simulate 100 and 400 observations in
the training and test sets respectively. We set the true parameters as

β = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
25

)

and σ = 15. The predictors are generated as:

xi = Z1 + εx
i , Z1 ∼ N(0, 1), i = 1, . . . , 5,

xi = Z2 + εx
i , Z2 ∼ N(0, 1), i = 6, . . . , 10,

xi = Z3 + εx
i , Z3 ∼ N(0, 1), i = 11, . . . , 15,

xi ∼ N(0, 1), i.i.d., i = 16, . . . , 40,

where εx
i are independent identically distributed N(0, 0.01), i = 1, . . . , 15.

There are three equally important groups with five members in each. There
are also 25 noise variables.
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4. Example 4, we simulate 100 and 200 observations in the training and test
sets respectively. We set the true parameters as

β = (3, 3, 3, 0, 0︸ ︷︷ ︸
5

, 3, 3, 3, 0, 0︸ ︷︷ ︸
5

, 3, 3, 3, 0, 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
25

)

The predictors and the error terms are the same as in Example 3. There
are also three equally important groups with five members in each of
them. However, in each group, there are two noise variables, which have
no effect on the response variable but are highly correlated with the other
three important variables. There are totally 31 noise variables.

Table 1.1 summarizes the prediction results. The median RPE from 100
simulations is reported. The smallest RPE is emphasized in italic font, which
indicates the most accurate method for each example. We also report the
median number of nonzero coefficients versus the median number of zero co-
efficients mis-specified as nonzero, which imply the true positive and false
positive of a method. The simulation results indicate that LARS tends to
produce very sparse models but does not work for collinearity. Elastic net
improves LARS when predictors are correlated. But elastic net misses the five
true signals with the small coefficients 1.5 in Example 2. The first proposed
method gLars improves elastic net in terms of true positives, especially in Ex-
ample 2 and 4. gRidge and gRidge new produce the smallest RPEs in all the
examples and therefore are the most accurate models in terms of prediction.
We also notice that while preserving the large coefficients close to the true
coefficients, gRidge tends to select more variables than elastic net, due to its
over grouping effect. After we add a hard threshold to gRidge, the gRidge new
estimators achieves the best performance.

Table 1.1. Median relative prediction errors (RPE) and median number of nonzero
coefficients / median number of zero coefficients mis-specified as nonzero coefficients
for the four examples based on 100 replications. The best results are emphasized in
italic fonts.

Methods Example 1 Example 2 Example 3 Example 4

OLS 0.5843 3/5 0.6364 20/20 0.6390 15/25 0.6458 9/31

Ridge 0.2832 3/5 0.2519 20/20 0.0993 15/25 0.1971 9/31

LARS 0.4640 3/0 0.3208 12/1 0.1620 6/2 0.1200 3/6

Elastic net 0.1714 3/1 0.2587 15/2 0.0800 15/1 0.1110 7/8

gLars 0.2616 3/2 0.4235 20/3 0.2220 15/3 0.2121 9/8

gRidge 0.1806 3/3 0.1963 20/12 0.0700 15/10 0.0700 9/13

gRidge new 0.1816 3/1 0.1988 19/3 0.0700 15/2 0.0690 9/8
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1.4 Unbiased variable selection via SCAD `2

SCAD is proposed by Fan and Li [4] as a variable selection method via pe-
nalized least squares. The SCAD penalty function is specially defined to sat-
isfy three properties for the coefficient estimators: unbiasedness, sparsity and
continuity. To address the challenges of genomic data analysis, we add an-
other property of grouping effect and propose a new penalty function named
SCAD `2. Instead of defining grouping criterions as we have proposed in gLars
and gRidge, we achieve the grouping effect in SCAD `2 through a strictly con-
vex penalty function, which is a linear combination of the L2 norm and the
SCAD function. More specifically, we propose a naive SCAD `2 estimator
β̂naive as the minimizer of the penalized least squares function

Q(β) =
1
2
‖y −Xβ‖2 +

p∑

j=1

fλ1(βj) + λ2‖β‖2 (1.2)

where ||β||2 =
∑p

j=1 β2
j and fλ(θ) is the SCAD function defined as

fλ(θ) =





λ|θ|, if 0 ≤ |θ| < λ,

−θ2 − 2aλ|θ|+ λ2

2(a− 1)
, if λ ≤ |θ| < aλ,

(a + 1)λ2/2 otherwise.

Here a is a real number larger than 2. Under the condition that the columns
of X are orthonormal, we can obtain the explicit expression of the naive
SCAD `2 estimator β̂naive. Specifically, β̂naive = β̂OLS/(1 + 2λ2) for large
|β̂OLS | and hence a biased estimator. The true SCAD `2 estimator β̂SCAD `2

is defined as β̂SCAD `2 = (1 + 2λ2)β̂naive, to attain unbiasedness.
For a general predictor matrix X not orthonormal, including situations

with correlated predictors, SCAD `2 estimator is defined by the naive SCAD `2
estimator multiplying a matrix depending on λ2 and the covariance matrix of
X. We can show that the SCAD `2 estimator satisfies four properties.

1. Unbiasedness: β̂j,SCAD `2 = β̂j,OLS for large components of |β̂j,OLS |;
2. Sparsity : β̂j,SCAD `2 = 0 when |β̂j,OLS | is small;
3. Continuity : β̂SCAD `2 is a continuous function with respect to β̂OLS ;
4. Grouping effect : Two coefficients β̂j,SCAD `2 and β̂i,SCAD `2 tend to be

equal if the two respective variables xj and xi are highly correlated.

Following Fan and Li’s [4] discussion, for sparsity, it is sufficient to prove that
minθ 6=0{(|θ| + p′λ(|θ|)} > 0; and for continuity, it is sufficient to prove that
argminθ{|θ|+p′λ(|θ|)} = 0, where pλ(|θ|) is the penalty function of SCAD `2 as
defined by the last two terms in Formula (1.2). To prove the grouping effect, we
use the fact that the penalty function is strictly convex. In addition, let β̂i,naive

and β̂j,naive denote the i-th and j-th elements of β̂naive respectively. Define
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D(i, j) = |β̂i,naive− β̂j,naive|/|y|. The following theorem implies that strongly
correlated variables will be in or out of model together through SCAD `2.

Theorem 1. Assume β̂i,naive · β̂j,naive > 0 and a regularity condition for λ2,
we have

D(i, j) ≤ C ·
√

2(1− ρ)

where C is a constant that may depend on λ2, and the sample correlation
ρ = xT

i xj.

The quantity D(i, j) measures the difference between the coefficients of two
predictors xi and xj . In an extreme case when the absolute value of the
correlation between the two predictors are close to 1, Theorem 1 guarantees
that the coefficients of the two predictors will be almost identical except the
sign difference. In other words, naive SCAD `2 has the group effect. The true
SCAD `2 estimator equals a scalar multiplying the naive SCAD `2 estimator.
Therefore, SCAD `2 has the grouping effect as well.

We establish asymptotic theories for SCAD `2, when the number of vari-
ables p is fixed and the sample size n goes to infinity. Note that the larger n
becomes, the heavier the least squares part in Formula (1.2) weighs. As an
adjustment, we consider the following penalized least squares function

Q(β) =
1
2
(y −Xβ)T (y −Xβ) + n

p∑

j=1

fλ1(βj) + nλ2||β||2.

Let β∗ = (β∗1 , . . . , β∗p)T denote the true value of β in the linear regression prob-
lem. Without loss of generality, we assume the first p1 elements β∗1 , . . . , β∗p1

are
nonzeros and the rest p− p1 elements are zeros. Denote β∗N = (β∗1 , . . . , β∗p1

)T

and β∗Z = (β∗p1+1, . . . , β
∗
p)T . We use β̂(n) = (β̂1(n), . . . , β̂p(n))T to de-

note the minimizer of Q(β), and denote β̂N (n) = (β̂1(n), . . . , β̂p1(n))T and
β̂Z = (β̂p1+1(n), . . . , β̂p(n))T as the estimators of the nonzero and zero coef-
ficients respectively. We rewrite λ1 and λ2 as λ1(n) and λ2(n) to emphasize
that they vary as n changes. The following asymptotic theorems hold.

Theorem 2. (Estimation consistency) If λ1(n) → 0 and
√

nλ2(n) → 0 when
n → ∞, then there exists a local minimizer β̂(n) of Q(β) such that ‖β̂(n) −
β∗‖ = Op(n−1/2).

Theorem 3. (Selection consistency) If λ1(n) → 0,
√

nλ1(n) → +∞, and√
nλ2(n) → 0 as n → +∞, then lim

n→∞
Prob

{
β̂Z(n) = 0

}
= 1.

Theorem 4. (Oracle property) If λ1(n) → 0,
√

nλ1(n) → +∞, and λ2(n) →
0,
√

nλ2(n) → 0 as n → +∞, then the root-n consistent local minimizer

β̂(n) =

(
β̂N (n)

β̂Z(n)

)
satisfies the following with probability tending to 1:
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1. Sparsity: β̂Z(n) = 0,
2. Asymptotic normality:

√
n

(
β̂N (n)− β∗N

)
D−→ N (0, σ2Σ−1

N ),

where ΣN is the covariance matrix of the first p1 predictors.

The basic ideas in the proofs of these asymptotic theorems include apply-
ing Taylor expansion of the penalized least squares function Q(β) and the
law of large number or the central limit theorem. These results build strong
theoretical backgrounds for the proposed group variable selection method.
To implement SCAD `2, we use local quadratic approximation similar to the
algorithm of SCAD.

1.5 Applications in genomic data analysis

1.5.1 SNP data analysis

The proposed group variable selection methods are particularly useful in high
dimensional data with dependent structures, for instance, gene expression
microarray data, genetic variation SNP data, and transcription factor bind-
ing ChIP-chip data. Statisticians have been playing important roles in gene
expression microarray data analyses in the past decade. With the advance
of SNP techniques and the stride in SNP detections and the international
HapMap project, SNP data analysis becomes another interesting field for
statisticians to explore.

As an initial example, we study genetic variation (SNPs) for human gene
expression. Natural variation in the baseline expression of many genes can
be considered as heritable traits. Morley et al. [10] have collected microarray
and SNP data to localize the DNA variants that contribute to the expression
phenotypes. The data consists of 14 families with 56 unrelated individuals
(the grandparents). There are ∼ 8, 500 genes on the array and 2,756 SNP
markers genotyped for each individual. The expression level of a given gene
is the response variable and the 2,756 SNP markers are the predictors in our
model. We apply the proposed group selection methods to search for optimal
set of SNPs for gene ICAP-1A, which is the top gene in Morley et al.’s [10]
Table 1 with the strongest linkage evidence.

We code each SNP as 0, 1, 2 for wild type homozygous, heterozygous, and
mutation (rare) homozygous genotypes respectively according to the genotype
frequency. We first screen data to exclude SNPs that have a call rate less
than 95% or minor allele frequency less than 2.5%. The number of SNPs is
reduced to 1,739 after screening. Then we select 500 most “variable” SNPs as
the potential predictors. The variability of a SNP is measured by its sample
variance.

We split data into the training set with 42 observations and the test set
with 14 observations. Model fitting and choices of the tuning parameters are
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based on the training set. The first grouping criterion is set up to be the 75th
percentile of all correlations between x and y. The second grouping criterion
requires the correlation with the leader element to be greater than 0.6. The
prediction error (residual sum of squares) is evaluated on the test data. Table
1.2 shows that gLars and gRidge have lower prediction errors than LARS and
elastic net with about 30 SNPs selected for gene ICAP-1A. We notice that R2

of the LARS fitted model with 24 SNP covariates is 0.779, which supports the
hypothesis of Morley et al.’s [10] study that gene expression phenotypes are
controlled by genetic variants. On the other hand, the coefficient estimators
of all SNP covariates are very small, in the scale of 0.01, suggesting small
additive effects of multiple SNPs.

Table 1.3 lists the first 12 steps that the predictors are selected in each
algorithm. The numbers in the table are the indices of the variables. For
instance, 458 in Step 1 means that variable x458 enters the model at the
first step. At Step 3, gLars and gRidge depart from LARS and elastic net
due to the grouping effect. The first group consists of two SNPs, x321 SNP
rs1004620 and x131 SNP rs1868237. The correlation of these two variables is
0.65. The two SNPs are in chromosome 3 with 14K base pairs apart. They are
in an intergenic region. The two closest genes have no functional annotation.
Another group consisting of two SNPs x30 rs1882600 and x27 rs1001396 are
selected by gLars and gRidge at Step 11. These two SNPs are in chromosome
7 with over 2.5 million base pairs apart. SNP x30 rs1882600 is in an intergenic
region, whereas x27 rs1001396 resides in the gene FOXK1. According to Swiss-
Prot functional annotation, FOXK1 is a transcriptional regulator that binds
to the upstream of myoglobin gene.

Table 1.2. Test prediction errors of Lasso, elastic net, gLars and gRidge for the
SNP data.

Methods Test prediction error number of genes tuning parameter s

LARS 1.569 24 0.4343

Elastic net (λ2 = 0.01) 1.872 23 0.2323

gLars 1.360 33 0.3838

gRidge (λ2 = 0.01) 1.531 28 0.4141

Our results suggest more SNP associations with a gene expression phe-
notype than the simple linkage analysis. For example, variables x240 SNP
rs1446297 and x76 SNP rs933602 are jointly selected as important covariates
for the expression of ICAP-1A according to all four variable selection meth-
ods. However, they are not significant in simple regression analysis with a
p-value cutoff 0.01. These two SNPs locate in the same chromosome as ICAP-
1A (chromosome 2) with nearly 27 million base pairs and 220 million base
pairs respectively away from ICAP-1A. Fig. 1.1 shows their locations and re-
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Table 1.3. The first 12 steps of predictors selected by Lasso, elastic net, gLars and
gRidge for the SNP data.

Methods LASSO elastic net gLars gRidge

Step 1 458 458 458 458

Step 2 481 481 481 481

Step 3 321 321 321,131 321,131

Step 4 287 287 287 287

Step 5 240 240 240 240

Step 6 76 76 406 406

Step 7 406 131 76 76

Step 8 131 406 102 102

Step 9 345 345 345 345

Step 10 102 102 498 498

Step 11 498 498 30,27 30,27

Step 12 30 30 167 167

gression plots. SNP rs1446297 is in the promotor region (about 200 base pairs
upstream) of gene FAM82A1. SNP rs933602 is in the promotor region (about
300 base pairs upstream) of gene DNER. The significant effects of these two
SNPs on gene ICAP-1A may suggest associations among the corresponding
genes.
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Fig. 1.1. Regression of the expression phenotype of ICAP-1A on the two nearby
SNPs.
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1.5.2 Gene expression data analysis

We apply SCAD `2 to a genomic data set in a study of rat eye disease by
Scheetz et. al [12]. The data set consists of 120 rats generated from two highly
imbred parental rat strains. Among 31,000 genes that express in eyes, we are
interested in finding relevant genes which are correlated with gene TRIM32
known to cause the eye disease Bardet-Biedl syndrome.

We first exclude genes that lack sufficient variation to result in 3,000 most
variable genes. Then we order the 3,000 genes based on their absolute corre-
lations with gene TRIM32 from the largest to the smallest. The top 90 genes
are selected as the potential preditors for the response variable gene TRIM32.

Next, we apply SCAD `2 to select groups of genes that may influence the
expression of TRIM32. The 120 rats samples are randomly split into a train-
ing set with 100 samples and a test set with 20 samples. A regression model
is fitted in the training set. A generalized cross validation method is used to
decide the tuning parameters, (a, λ1, λ2), on the training data. Model predic-
tion accuracy is measured by the mean squared error (MSE) on the test set.
We compare the prediction accuracy of SCAD `2 with those of SCAD, Lasso,
and elastic net. The whole processes are repeated 100 times. The median MSE
and the median number of selected genes are shown in Table 1.4. Elastic net
and Lasso produce more sparse models with fewer numbers of predictors than
those of SCAD and SCAD `2. Elastic net and Lasso also provide similar re-
sults, without an obvious group effect in elastic net. Although elastic net and
Lasso give small MSEs, their sparse set of variables may miss important sig-
nals, due to the fact that the methods may only select one variable from a
group. On the other hand, SCAD `2 performs better than its non-group ef-
fect counterpart SCAD. Specifically, SCAD `2 outperforms SCAD by offering
a moderate size model (with 25 predictors) and 13% reduction of MSE.

Table 1.4. Comparison of SCAD `2 with SCAD, Lasso, and elastic net based on
100 simulations in the analysis of gene expression data of rat eye disease.

Methods Median MSE (SE) Median nonzero

Lasso 0.017 (0.0012) 13

Elastic net 0.016 (0.0015) 10

SCAD 0.0439 (0.0043) 39

SCAD `2 0.0383 (0.0043) 25



1 Group Variable Selection Methods 17

1.6 Discussion

Although large scale genomic data have been routinely created in biomedi-
cal research, extracting useful information from the data remains a challenge.
Available statistical and computational tools encounter major difficulties of
high dimensionality and complicated dependence in the data. This chapter
discusses variable selection approaches for high dimensions, and more impor-
tantly new ideas of group variable selection. The group information naturally
embedded in biological systems or pathways helps to enhance signals in anal-
ysis of genomic data.

Traditional forward selection is a heuristic approach, not guaranteeing an
optimal solution. LARS a less greedy version of traditional forward selection
method, however, is shown by Efron et al. [3] to be closely related to Lasso,
which possesses optimal properties under appropriate conditions [8, 24, 25].
Our proposed gLars and gRidge take advantage of the LARS procedure while
aiming at group selections for dependent data. The methods do not require
prior information on the underlying group structures but construct groups
along the selection procedure. Our grouping criterions consider the joint in-
formation of x and y therefore better fit the context of variable selection than
standard clustering on x alone. On the other hand, any prior information on
the model or groups can be easily incorporated into the algorithms of gLars
and gRidge by manually selecting certain variables at specific steps. The cur-
rent methods may be improved by exploring different thresholds (t1, t2) in the
grouping definition.

SCAD `2 is a combination of the unbiased approach SCAD and the ridge
regression. It is not computationally efficient as the forward procedure but
possess good properties in terms of coefficient estimation. One of our future
works is to extend the proposed group selection methods to general regression
models, where y may depend on x through any nonlinear function. The pro-
posed methods are more appropriate than other variable selection algorithms
for data with complicated dependent structures.
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