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Abstract

Multivariate normal distributions have long been a popular choice among practitioners for para-

metric modeling. However, their direct application to positive or lower-bounded data commonly

encountered in insurance and risk management, is inherently limited due to their unbounded sup-

port. To address this limitation, we contribute to the growing literature that advocates for the

truncated multivariate normal distributions as a natural solution. Specifically, we establish their

tractability in risk functional calculations. We focus on two widely adopted tail-based risk function-

als, namely the quantile conditional allocation and tail conditional allocation. We derive computa-

tionally tractable formulas for calculating these risk functionals under the assumption that losses

follow a truncated multivariate normal distribution. An efficient numerical scheme is designed to

facilitate the practical implementation of these formulas.
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1 Introduction

Suppose that X = (X1, . . . , Xd)
⊤, d ∈ N, represents a portfolio of dependent insurance losses. Using

multivariate distributions to analyze the joint behavior of X is an important task actuaries oftentimes

need to deal with. In this context, a large group of practitioners advocate for the use of multivariate

normal distributions. The widespread preference for multivariate normal distributions among actu-

aries arguably stems from their structural transparency in terms of using a simple covariance matrix

parameter to capture the heterogeneous pair-wise correlations inherent in X, as well as their analytical

tractability for computing various risk quantities.

Due to the inherent nature of insurance problems including the non-negativity of losses and/or the

presence of deductibles in insurance policies, actuarial modeling often involves data that are positive or

bounded from below. In contrast, multivariate normal distributions have unbounded support. Hence,

they may not be immediately suitable for modeling insurance loss data. To address this issue, one

approach is to apply a (shifted) logarithm transform to the lower bounded data, converting them

into an unbounded form. The transformed data can then be modeled using multivariate normal

distributions. Essentially, this approach is equivalent to fitting the multivariate (shifted) log-normal

distributions (Fang et al., 1990) to the original data. This transformation, however, significantly

reduces the mathematical tractability of the original multivariate normal distributions, making the

transformed model less appealing for practical applications, particularly when efficient calculations

of risk functionals are required. For instance, even when the components of X follow log-normal

distributions with mutual independence, advanced mathematical tools such as generalized gamma

convolution, Padé approximation, numerical inversion of Laplace transform, are already required to

handle its aggregate distribution and risk functional calculations (Furman et al., 2020). The complexity

is further compounded when dependencies among the components of X are introduced.

Another way to address the aforementioned problem when dealing with lower bounded data is by

truncating the multivariate normal distributions. The study of truncated multivariate normal distri-

butions has attracted considerable attention from the statistical research community (see Cohen, 1991,

for a comprehensive treatment). Recent theoretical investigations suggest that several key tractable
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properties of the multivariate normal distributions can largely be preserved in their truncated counter-

parts. This includes properties such as moment calculation (Arismendi, 2013), dependence properties

(Horrace, 2005), independence properties (Levine et al., 2020), and maximum likelihood estimation

properties (Levine et al., 2023). Consequently, the truncated multivariate normal distributions have

found fruitful applications in numerous domains, including but not limited to multivariate regres-

sion (Amemiya, 1974), econometrics (Hong and Shum, 2003), and educational studies (Cohen, 1991).

Somewhat surprisingly, to the best of our knowledge, the truncated multivariate normal distributions

have not yet been widely adopted as modeling tools by actuaries. Our paper carries a significant effort

to illuminate the their suitability for actuarial applications, with a particular focus placed on risk

functional calculations. By doing so, we hope to draw more attention from the actuarial community

to this compelling yet underrated class of models.

In this paper, we focus on the calculations of quantile condition allocation (QCA) and tail condi-

tional allocation (TCA) under the truncated multivariate normal distributions. QCA and TCA are

two tail-based risk functionals that play a pivotal role in quantitative risk management within the

current regulatory framework. However, computing QCA via simulation is not straightforward, as the

estimation process requires careful tuning of the invovled kernel parameters to ensure the validity and

efficiency of the associated estimate (Gribkova et al., 2023). While TCA can be often computed via

simulation, our paper contributes to deriving a deterministic and efficient approach for its evaluation,

which eliminates the need for conducting repeated trials to ensure the result’s accuracy, as required

in the simulation method.

It is noteworthy that the QCA and TCA of truncated multivariate normal distributions can be,

respectively, computed as the component-wise conditional expectation of the original untruncated

multivariate normal vector Y , given that Y falls into regions:

SQCA = {y ∈ Rd : y1 > c1, . . . , yd > cd, y1 + · · ·+ yd = s}
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and

STCA = {y ∈ Rd : y1 > c1, . . . , yd > cd, y1 + · · ·+ yd > s}

for some constants c1, . . . , cd, s ∈ R. These regions correspond to tail scenarios in which the risks/losses

of all marginal units exceed certain (default) thresholds, and the total risk/loss is either equal to (in

the case of QCA) or greater than (in the case of TCA) another (warning) level. Although earlier

works have studied the conditional expectations of multivariate normal distributions given various tail

conditions (Landsman et al., 2016, 2018; Landsman and Valdez, 2003; Ogasawara, 2021; Zuo et al.,

2024), to the best of our knowledge, none has addressed the conditional expectation on the set SQCA or

STCA mentioned above. Assuming that the distribution of Y belongs to a boarder class of exponential

dispersion models (Jørgensen, 1987), Shushi and Yao (2020) studied the conditional expectation of Y

given that Y falls into a general set Ω. However, in order to pursue theoretical generality, the results

derived in Shushi and Yao (2020) are presented as integrals over the region Ω. Despite their extensive

theoretical investigation, the numerical implementation of these integration expressions remains largely

unexplored, especially if Ω is non-rectangular, such as SQCA and STCA.

It is important for us to clarify the intention of this paper. We do not aim to argue that the

(truncated) multivariate normal distributions always outperform other multivariate models in fitting

insurance data, such as those constructed using copulas (e.g., Cossette et al., 2013; Frees and Valdez,

1998; Su and Hua, 2017), stochastic factors (e.g., Landsman and Shushi, 2022; Su and Furman, 2017),

and mixtures (e.g., Bladt, 2023; Lee and Lin, 2012; Sarabia et al., 2018). Instead, by establishing

their tractability in risk functional calculations, our message is that if a risk analyst strongly favors

a multivariate normal framework for handling data with lower-bounded support, then the truncated

multivariate normal distributions should be given serious consideration.

The rest of this paper is organized as follows. In Section 2, we provide formal definitions for the

QCA and TCA risk functionals, as well as the truncated multivariate normal distributions. Under this

distributional assumption, we derive computationally tractable expressions for QCA and TCA, which

consist of weighted sums of normal distribution probabilities over simplex regions. In Section 3, we
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treat these simplex-area probabilities as solutions of differential equations and introduce a numerical

approach for their efficient evaluation. Section 4 contains numerical examples to illustrate the precision

and efficiency of the proposed methodology. Section 5 concludes this paper.

2 The truncated multivariate normal distributions and the tail-based

risk functionals

To define the truncated multivariate normal distributions, let us begin by recalling the component-

wise partial ordering on d-dimensional Euclidean space, Rd: For column vectors u = (u1, . . . , ud)
⊤

and v = (v1, . . . , vd)
⊤ in Rd, u ≥ v means ui ≥ vi for all i ∈ D := {1, . . . , d}. In the context of risk

management, it is conventional for loss models to have infinite upper bounds, in order to adequately

capture tail risks. For this reason, the truncated multivariate normal distributions we consider in this

paper only involve lower truncation.

A random vector (RV) X ∈ Rd is said to follow a truncated multivariate normal distribution, with

truncation point c ∈ Rd, if its probability density function is given by

f(x;µ,Σ, c) = C−1 1

(2π)d/2 det(Σ)1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, x > c, (1)

where µ ∈ Rd and Σ is a d × d positive definite matrix, representing the location and dispersion

parameters, respectively. Here, the normalizing constant is computed by

C := Φd(c;µ,Σ) :=

∫
x>c

ϕd(x;µ,Σ)dx,

where Φd and ϕd denote the joint survival function and probability density function (PDF) of the

d-dimensional multivariate normal distribution. Succinctly, we write X ∼ Nd(µ,Σ, c).

Remark 1. Let c ↓ −∞, then X ∼ Nd(µ,Σ, c) reduces to the usual untruncated multivariate normal

distribution, which is denoted by Nd(µ,Σ). In this case, µ and Σ are the mean and covariance matrix

of X, respectively. However, when c > −∞, this distributional interpretation of µ and Σ no longer

holds. For calculations of the mean and covariance matrix of X ∼ Nd(µ,Σ, c), we refer readers to
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Lemma 4.1 of Levine et al. (2023).

Next, we proceed to defining the two tail-based risk functionals we aim to study in this paper.

Recall that the well-known Value-at-Risk (VaR) risk measure for a loss RV X ∈ R is defined as

VaRq(X) := inf{x ∈ R : FX(x) ≥ q}, q ∈ [0, 1),

where FX denotes the cumulative distribution function (CDF) of X. Let SX := X1 + · · · + Xd be

the aggregate risk RV of X = (X1, . . . , Xd), and set sq := VaRq(SX). The QCA risk functional is

formulated as

QCAq(Xi, SX) := E(Xi |SX = sq), i ∈ D := {1, . . . , d}, q ∈ [0, 1). (2)

The TCA risk functional is given by

TCAq(Xi, SX) := E(Xi |SX > sq), i ∈ D, q ∈ [0, 1). (3)

In actuarial science, risk functionals (2) and (3) have been extensively studied in the context of

economic capital allocation. These functionals can be derived using the celebrated notion of Euler

allocation (Denault, 2001; Kalkbrener, 2005), which is widely recognized as the only capital allocation

rule compatible with the return on risk-adjusted capital (McNeil et al., 2015). Specifically, if the total

capital for the aggregate risk S is measured by the VaR and the tail conditional expectation (TCE):

TCEq(SX) := TCAq(SX , SX) = E(SX |SX > sq),

then the corresponding Euler allocation rules are given by QCA (2) and TCA (3), respectively. In

addition to capital allocation, risk functionals (2) and (3) have also found relevant applications in risk

sharing (e.g., Denuit, 2019; Feng, 2023), sensitivity analysis (e.g., Asimit et al., 2019), and systemic

risk management (e.g., Dhaene et al., 2022; Liu and Yang, 2021).

For the original untruncated multivariate normal distributions, QCA (2) can be readily computed
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using the multivariate normal conditional distribution property (see Section 2.5 in Anderson, 2003),

while the calculation of TCA (3) was studied by Landsman and Valdez (2003). The remainder of this

current section is devoted to deriving computationally tractable expressions for calculating QCA and

TCA under the truncated multivariate normal distributions.

Remark 2. The truncated multivariate normal distributions are location invariant. Specifically, if

X ∼ Nd(µ,Σ, c) and X∗ ∼ Nd(µ− c,Σ,0), then it holds that

X
d
= X∗ + c,

where “
d
=” signifies equality in distribution. In light of this location invariance property, for any i ∈ D

and q ∈ [0, 1), we have

QCAq(Xi, SX) = ci +QCAq(X
∗
i , SX∗) (4)

and

TCAq(Xi, SX) = ci +TCAq(X
∗
i , SX∗), (5)

where SX and SX∗ denote the aggregations of the elements in X and X∗, respectively. For this reason,

from here on, we will confine ourselves to the case of truncated multivariate normal distributions with

c = 0, whcih simplifies the presentation without any loss of generality for our results.

We note that computing the QCA of truncated multivariate normal distributions is equivalent to

computing TCA through the notion of left-tail expectation (LTE):

LTE(Xi, SX ; s) = E
(
Xi

∣∣SX < s
)
, i ∈ D, s ∈ R.

The following lemma is crucial in establishing this desirable equivalence. While the result has been

heuristically mentioned in the literature (Altmann et al., 2014), we were not able to identify a formal

proof. In this paper, we provide a formal proof, and the involved techniques significantly inspire the
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derivations of the other results presented in this section.

Before all else, we need to define a few necessary matrix notations. Let us first introduce a vector

insertion operator: insert(A,a; k), which indicates that a row vector a of proper dimension is inserted

immediately after the k-th row of A, k ∈ N. We denote by Ik a k × k identify matrix. Moreover, we

let

Bd := insert(Id−1,−1; d− 1) ∈ Rd×(d−1), (6)

and

id = (0, . . . , 0︸ ︷︷ ︸
d−1

, 1)⊤. (7)

Lemma 1. Suppose that X ∼ Nd(µ,Σ,0) and X∗ ∼ Nd−1(µ
∗,Σ∗,0), where

µ∗ = −(B⊤
d Σ

−1Bd)
−1B⊤

d Σ
−1

(
s id − µ

)
and Σ∗ = (B⊤

d Σ
−1Bd)

−1. (8)

Then, it holds that

(Xi|SX = s)
d
= (X∗

i |SX∗ < s), i = 1, . . . , d− 1, and s > 0.

Proof. See Appendix B.

Lemma 1 tells that the condition SX = s reduces one degree of freedom among the random elements

in X. Therefore, after changing the condition to an inequality, its counterpart X∗ has only (d − 1)

dimension. Importantly, the change from equality to inequality in the condition creates a natural

connection between the studies of QCA and TCA risk functionals, allowing us to develop a unified

set of mathematical treatments to address their computations at one stroke. The succeeding assertion

follows immediately from Lemma 1, thus its proof is omitted.
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Lemma 2. Suppose that X ∼ Nd(µ,Σ,0). For q ∈ [0, 1), the QCA of X can be computed via

QCAq(Xi, SX) = LTE(X∗
i , SX∗ ; sq), i = 1, . . . , d− 1,

where X∗ ∼ Nd−1(µ
∗,Σ∗) with (µ∗,Σ∗) is defined according to (8).

Moreover, when the truncation point c of the truncated multivariate normal distribution is not

zero, then the QCA can be computed via the location invariance property noted in Remark 2.

Remark 3. Note that the QCA formula reported in Lemma 2 applies only to the first (d−1) elements

of X. To compute the QCA for Xd, one can either rearrange the position of the elements in X or use

the fact that
∑d

i=1QCAq(Xi, SX) = sq, and thus QCAq(Xd, SX) = sq −
∑d−1

i=1 QCAq(Xi, SX).

For any continuous X, the TCA can be expressed in terms of LTE via

TCAq(Xi, SX) =
E
(
Xi 1(SX > sq)

)
1− q

=
1

1− q

(
E(Xi)− q × LTE(X,S; sq)

)
, i ∈ D, q ∈ [0, 1). (9)

If X follows the truncated multivariate normal distribution, then we can use Lemma 4.1 of Levine

et al. (2023) to calculate its marginal mean, E(Xi), involved in (9). In light of Lemma 2 and Equation

(9), computing the QCA and TCA of truncated multivariate normal distributions essentially boils

down to the evaluation of LTE, which is further studied in the succeeding assertion.

Some additional notions are needed beforehand. Define a simplex set:

Sd(s) :=
{
x ∈ Rd : x1 > 0, . . . , xd > 0, x1 + · · ·+ xd < s

}
, (10)

and denote the probability of the original untruncated multivariate normal distribution over this set

by

Ψ(Sd(s);µ,Σ) =

∫
Sd(s)

ϕd(x;µ,Σ) dx.
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Moreover, for k = 1, . . . , d, let

µk = (D⊤
k Σ

−1Dk)
−1D⊤

k Σ
−1µ and Σk = (D⊤

k Σ
−1Dk)

−1, (11)

where Dk := insert(Id−1,0; k − 1) ∈ Rd×(d−1), k ∈ D. Additionally, we set

αk :=
(2π)(d−1)/2 det(Σk)

1/2

(2π)d/2 det(Σ)1/2
exp

(
µ⊤Σ−1µ− µ⊤

k Σ−1
k µk

)
, k = 1, . . . , d, (12)

and

β(s) :=
(2π)(d−1)/2 det(Σ∗)1/2

(2π)d/2 det(Σ)1/2
exp

((
s id − µ

)⊤
Σ−1

(
s id − µ

)
− µ∗⊤Σ∗−1µ∗

)
, s ∈ R, (13)

where (µ∗,Σ∗) is given in (8). Note that the expressions for αk and β involve only standard matrix

manipulations, hence they are straightforward to evaluate. We are now ready to spell out the main

result of this current section.

Theorem 3. Suppose that X ∼ Nd(µ,Σ,0). Fix s > 0, the LTE of X can be computed via

LTE(Xi, SX ; s) = µi +
1

Ψ(Sd(s);µ,Σ)

d+1∑
k=1

ai,k ×Ψ(Sd−1(s);µk,Σk), i ∈ D,

where (µk,Σk) for k = 1, . . . , d, are defined according to (11) and (µd+1,Σd+1) = (µ∗,Σ∗) which is

given in (8). Further,

ai,k = σi,k × αk, k = 1, . . . , d, and ai,d+1 =
(
−

d∑
j=1

σi,j

)
× β(s),

where σi,k is the (i, k)-th element of Σ, αk(·) and β(·) are given as per (12) and (13), respectively.

Proof. See Appendix B.

As shown in Theorem 3, evaluating the LTE relies on the probabilities of multivariate normal

distribution truncated over simplex areas. These probabilities cannot be computed in closed form.

One way to estimate these probabilities is via rejection sampling, where samples from the untruncated
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normal distribution are generated, and only those satisfying the simplex constraints are accepted. The

probability is then estimated as the ratio of the number of accepted samples to the number of total

samples. However, the simulation approach can become excessively computationally demanding if the

acceptance rate is low, i.e., when the simplex area is small, which is indeed the case encountered in

the context of quantitative risk management where the quantile levels in QCA and TCA are set close

to one.

More advanced sampling methods, such as subset simulation, the Holmes-Diaconis-Ross algorithm,

and the linear expectation sampling scheme, can help mitigate the low acceptance rate issue of naive

sampling to some extent (Gessner et al., 2020). However, these methods come at the expense of

utilizing much more complex sequential simulation techniques to handle difficult-to-sample regions.

Meanwhile, the randomness inherent in the simulation estimate can not be fully removed. The added

complexities involved in the mathematical mechanisms of these advanced sampling methods complicate

the process of determining the sample size needed to achieve the desired robustness in the results.

Compared to simulation-based methods, numerical approaches which can provide deterministic

results with guaranteed accuracy, are often preferred by risk analysts in practice. For computing

the probability of a multivariate normal distribution truncated over a simplex area, the only non-

simulation deterministic method we are aware of is presented by Adams (2022). His method involves

decomposing the simplex into several regions, transforming these regions into rectangles through a

change of variables, and then calculating the normal probabilities over hyperrectangles. For a d-

dimensional normal distribution, the number of decomposed regions is 2d, making the implementation

cumbersome and tedious. Moreover, inaccuracies in computing multivariate normal probabilities over

hyperrectangles can accumulate, leading to a significant reduction in accuracy even for only moderately

high dimensions, such as d = 5 (see numerical comparisons in Adams, 2022).

The numerical method we propose for evaluating the simplex-area probabilities involved in The-

orem 3 is motivated by the holonomic gradient method studied in Koyama (2015). However, the

approach we take to establish the differential equations underlying the calculations of these probabil-

ities differs significantly. Specifically, unlike the abstract algebraic approach taken in Koyama (2015),

our proof is based on standard algebraic analysis, which is more familiar to researchers in applied
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mathematics and quantitative risk management. From an application standpoint, a key advantage

of adopting the proof we develop in this paper is that it only relies on an assumption which is very

convenient to verify in practice, rather than relying on a more complicated notion of general position

considered in Koyama (2015).

3 Computing the probability over a simplex area

At the outset, we remark that the simplex-area probabilities based on different normal distributions

as specified in Theorem 3, can be computed in an unified manner with the aids of the notion of general

simplex:

Sd(Θ,θ) = {x ∈ Rd : Θx+ θ > 0}

=
{
x ∈ Rd :

d∑
j=1

θi,j xj + θi > 0, for all i = 1, · · · , d+ 1
}
,

where θi,j ∈ R denotes the (i, j)-th entry of Θ which is a (d+ 1)× d matrix, and θ = (θ1, . . . , θd+1) ∈

Rd+1. The simplex Sd(s) given in Equation (10) can be expressed in terms of a general simplex via

Sd(s) = Sd(Bd+1, s id+1), where s > 0, Bd+1 and id+1 are given in Equations (6) and (7), respectively.

Now, consider a multivariate normal RV Y = (Y1, . . . , Yd) ∼ Nd(µ,Σ), and Z = (Z1, . . . , Zd) ∼

Nd(0, Id). It holds that

Ψ(Sd(s);µ,Σ) = Ψ(Sd(Bd+1, s id+1);µ,Σ)

= P(Bd+1Y + s id+1 > 0)

= P
(
Bd+1(Σ

1
2Z + µ) + s id+1 > 0

)
= P

(
Bd+1Σ

1
2Z + (Bd+1µ+ s id+1) > 0

)
= P(Θ̃Z + θ̃(s) > 0)

= Ψ(Sd(Θ̃, θ̃(s));0, Id), (14)
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where

Θ̃ = Bd+1Σ
1
2 and θ̃(s) = Bd+1µ+ s id+1. (15)

Thereby, calculating the simplex-region probabilities of a non-standard normal distribution with any

given set of location and dispersion parameters, can be consolidated into computing the simplex-region

probability of the standard normal distribution.

3.1 The system of partial differential equations

To calculate the simplex-region probability of the standard normal distribution given in Equation

(14), we propose treating it as the solution to a system of differential equations and applying the

Euler method to evaluate the solution. To facilitate the presentation, for a given set of constraint

parameters Θ ∈ R(d+1)×d and θ ∈ Rd+1, let us denote the standard normal simplex-region probability

by g(Θ,θ) := Ψ
(
Sd(Θ,θ);0, Id

)
. Denote by I the set {1, . . . , d+1}. For a subset H ⊆ I, let us write

g(H)(Θ,θ) =
∂|H|∏
i∈H ∂θi

g(Θ,θ),

where |H| denotes the cardinality of H. Suppose that Θ has full rank, we set Λ := Θ⊤Θ and denote

its inverse by Λ−1. The following assertion outlines the differential equations governing g, which form

a fundamental component of our proposed numerical algorithm.

Theorem 4. Suppose that Θ is full rank. Fix any H ⊂ I = {1, . . . , d + 1}, then for any m ∈ I, it

holds that

∂

∂θm
g(H)(Θ,θ) =


g(H∪{m})(Θ,θ), if m /∈ H;

−
∑
j∈H

[Λ−1]j,m θj g
(H)(Θ,θ)−

∑
i∈Hc

( ∑
j∈H

λi,j [Λ−1]j,m

)
g(H∪{i})(Θ,θ), if m ∈ H,

(16)

where Hc = I \ H, and λi,j and [Λ−1]i,j denote the (i, j)-th elements of the matrices Λ and Λ−1,

respectively. Moreover if H = I, then ∂/∂θm g(H)(Θ,θ) = 0 for any m ∈ I.

13



Proof. See Appendix B.

Remark 4. Recall that the simplex-region probabilities underpinning the calculations of QCA and

TCA share a unified form (14), wherein the constraint parameters Θ̃ and θ̃(s) are given in (15). By

construction, Θ̃ has rank d, and thus it is full rank. In other words, Θ̃ satisfies the assumption of

Theorem 4, and thus the simplex-region probability of form (14) satisfies the system of differential

equations as specified by (16).

3.2 Proposed Euler’s algorithm

Based on the differential equations established in Theorem 4, we apply the Euler method to numerically

evaluate g(Θ̃, θ̃(s)) for some given s > 0. Let us recall the definition of θ̃(s) given in Equation (15).

We note that only the (d+1)-th element of the constraint parameter θ̃(s) is dependent of the variable

s, whereas the first d elements are constant. Moreover, the dependence relationship is linear with a

slope of one. Given an easy-to-evaluate initial value g(Θ̃, θ̃(s0)) for some reference point s0 ∈ R, in

principle, we only need g(d+1)(·) = ∂/∂θd+1 g(·) to approximate g(Θ̃, θ̃(s)) for other values of s ̸= s0.

Specifically, consider a uniform grid of points over the interval [s0, s], and choose the step size to be

∆s = (s − s0)/m for some m ∈ N. The k-th grid point is defined via sk = s0 + k × ∆s, where

k = 1, . . . ,m. Assuming that, at the k-th step of the Euler algorithm, the value of g
(
Θ̃, θ̃(sk−1)

)
has

been determined, then the value of g
(
Θ̃, θ̃(sk)

)
can be determined via

g
(
Θ̃, θ̃(sk)

)
≈ g

(
Θ̃, θ̃(sk−1)

)
+∆s

∂

∂θd+1
g
(
Θ̃,θ

)∣∣∣
θ=θ̃(sk−1)

. (17)

That said, the system of differential equations in Theorem 4 is highly dependent. Computing

the partial derivative of g with respect to θd+1 necessitates evaluating the partial derivatives with

respect to all other components of θ. In other words, the Euler approximation (17) can not be

implemented in isolation. Instead, we must simultaneously evaluate the entire row vector of derivatives

g(·) = (g(H) : ∀H ⊆ I), which consists of 2d+1 components.

At a glance, simultaneously evaluating such a large vector of functions may seem excessively

onerous. However, a more careful inspection of the differential equations in (16) reveals a handful
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of significant simplifications. First, fix m = d + 1 in Theorem 4, and let ∂/ ∂θd+1 g
(·) denote the

component-wise partial derivative of g(·) with respect to θd+1. Then, for any Θ ∈ R(d+1)×d and

θ ∈ Rd+1, we can treat (16) as a system of ordinary differential equations (ODE’s) for g(·) and express

it compactly in a matrix form as

∂

∂θd+1
g(·)(Θ,θ) = M(Θ,θ) g(·)(Θ,θ), (18)

where M(Θ,θ) is a 2d+1 × 2d+1 matrix collecting the coefficients in the differential equations from

Theorem 4. Consequently, Euler’s method can be naturally applied to solve the ODE system (18).

Second, calculating the coefficients of the differential equations in (16), or equivalently, the entries of

M, only involves basic algebraic manipulations that can be performed fastly. Third, all the coefficients

involved in M are independent of θd+1, except for the diagonal entries. Thereby, most entries in

M(Θ,θ) only need to be computed once throughout the entire algorithm.

To illustrate the set-up of M, a two-dimensional example is presented below. For higher dimen-

sional applications, we have developed an efficient algorithm for populating the relevant entries of M,

which is presented in Appendix A.

Example 1. Suppose that d = 2, then the function g(Θ,θ) represents the probability that a bivariate

standard normal RV falls within the simplex region defined by Θ+θ ≥ 0, where Θ ∈ R3×2 and θ ∈ R3.

We arrange the partial derivatives in g(·) as follows:

g(·) = (g, g(1), g(2), g(3), g(1,2), g(1,3), g(2,3), g(1,2,3)).

It is worth noting that the order of the partial derivative elements in g(·) does not affect the validity

of ODE’s in (18), as long as the coefficients in M are populated accordingly.
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According to Theorem 4, the ODE system (18) holds with M(Θ,θ) given by



0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 −[Λ−1]3,3 θ3 0 −[Λ−1]3,3 λ1,3 −[Λ−1]3,3 λ2,3 0

0 0 0 0 0 0 0 1

0 0 0 0 0 −
∑

j∈{1,3}
[Λ−1]j,3 θj 0 −

∑
j∈{1,3}

[Λ−1]j,3 λ2,j

0 0 0 0 0 0 −
∑

j∈{2,3}
[Λ−1]j,3 θj −

∑
j∈{2,3}

[Λ−1]j,3 λ1,j

0 0 0 0 0 0 0 0



.

Remark 5. At first sight, the coefficient matrix, M, appears computationally onerous due to its large

dimension, 2d+1. However, M is highly sparse. In actual coding, only its non-zero entries and their

positions need to be stored, and those can be efficiently determined using the expressions provided in

Appendix A. This sparsity feature enables the efficient implementation of the associated Euler method,

without requiring excessively large computer memory to store the full matrix.

Collectively, at the k-th step of the Euler method for computing g(·), we proceed with

g(·)(Θ̃, θ̃(sk)
)
≈ g(·)(Θ̃, θ̃(sk−1)

)
+∆s

∂

∂θd+1
g(·)(Θ̃,θ

)∣∣∣
θ=θ̃(sk−1)

=
(
I2d+1 +∆s M

(
Θ̃, θ̃(sk−1)

))
g(·)(Θ̃, θ̃(sk−1)

)
. (19)

At the final step of the algorithm, the component of g(·) corresponding to g provides an numerical ap-

proximation of the simplex-region probability of interest, g(Θ̃, θ̃(s)). The convergence of the proposed

algorithm is guaranteed, as verified in the following assertion.

Lemma 5. The Euler algorithm in (19) is convergent.

Proof. See Appendix B.

To implement the Euler method, what remains to be specified is an appropriate reference point,

denoted by s0, at which g(H)(Θ̃, θ̃(s0)) can be computed conveniently for every H ⊆ I. This is
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addressed in the following assertion.

Proposition 6. Consider the reference point s0 = 0. For any H ⊆ I, the following holds:

g(H)(Θ̃, θ̃(s0)) =


det(Θ̃H×H)

−1 (2π)−d/2 exp(−µ⊤Σ−1µ/2), if |H| = d;

0, if |H| ̸= d.

(20)

Proof. See Appendix B.

Finally, we remark that the proposed Euler algorithm can be also used to evaluate the VaR involved

in the calculation of QCA and TCA. Specifically, recall that for X ∼ Nd(µ,Σ,0), the CDF of the

aggregate RV SX can be expressed as

P(SX ≤ s) =
g(Θ̃, θ̃(s))

Φd(0;µ,Σ)
, (21)

where Θ̃ and θ̃(·) are given in (15), and the denominator can be computed using standard functions

available in most computing platforms for evaluating the CDF of the multivariate normal distribution.

Given a step size ∆s and starting from the initial reference point s0, Euler formula (19) is iteratively

applied until the CDF (21) first exceeds q, requiring say, k steps. The VaR of the aggregated variable

S then can be approximated as VaRq(S) ≈ s0 +∆s× k.

4 Numerical illustration

In this section, we aim at conducting a comparative analysis against the simulation method in order

to illustrate the advantages of adopting the proposed numerical approach. Note that directly using

simulation to estimate the QCA is more challenging than to estimate the TCA, as QCA represents the

conditional expectation at a specific point, whereas TCA is defined over an interval. Therefore, this

section focuses on the more demanding problem of computing QCA, which in turn sheds light on how

the proposed method effectively addresses challenges that the commonly used simulation approach

may struggle to handle adequately. Throughout this numerical study, we consider a confidence level

17



of q = 99%, which is stipulated by the recent best practice in the insurance industry (Leiser et al.,

2023).

For the simulation method, we use the standard rejection sampling method to generate samples

from the truncated multivariate normal distribution. To estimate the QCA, we apply the empirical es-

timator considered in Gribkova et al. (2023). Specifically, given m simulated data xi = (xi,1, . . . , xi,d),

and let si =
∑d

j=1 xi,j , i = 1, . . . ,m. Let us use

xi,(k) =
m∑
j=1

xi,j 1(si = s[k]),

to denote the i-th marginal component of the concomitant induced by s[k], which is the k-th order

statistic of s1, . . . , sm. The empirical QCA considered in Gribkova et al. (2023), is given by

Q̂CAq,m(Xi, SX) =
1

δm

m∑
j=1

xi,(j) 1

(
q −∆1,m <

j

m
< q +∆2,m

)
, (22)

where

δm =
m∑
j=1

1

(
q −∆1,m <

j

m
< q +∆2,m

)
.

For the empirical QCA (22) to be consistent, the bandwidth parameters must be chosen such that

max(∆1,m, ∆2,m) → 0 as m → ∞, and lim infn→∞
√
m (∆1,m +∆2,m) > 0. Inspired by the numerical

study conducted in Gribkova et al. (2023), we let ∆1,m = ∆2,m = m−1/2, which guarantees the

consistency of Q̂CAq,m, and thus the simulation method can yield an asymptotically accurate estimate

of the true QCA value.

For the sake of presentation convenience while without impacting insights we can obtain, through-

out this section, we intentionally work with set-ups in which the marginal distributions are identical

and the inherent dependence structure is symmetric. Such a setting ensures that the QCA values

along each margins are the same, so we only need to report the results on QCAq(X1, SX).

Let us begin with the baseline case in which the truncated multivariate standard normal distri-

bution in dimension d = 3, with µ = 0, Σ = I3, is considered. To implement the proposed Euler
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method for computing the QCA, selecting an appropriate step size, ∆s, is crucial to strike a balance

between accuracy and computational efficiency. Note that the Euler method is a first-order numerical

scheme for solving an ODE system, with a global error that decays at a rate of O(h). Given this

linear convergence, we set h = 10−4 in an effort to achieve accuracy up to three decimal places. In our

unreported analysis, we perturbed the chosen ∆s, and the resulting changes in the QCA calculations,

with differences limited to the fourth decimal place.

We apply the simulation method using varying simulation sizesm ∈ {1, 3, 10, 30}×104. To illustrate

the variability inherent in the simulation and how it changes in response to different sample sizes, the

same estimation process will be repeated 100 times for each simulate size. The box plot of the QCA

estimate is presented in Figure 1,with the deterministic QCA value, computed using the proposed

Euler method, highlighted by the dashed line. As can be seen, increasing the sample size leads to a

reduction in the width of the confidence intervals, which coincides with the consistency property of the

empirical QCA (22). Note that the mean of the empirical QCA estimates may vary significantly across

different sample sizes. This is because, the empirical QCA (22) estimate the condition expectation

at a point by the conditional expectation over an interval surrounding that point. As a result, the

empirical QCA is inherently biased, and the bias can be particularly pronounced when the sample

size is small (e.g., the case of m = 104). However, as the sample size increases, the length of the

estimation interval, controlled by the bandwidth parameters ∆1,m and ∆2,m, decreases, so does the

bias. Consequently, both the spread of the estimates and their means converge to the QCA value

computed using the proposed Euler method, which suggests that the proposed numerical approach

provides an accurate calculation of the true QCA value.

Remark 6. Under the current choice of distributional parameters and in the scenarios considered

later, the QCA values range from one to two, which may not coincide with what we typically observe

in practice where losses are in the thousands or millions. This discrepancy does not impact the ap-

plicability of the observations derived from this numerical study. Specifically, note that the truncated

multivariate normal distribution is scale-invariant. When it is fitted to data, the data may have already

been scaled for numerical stability. Otherwise, the fitted model can always be rescaled through a linear

transformation, so that the parameter magnitudes are comparable to those considered here. After the
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QCA is computed, it can be rescaled to match the original magnitude of the loss variables.

It is also noteworthy that, as discussed in Gribkova et al. (2023), the empirical QCA does not

attain the typical
√
n convergence rate of empirical estimators for other quantities, such as the mean

or TCA. The coverage pattern observed in Figure 1 further suggests a relatively slow convergence rate

of the empirical QCA (22). This underscores another advantage of the proposed numerical approach,

as achieving a desirable level of accuracy and stability through the simulation method may require an

excessively large number of samples.

Figure 1: The box plot of the emperical QCA estimates for varying sample sizes, with the deterministic
QCA value computed using the proposed Euler method, overlaid as a dashed line. The interquartile
range (IQR) represents the middle 50% of the estimates, while the whiskers extend to the values within
1.5 times the IQR. Outliers beyond this range are displayed as individual points.

The sensitivity of the simulation approach and the proposed numerical method in response to

different choices of the distributional parameters is further explored. Specifically, we deviate from the

baseline case and consider sensitivity scenarios with a non-zero location parameter and a non-identify

dispersion matrix. In the scenario of non-zero location parameter, we keep the dispersion parameter

as the identify matrix but consider two different directions of shifting of the location parameter vector:

µ1 = (−0.5,−0.5,−0.5)⊤ and µ2 = (0.5, 0.5, 0.5)⊤. For the case of non-identify dispersion matrix, we

consider

Σ1 =


1 −0.25 −0.25

−0.25 1 −0.25

−0.25 −0.25 1

 and Σ2 =


1 0.25 0.25

0.25 1 0.25

0.25 0.25 1

,
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which describe a negative dependence structure and a positive dependence structure inX, respectively.

We compare the performance of the simulation method and the proposed Euler method for calcu-

lating the QCA, across the two aforementioned sensitivity scenarios. The variability of the simulation

method is quantified using the coefficient of variation (CV), defined as the ratio of the standard de-

viation to the mean. Since the QCA computed using the proposed Euler method is deterministic, its

accuracy is assessed by comparing it to the 25th and 75th percentiles, as well as the mean, of the QCA

estimates obtained from the simulation method. The computation time is measured by implementing

both methods on a standard computer with an 2.3 GHz CPU and 16GB RAM. For the simulation

method, the reported computation time corresponds only to the time required to complete a single

trial of QCA estimation using a simulation of size m.

Scenario
Simulation

Euler
m = 104 m = 3 × 104 m = 105 m = 3 × 105

µ1

25th percentile 1.4795 1.4545 1.4524 1.4603

1.4723
75th percentile 1.5533 1.5099 1.4927 1.4846

Mean 1.5202 1.4851 1.4721 1.4724

CV 3.48% 2.89% 2.27% 1.38%

Time 0.22s 0.68s 2.27s 6.90s 0.25s

Baseline

25th percentile 1.7447 1.7276 1.7250 1.7258

1.7398
75th percentile 1.8173 1.7734 1.7652 1.7544

Mean 1.7834 1.7476 1.7452 1.7392

CV 3.36% 2.71% 1.86% 1.23%

Time 0.06s 0.18s 0.61s 1.88s 0.29s

µ2

25th percentile 2.0720 2.0375 2.0534 2.0495

2.0662
75th percentile 2.1407 2.1045 2.0859 2.0842

Mean 2.1093 2.0697 2.0694 2.0669

CV 2.52% 2.28% 1.47% 1.09%

Time 0.02s 0.07s 0.24s 0.78s 0.34s

Table 1: Comparison of the simulation method and the proposed Euler method in terms of accuracy,
stability, and computational efficiency, with respect to varying location parameter vectors. The coef-
ficient of variation (CV), defined as the ratio of the standard deviation to the mean of the empirical
QCA estimates, is used as a measure of stability.
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Let us first focus on the sensitivity scenario with changes in the location parameter vector. The

comparison results are summarized in Table 1. First, we observe that across all choices of the loca-

tion parameter, the 25th and 75th percentiles, as well as the mean of the QCA estimates, converge

to the QCA values produced by the proposed Euler method. This again confirms the accuracy of

our Euler-based numerical approach. Second, for a fixed simulation size m, as the elements of the

location parameter µ increase, the QCA estimates obtained via the simulation method become more

volatile, as indicated by larger CV values. In contrast, the performance of the proposed Euler method

remains stable and satisfactory across different values of µ. Third, when µ is larger, the VaR of the

aggregate RV SX increases, leading to a higher value of QCA along X1. Consequently, the computa-

tion time required for the Euler method increases, because more iteration steps are needed to arrive

at the terminate point, i.e., sq. However, the increase in computation time is rather modest. On

the other hand, the simulation method becomes significantly more computationally demanding for

smaller location parameter µ. This is because a negative µ results in a lower truncation probability,

Φd(0;µ,Σ), which increases the rejection rate in the rejection sampling process. Compared to the

Euler method, the computation time of the simulation method is much more sensitive to changes in

the location parameter. In particular, to achieve a comparable accuracy to the Euler method, the

simulation method requires a sample size larger than m = 3× 105, as illustrated by Table 1. Even in

this simulation size, the Euler method can be about 27 times faster than the simulation method when

the location parameter vector is chosen to be µ1.

Table 2 compares the sensitivities of the two methods under the scenario of varying dispersion

parameter matrices. Naturally, the negative dependence described by Σ1 reduces the variability of

the aggregate RV SX , leading to lower values of the VaR of SX and the QCA along X1. In this case,

computing QCA using the Euler method requires fewer steps and, consequently, less time. However,

the impact on the computation speed of the simulation method is the opposite for the same reason

as in the varying location parameter scenario. Specifically, the negative dependence inherent in Σ1

decreases the truncation probability, Φd(0;µ,Σ), making the simulation process less efficient. Across

all scenarios, as demonstrated by the convergence of the 25th and 75th percentiles and the mean of

the empirical QCA estimates, the proposed Euler method is able to capture the true QCA value with
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Scenario
Simulation

Euler
m = 104 m = 3 × 104 m = 105 m = 3 × 105

Σ1

25th percentile 1.2761 1.2787 1.2796 1.2731

1.2887
75th percentile 1.3672 1.3200 1.3136 1.2971

mean 1.3178 1.2996 1.2958 1.2878

CV 4.38% 2.71% 1.98% 1.81%

Time 0.17s 0.52s 1.73s 5.18s 0.22s

Baseline

25th percentile 1.7447 1.7276 1.7250 1.7258

1.7398
75th percentile 1.8173 1.7734 1.7652 1.7544

mean 1.7834 1.7476 1.7452 1.7392

CV 3.36% 2.71% 1.86% 1.23%

Time 0.06s 0.18s 0.61s 1.88s 0.29s

Σ2

25th percentile 2.0640 2.0261 2.0377 2.0415

2.0516
75th percentile 2.1310 2.0884 2.0736 2.0666

mean 2.0968 2.0606 2.0548 2.0534

CV 2.56% 1.93% 1.41% 0.90%

Time 0.06s 0.18s 0.63s 1.92s 0.35s

Table 2: Comparison of the simulation method and the proposed Euler method in terms of accuracy,
stability, and computational efficiency, with respect to varying dispersion parameters.

high accuracy.

5 Conclusions

This paper studies the computation of QCA and TCA risk functionals under the assumption that losses

follow a truncated multivariate normal distribution. We first establish the equivalence between the

QCA and TCA calculations through the notion of LTE. We then show that LTE can be expressed as

a linear combination of multivariate normal probabilities over simplex regions. By formulating these

probabilities as solutions to systems of differential equations, we propose solving them via Euler’s

method. Numerical experiments demonstrate that the proposed method is stable, accurate, and com-

putationally efficient. Through verifying the tractability for risk functional calculations, the practical

message we aim to convey is that when a multivariate normal-type model is preferred for analyzing
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positive data, the truncated normal distributions warrant a serious consideration.
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Appendix A Algorithm for constructing the coefficient matrix

In order to implement the Euler algorithm given in (19),it is necessary to populate the coefficients

involved in M(Θ,θ), for a given Θ ∈ R(d+1)×d and θ ∈ Rd+1. We start by setting up the partial

derivative elements involved in g(·), whose order would not impact the outcome of the Euler algorithm,

as long as the coefficients are positioned accordingly in M. Recall that g(·) contains all the partial

derivatives of g with respect to θi for all i ∈ H ⊆ I = {1, . . . , d + 1}. Thereby, there are 2d+1

elements in g(·). For the sake of programming convenience, we use binary strings of length d + 1

to encode integers in the range between 0 and (2d+1 − 1). This step can be done with the aids of

library functions in various computing platforms, e.g., the “bin()” function in Julia and Python. For

i ∈ {0, . . . , (2d+1 − 1)}, let us denote the binary string of i by b[i] = (b
[i]
1 , . . . , b

[i]
d+1), where b

[i]
j ∈ {0, 1}
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for j = 1, . . . , d + 1. Moreover, we let the bits of the binary string indicate which elements of θ are

involved in the partial derivative set. Formally, let Hi = {j ∈ I : b
[i−1]
j = 1}, i = 1, . . . , 2d+1, denote

the i-th derivative set, which is associated with the binary representation of integer (i−1). The partial

derivative elements in g(·) are then indexed accordingly, such that g(·) =
(
g(Hi), i = 1, . . . , 2d+1

)
.

Next we proceed to setting up M row by row. Some additional notations are needed herein. For

a (d+ 1)-dimensional binary string b, let us define

int(b) =
d+1∑
i=1

bi 2
d+1−i,

which coverts b into its corresponding decimal integer. Moreover, let Hc
i = I/Hi = {k ∈ I : b

[i−1]
k =

0}, which gathers all positions of zero bits in the binary string b[i−1], i ∈ {1, . . . , 2d+1}. For a given

k ∈ Hc
i , define b[i;k] ∈ {0, 1}d+1, whose elements are given by

b
[i;k]
j =

 1, if j = k;

b
[i]
j , otherwise.

Compared to b[i], the string b[i;k] flips the k-th bit of b[i] from zero to one.

Recall that the i-th row of M collects the coefficients needed to specify the relationship:

∂

∂θd+1
g(Hi)(Θ,θ) = M(Θ,θ) g(·)(Θ,θ), i = 1, . . . , 2d+1.

For a given i ∈ {1, . . . , 2d+1}, suppose that (d + 1) ̸∈ Hi, or equivalently b
[i−1]
d+1 = 0. Then, according

to the differential equations specified in (16), all entries in the i-th row of M are zero, except for the

entry in column j = int(b[i−1;d+1]) + 1 = int(b[i−1]) + 2 = i+ 1. The entry at this position is equal to

one.

In contrast, suppose (d+ 1) ∈ Hi, or equivalently b
[i−1]
d+1 = 1. In this case, the non-zero columns in

the i-th row of M include j = i and j = int(b[i−1;k])+ 1 = int(b[i−1])+ 2d+1−k +1 = i+2d+1−k, for all

k ∈ Hc
i . At j = i, the coefficient is calculated as [Λ−1]{d+1}×Hi

θHi . At j = int(b[i−1;k]) = i+ 2d+1−k,

k ∈ ξi, the coefficient is given by Λ{k}×Hi
Λ−1

Hi×{d+1}.
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Collectively, the entries in M are populated in the following manner. For i ∈ {1, . . . , 2d+1} with

(d+ 1) ̸∈ Hi, the entries in the i-th row of M are given by

mi,j =

 1, if j = i+ 1;

0, otherwise.

When (d+ 1) ∈ Hi, the entries are given by

mi,j =


[Λ−1]{d+1}×Hi

θHi , if j = i;

Λ{k}×Hi
Λ−1

Hi×{d+1}, if j = i+ 2d+1−k for each k ∈ Hc
i ;

0, otherwise.

Appendix B Technical proofs

Proof of Lemma 1. We will only prove the desired equality for X1 as the same proof applies to the

other elements. For s > 0, it holds that

FSX
(s) = C−1

∫
xi>0, i=1,...,d

x1+···+xd<s

ϕd(x1, . . . , xd;µ,Σ) dxd · · · dx1

= C−1

∫ s

0

∫ s−x1

0
· · ·

∫ s−x1−···−xd−1

0
ϕd(x1, . . . , xd;µ,Σ) dxd · · · dx1. (23)

Now, for xi > 0, i ∈ D, and s > 0, let us define

hd(x1, . . . , xd−1; s) = C−1 ×
∫ s−

∑d−1
j=1 xj

0
ϕd(x1, . . . , xd;µ,Σ) dxd,

and

hk(x1, . . . , xk−1; s) =

∫ s−
∑k−1

j=1 xj

0
hk+1(x1, . . . , xk; s) dxk, k ∈ {2, · · · , d− 1},
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and

h1(s) =

∫ s

0
h2(x; s) dx1 .

Then the CDF of SX in (23) can be also expressed implicitly as

FSX
(s) = h1(s), s > 0.

By the Leibniz integral rule, for k = 2, . . . , d− 1, we have

∂hk(s)

∂s
= hk+1

(
x1, . . . , xk−1, s−

k−1∑
j=1

xj ; s
)
+

∫ s−
∑k−1

j=1 xj

0

∂

∂s
hk+1(x1, . . . , xk; s) dxk

=

∫ s−
∑k−1

j=1 xj

0

∂

∂s
hk+1(x1, . . . , xk; s) dxk.

Thereby, the PDF of SX can be computed via

fSX
(s) =

∂

∂x
FSX

(x)

=

∫ s

0

∂

∂s
h2(x1; s) dx1

=

∫ s

0

∫ s−x1

0

∂

∂s
h3(x1, x2; s) dx2 dx1

...

=

∫ s

0

∫ s−x1

0
· · ·

∫ s−
∑d−2

j=1 xj

0

∂

∂s
hd

(
x1, . . . , xd−1; s

)
dxd−1 · · · dx1

= C−1

∫ s

0

∫ s−x1

0
· · ·

∫ s−
∑d−2

j=1 xj

0
ϕd

(
x1, . . . , xd−1, s−

d−1∑
j=1

xj ;µ,Σ
)
dxd−1 · · · dx1.

After some standard algebraic manipulations, we can obtain

ϕd

(
x1, . . . , xd−1, s−

d−1∑
j=1

xj ;µ,Σ
)
= ϕd−1

(
x1, . . . , xd−1;µ

∗,Σ∗)× β(s), (24)
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where (µ∗,Σ∗) is defined according to (8), and

β(s) =
(2π)(d−1)/2 det(Σ∗)1/2

(2π)d/2 det(Σ)1/2
exp

((
s id − µ

)⊤
Σ−1

(
s id − µ

)
− µ∗⊤Σ∗−1µ∗

)
.

Collectively, we readily have

fSX
(s) = β(s)× C−1

∫ s

0

∫ s−x1

0
· · ·

∫ s−
∑d−2

j=1 xj

0
ϕd−1

(
x1, . . . , xd−1;µ,Σ

)
dxd−1 · · · dx1

= β(s)× C−1 × Φd−1(0;µ
∗,Σ∗)× P

(
SX∗ < s

)
,

where SX∗ =
∑d−1

i=1 X∗
i is the aggregation of elements in X∗ = (X∗

1 , . . . , X
∗
d−1) ∼ Nd−1(µ

∗,Σ∗,0).

Next, we consider the joint distribution of (X1, SX). For (x, s) ∈ R2
+, it holds that

FX1,SX
(x, s) = C−1

∫ x

0

∫ s−x1

0
· · ·

∫ s−x1−···−xd−1

0
ϕd(x1, . . . , xd;µ,Σ) dxd · · · dx1,

which has the same form as the CDF of SX as per (23), except that the upper bound of the outermost

integration is replaced by x. Applying the same arguments used to derive the PDF of SX previously,

we can get

∂

∂s
FX1,SX

(x, s) =
∂

∂s
C−1

∫ x

0

∫ s−x1

0
· · ·

∫ s−
∑d−1

j=1 xj

0
ϕd(x1, . . . , xd;µ,Σ) dxd · · · dx1

= C−1

∫ x

0

∫ s−x1

0
· · ·

∫ s−
∑d−2

j=1 xj

0
ϕd

(
x1, . . . , xd−1, s−

d−1∑
j=1

xj ;µ,Σ
)
dxd−1 · · · dx1

= β(s)× C−1

∫ x

0

∫ s−x1

0
· · ·

∫ s−
∑d−2

j=1 xj

0
ϕd−1

(
x1, . . . , xd−1;µ,Σ

)
dxd−1 · · · dx1

= β(s)× C−1 × Φd−1(0;µ
∗,Σ∗)× P

(
X∗

1 ≤ x, SX∗ < s
)
.

All in all, for any (x, s) ∈ R2
+, we have readily obtained

FX1|SX=s(x) =
∂FX1,SX

(x, s)/∂s

fSX
(s)

=
β(s)× C−1 × Φd−1(0;µ

∗,Σ∗)× P
(
X∗

1 ≤ x, SX∗ < s
)

β(s)× C−1 × Φd−1(0;µ∗,Σ∗)× P
(
SX∗ < s

)
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= P(X∗
1 ≤ x |SX∗ < s),

which establishes the desired result. The proof is now finished.

Proof of Theorem 3. To simplify the presentation, we will demonstrate the result for X1 only. The

result for the other elements of X is proved in the same manner. Suppose that X ∼ Nd(µ,Σ,0), let

µ+ =
∑d

i=1 µi and π(s) = Φd(0;µ,Σ)× P(SX < s) for any s > 0. For x,w ∈ Rd, the following string

of relationships holds:

LTE(X1, SX ; s) =
1

P(SX < s)
E
(
X1 1(SX ≤ s)

)
=

Φd(0;µ,Σ)−1

P(SX < s)

∫
xi>0, i=1,...,d

x1+···+xd<s

x1 ϕd(x;µ,Σ) dx

= µ1 +
1

π(s)

∫
xi>0, i=1,...,d

x1+···+xd<s

(x1 − µ1)ϕd(x;µ,Σ) dx

= µ1 +
1

π(s)

∫
wi>−µi, i=1,...,d

w1+···+wd<s−µ+

w1 ϕd(w;0,Σ) dw

= µ1 + E(W1), (25)

where W1 is the first element of W = (W1, . . . ,Wd)
⊤, which follows a multivariate normal distribution

truncated over the area:

W =
{
w ∈ Rd : w > −µ,

d∑
j=1

wj < s− µ+

}
.

The joint PDF of W can be written as

fW (w) =
1

π(s)
ϕd(w,0,Σ), w ∈ W.
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To compute the expectation of W1, we resort to the moment generating function of W . For

t = (t1, . . . , td)
⊤ ∈ Rd, we have

MW (t) := E
(
exp(t⊤W )

)
=

1

π(s)

1

(2π)d/2 det(Σ)1/2

∫
w∈W

exp

(
t′w − 1

2
w⊤Σ−1w

)
dw

=
1

π(s)

1

(2π)d/2 det(Σ)1/2

∫
w∈W

exp

(
1

2
t⊤Σt− 1

2
(w −Σt)⊤Σ−1(w −Σt)

)
dw

=
1

π(s)
exp

(1
2
t⊤Σt

)∫
w∈W

ϕd(w;Σt,Σ)dw

=
1

π(s)
×m1(t)×m2(t),

where

m1(t) := exp
(1
2
t⊤Σt

)
and m2(t) :=

∫
w∈W

ϕd(w;Σt,Σ)dw. (26)

Thereby,

E(W1) =
∂

∂t1
MW (t)

∣∣∣
t=0

=
1

π(s)
×
(
m2(t)×

∂

∂t1
m1(t)

∣∣∣
t=0

+m1(t)×
∂

∂t1
m2(t)

∣∣∣
t=0

)
. (27)

First, we have

∂m1(t)

∂t1

∣∣∣
t=0

= exp
(1
2
t⊤Σt

)
×

d∑
j=1

σ1j tj

∣∣∣
t=0

= 0. (28)

Next, we consider the derivative of m2, which is more demanding to calculate. Our first step is to

transform the t variable from the integrand to the integration boundaries. To do so, we apply a change

of variables xi = wi − γi(t) + µi, where γi(t) represents the i-th element of vector γ(t) = Σ t, i ∈ D.
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Let γ+(t) =
∑d

i=1 γi(t), we can rewrite the m2 function in (26) as follows:

m2(t) =

∫
w∈W

ϕd(w;Σt,Σ) dw

=

∫
xi>−γi(t), i=1,...,d

x1+···+xd<s−γ+(t)

ϕd(x;µ,Σ) dx

=

∫ s−γ+(t)

−γ1(t)

∫ s−γ+(t)−x1

−γ2(t)
· · ·

∫ sq−γ+(t)−
∑d−1

j=1 xj

−γd(t)
ϕd(x;µ,Σ) dx.

The technique we use to tackle the derivative of m2 is similar to the one employed in the proof of

Lemma 1. To this end, let us define

ζd(x1, . . . , xd−1; t) =

∫ s−γ+(t)−
∑d−1

j=1 xj

−γd(t)
ϕd(x1, . . . , xd;µ,Σ) dxd,

and

ζk(x1, . . . , xk−1; t) =

∫ s−γ+(t)−
∑k−1

j=1 xj

−γk(t)
ζk+1(x1, . . . , xk; t) dxk, k ∈ {2, . . . , d− 1}, (29)

and

ζ1(t) =

∫ s−γ+(t)

−γ1(t)
ζ2(x1; t) dx1.

Then, we can rewrite the m2 function implicitly as

m2(t) = ζ1(t).

By applying the Leibniz integral rule, for k = 2, . . . , d− 1, we get

∂

∂t1
ζk(x1, . . . , xk−1; t)

= −γ1(1)× ζk+1

(
x1, . . . , xk−1, s− γ+(t)−

k−1∑
j=1

xj ; t
)
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+ σk,1 × ζk+1

(
x1, . . . , xk−1,−γk(t); t

)
+

∫ s−γ+(t)−
∑k−1

j=1 xj

−γk

∂

∂t1
ζk+1(x1, . . . , xk; t) dxk.

Therefore, we can write

∂

∂t1
m2(t) =

∂

∂t1
ζ1(t)

= −γ1(1)× ζ2
(
s− γ+(t); t

)
+ σ1,1 × ζ2

(
− γ1(t); t

)
+

∫ s−γ+(t)

−γ1(t)

∂

∂t1
ζ2(x1; t) dx1

...

= I1(t) + I2(t), (30)

where

I1(t) := −γ1(1)×

[
ζ2
(
s− γ+(t); t

)
+

d−1∑
k=2

∫ s−γ+(t)

−γ1(t)
· · ·

∫ s−γ+(t)−
∑k−2

j=1 xj

−γk−1(t)
ζk+1

(
x1, . . . , xk−1, s− γ+(t)−

k−1∑
j=1

xj ; t
)
dxk−1 · · · dx1

+

∫ s−γ+(t)

−γ1(t)
· · ·

∫ s−γ+(t)−
∑d−2

j=1 xj

−γd−1(t)
ϕd

(
x1, . . . , xd−1, s− γ+(t)−

d−1∑
j=1

xj ;µ,Σ
)
dxd−1 · · · dx1

]
,

and

I2(t) := σ1,1 × ζ2
(
− γ1(t); t

)
+

d−1∑
k=2

σk,1 ×
∫ s−γ+(t)

−γ1(t)
· · ·

∫ s−γ+(t)−
∑k−2

j=1 xj

−γk−1(t)
ζk+1

(
x1, . . . , xk−1,−γk(t); t

)
dxk−1 · · · dx1

+ σd,1 ×
∫ s−γ+(t)

−γ1(t)
· · ·

∫ s−γ+(t)−
∑d−2

j=1 xj

−γd−1(t)
ϕd

(
x1, . . . , xd−1,−γd(t);µ,Σ

)
dxd−1 · · · dx1. (31)

Note that when t = 0, then γ(0) = 0. Moreover, by the definition of ζ function, we have

ζ2
(
s− γ+(0);0

)
= 0,
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and for k = 2, . . . , d− 1,

ζk+1

(
x1, . . . , xk−2, s− γ+(0)−

k−1∑
j=1

xj ;0
)
= 0.

Consequently, we have

I1(0) = −γ1(1)×
∫ s

0

∫ s−x1

0
· · ·

∫ s−
∑d−1

j=1 xj

0
ϕd

(
z1, . . . , zd−1, s−

d−1∑
j=1

zj ;µ,Σ
)
dzd−1 · · · dz1

= −γ1(1)× β(s)×
∫ s

0

∫ s−x1

0
· · ·

∫ s−
∑d−1

j=1 zj

0
ϕd−1

(
z1, . . . , zd−1;µ

∗,Σ∗
)
dzd−1 · · · dz1

= −γ1(1)× β(s)×Ψ(Sd−1(s);µ
∗,Σ∗), (32)

where the second equality holds due to (24), Sd−1(·) is given in (10), and (µ∗,Σ∗) is defined in

accordance with (8).

Now, let us turn to studying I2. By the definition of ζ function, it is not difficult to check

ζ2(0;0) =

∫ s

0

∫ s−x2

0
· · ·

∫ s−
∑d−1

i=2 xj

0
ϕd

(
0, . . . , xd−1, xd;µ,Σ

)
dxd · · · dx2. (33)

For k = 2, . . . , d− 1, we have

∫ s

0
· · ·

∫ s−
∑k−2

j=1 xj

0
ζk+1

(
x1, . . . , xk−1, 0;0

)
dxk−1 · · · dx1

=

∫ s

0
· · ·

∫ s−
∑k−2

j=1 xj

0

∫ s−
∑k−1

j=1 xj

0
ζk+2

(
x1, . . . , xk−1, 0, xk+1;0

)
dxk+1 dxk−1 · · · dx1

...

=

∫ s

0
· · ·

∫ s−
∑k−2

j=1 xj

0

∫ s−
∑k−1

j=1 xj

0

∫ s−
∑k+1

j=1,j ̸=k xj

0
· · ·

∫ s−
∑d−1

j=1, j ̸=k xj

0

ϕd

(
x1, . . . , xk−1, 0, xk+1, . . . , xd;µ,Σ

)
dxd · · · dxk+1 dxk−1 · · · dx1. (34)
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Plug (33) and (34) into (31), we can simplify the expression of I2 when t = 0 into

I2(0) =

d−1∑
k=1

σk,1

∫ s

0
· · ·

∫ s−
∑k−1

j=1 xj

0

∫ s−(
∑k+1

j=1,j ̸=k xj)

0
· · ·

∫ s−
∑d−1

j=1,j ̸=k xj

0

ϕd

(
x1, . . . , xk−1, 0, xk+1, . . . , xd;µ,Σ

)
dxd · · · dxk+1 dxk−1 · · · dx1

+ σd,1 ×
∫ s

0

∫ s−x1

0
· · ·

∫ s−
∑d−2

j=1 xj

0
ϕd

(
x1, . . . , xd−1, 0 ; µ,Σ

)
dxd−1 · · · dx1. (35)

Moreover, note that for k = 1, . . . , d, and xk ∈ R, it holds that

ϕd

(
x1, . . . , xk−1, 0, xk+1, . . . , xd;µ,Σ

)
= ϕd−1

(
x1, . . . , xk−1, xk+1, . . . , xd;µk,Σk

)
× αk,

where αk is defined according to (12), and (µk,Σk) is defined as per (11). As a result, we can further

simplify (35) into

I2(0) =
d−1∑
k=1

σk,1 × αk ×
∫ s

0
· · ·

∫ s−
∑k−1

j=1 xj

0

∫ s−(
∑k+1

j=1,j ̸=k xj)

0
· · ·

∫ s−
∑d−1

j=1,j ̸=k xj

0

ϕd−1

(
x1, . . . , xk−1, xk+1, . . . , xd;µk,Σk

)
dxd · · · dxk+1 dxk−1 · · · dx1

+ σd,1 × αd ×
∫ s

0

∫ s−x1

0
· · ·

∫ s−
∑d−2

j=1 xj

0
ϕd−1

(
x1, . . . , xd−1, ; µk,Σk

)
dxd−1 · · · dx1

=
d∑

k=1

σk,1 × αk ×
∫ s

0

∫ s−z1

0
· · ·

∫ s−
∑d−1

j=1 zj

0
ϕd−1

(
z1, . . . , zd−1;µk,Σk

)
dzd−1 · · · dz1

=

d∑
k=1

σk,1 × αk ×Ψ(Sd−1(s);µk,Σk). (36)

Substitute (32) and (36) into (30), and then apply the relationships noted in (27) and (28), we obtain

E(W1) =
1

π(s)

[
−

( d∑
k=1

σk,1

)
× β(s)×Ψ(Sd−1(s);µ

∗,Σ∗) +
d∑

k=1

σk,1 × αk ×Ψ(Sd−1(s);µk,Σk)

]
.

Finally, by combining the above formula with the expression for the LTE derived in (25), we readily

obtain the desired result of the proposition. This completes the proof.
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Proof of Theorem 4. If m /∈ H, then the derivative expression holds simply by definition, so we are

going to focus on proving the result when m ∈ H.

Let us first consider the case of H ⊂ I. Note that the order of constraints does not affect the

simplex region they describe, so without loss of generality we can assume H = {1, · · · , p} , where

1 ≤ p ≤ d. For now, we assume that the parameter Θ satisfies the following condition:

θi,j = 0, 1 ≤ i ≤ p and (p+ 1) ≤ j ≤ (d+ 1). (37)

At the end of this proof, we will show that this condition can be relaxed without affecting the expression

of the differential equation system.

Next, let us define a d× d matrix U such that

U =

ΘH×H 0

0 Id−p

 , (38)

where ΘH×H = Θ
(
{i1|i2 ∈ H}, {i2|i2 ∈ H}

)
is a p × p matrix containing the i1-th rows and i2-th

columns of Θ for all i1, i2 ∈ H. Consider a transformation of y = Ux. Correspondingly, we have

xi =


∑p

j=1[U
−1]i,j × yj , 1 ≤ i ≤ p;

yi, p+ 1 ≤ i ≤ d.

Herein, U−1 exists because we assume Θ has full rank.

Note that det(U) = det(ΘH×H). We can write

g(Θ,θ) =

∫
Rd

(2π)−d/2 exp
(
− 1

2

d∑
i=1

x2i

) d+1∏
i=1

1

( d∑
j=1

θi,j xj + θi > 0
)
dx

=
(2π)−d/2

det(ΘH×H)

∫
Rd

exp
(
− 1

2

( p∑
i=1

(

p∑
j=1

[U−1]i,j yj)
2 +

d∑
i=p+1

y2i

)) p∏
i=1

1(yi + θi > 0)

d+1∏
i=p+1

1

( p∑
j=1

θi,j

p∑
k=1

[U−1]j,k yk +

d∑
j=p+1

θi,j yj + θi > 0
)
dy. (39)
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For y1, . . . , yp ∈ R, define

η1(y1, . . . , yp) = (2π)−p/2 exp
(
− 1

2

p∑
i=1

(

p∑
j=1

[U−1]i,j yj)
2
)
,

and

η2(y1, . . . , yp;θI\H) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
(2π)−(d−p)/2 exp

(
− 1

2

d∑
i=p+1

y2i

)
d+1∏

i=p+1

1

( p∑
j=1

θi,j

p∑
k=1

[U−1]j,k yk +

d∑
j=p+1

θi,j yj + θi > 0
)
dyp+1 · · · dyd, (40)

where θA denotes a subvector that contain the i-th elements of θ for all i ∈ A ⊆ I. Moreover,

set η(y1, . . . , yp;θI\H) = det(ΘH×H)
−1 η1(y1, . . . , yp)× η2(y1, . . . , yp;θI\H). Then we can simplify the

expression of g(Θ,θ) in Equation (39) into

∫ ∞

−θp

· · ·
∫ ∞

−θ1

η(y1, . . . , yp;θI\H) dy1 · · · dyp.

Thereby, we have

g(H)(Θ,θ) =
∂p

∂θ1 · · · ∂θp
g(Θ,θ) = η(−θH;θI\H). (41)

Now we proceed to calculate

∂

∂θm
g(H)(Θ,θ) =

∂

∂θm
η(−θH;θI\H), m ∈ H.

Recall that η(·) = det(ΘH×H)
−1η1(·) × η2(·). Applying the product rule, on the one hand, we have,

for m ∈ H,

det(ΘH×H)
−1 ∂

∂θm
η1(−θH)× η2(−θH;θI\H) = η(−θH;θI\H)×− ∂

∂θm

1

2

p∑
i=1

(−
p∑

j=1

[U−1]i,j θj)
2

= −g(H)(Θ,θ)

p∑
j=1

(

p∑
i=1

[U−1]i,j × [U−1]i,m × θj)
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= −g(H)(Θ,θ)

p∑
j=1

[Λ−1]j,m × θj . (42)

On the other hand, to compute the partial derivative of η2, define

η∗2(−θH; θ̃I\H) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
ϕd−p(yp+1, . . . , yd)

d+1∏
i=p+1

1

( d∑
j=p+1

θi,j yj + θ∗i > 0
)
dyp+1 · · · dyd,

where θ∗i = −
∑p

j=1 θi,j
∑p

k=1[U
−1]j,k θk+θi, i ∈ I\H. It is elementary to check that η2(−θH;θI\H) =

η∗2(−θH; θ̃I\H). Moreover, for i ∈ I \ H, because dθ∗i /dθi = 1, we have

∂

∂θi
η2(−θH;θI\H) =

∂

∂θ∗i
η∗2(−θH; θ̃I\H).

Thereby, we get, for i ∈ I \ H,

g(H∪{i})(Θ,θ) =
∂

∂θi
g(H)(Θ,θ)

=
1

det(ΘH×H)
× η1(−θH)×

∂

∂θi
η2(−θH;θI\H)

=
1

det(ΘH×H)
× η1(−θH)×

∂

∂θ∗i
η2(−θH; θ̃I\H).

Now we can conclude that, for m ∈ H,

det(ΘH×H)
−1 η1(−θH)×

∂

∂θm
η2(−θH;θI\H) = det(ΘH×H)

−1
d+1∑

i=p+1

η1(−θH)×
∂

∂θ∗i
η∗2(θ̃I\H)×

dθ∗i
dθm

=

d+1∑
i=d+1

g(H∪{i})(Θ,θ)× dθ∗i
dθm

= −
d+1∑

i=p+1

g(H∪{i})(Θ,θ)

p∑
j=1

θi,j [U
−1]j,m. (43)
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Further, because U−1
H×HΘH×H = Ip, for 1 ≤ j1 ̸= j2 ≤ p, the following relationships hold:

p∑
k=1

[U−1]j1,k θk,j2 =


1, if j1 = j2;

0, if j1 ̸= j2.

So we can further rewrite the expression in (43) into

−
d+1∑

i=p+1

g(H∪{i})(Θ,θ)

p∑
j=1

θi,j [U
−1]j,m

p∑
k=1

[U−1]j,k θk,j

=−
d+1∑

i=p+1

g(H∪{i})(Θ,θ)

p∑
k=1

( p∑
j1=1

[U−1]j1,k [U
−1]j1,m

)( p∑
j2=1

θi,j2 θk,j2
)

=−
d+1∑

i=p+1

g(H∪{i})(Θ,θ)

p∑
k=1

[Λ−1]k,m × λi,k. (44)

Combining the results in (42) and (44), we readily obtain that if Θ satisfies the condition specified

in (37), then it holds that

∂

∂θm
g(H)(Θ,θ) = −

p∑
j=1

[Λ−1]j,m θj g
(H)(Θ,θ)−

p∑
j=1

[Λ−1]j,m

d+1∑
i=p+1

λi,j g(H∪{i})(Θ,θ).

Recall the notation D = {1, . . . , d}. In the case of H = I, we have already known from (41) that

g(D)(Θ,θ) =
(2π)−d/2

det(ΘD×D)
exp

(
− 1

2

( d∑
i=1

(
d∑

j=1

[Θ−1
D×D]i,j θj)

2
))

,

which is independent of θd+1. Thus, g(H)(Θ,θ) equals zero, and so does ∂/∂θm g(H)(Θ,θ) for any

m ∈ I.

Throughout the rest of this proof, we will demonstrate how to relax the constraint specified in (37).

Firstly, we note that if Θ does not satisfy the condition in (37), there always exists an orthogonal

matrix, says Ω, such that Θ̃ = ΘΩ⊤ can satisfy (37). Further, it holds that, for Z ∼ Nd(0, Id),

g(Θ,θ) = P(ΘZ + θ > 0) = P(ΘΩ⊤ΩZ + θ > 0) = P(Θ̃Z + θ > 0) = g(Θ̃,θ),

41



where the second last equality holds because ΩZ
d
= Z. Moreover, the coefficients involved in the PDE

system, Λ, remain invariant under any orthogonal transformation of the underlying parameter matrix

Θ. Namely, it always holds that Λ = Θ⊤Θ = Θ̃⊤Θ̃. Collectively, this implies that even if Θ does

not satisfy (37), the system of PDE’s governing g remains identical to that associated with Θ̃, which

satisfies the condition in (37).

The proof is now completed.

Proof of Lemma 5. Consider a system of ODE’s:

y′ = f(s,y), s ∈ [s1, s2], f : [s1, s2]× Rd → Rd.

By Theorem 1 of Iserles (2009), the Euler method is convergent if f is Lipchitz continuous with respect

to y, and f and y is continuously differentiable.

Recall that the system of ODE’s we aim to solve is given by (18). Treat g(·) as y, the function

f corresponding to the ODE system (18), becomes f(s,y) = M(Θ̃, θ̃(s))y, which satisfies both the

Lipschitz continuity and continuous differentiability conditions. Moreover, since g(·) is the integral of

an exponential function, it is continuously differentiable, so is g(·). Consequently, the associated Euler

algorithm is convergent.

This completes the proof.

Proof of Proposition 6. In this proof, let us shorthand θ̃(0) by θ̃0 = (θ̃01, . . . , θ̃
0
d+1). Let us first consider

the case of H ⊂ I. Similar to the proof of Theorem 4, without losing any generality, let us assume

H = {1, . . . , p}, 1 ≤ p ≤ d, and Θ̃ satisfies the condition in (37). From Equation (41) in the proof of

Theorem 4, we can obtain

g(H)(Θ̃, θ̃0) =
(2π)−d/2

det(Θ̃H×H)
exp

(
− 1

2

p∑
i=1

(

p∑
j=1

[U−1]i,j θ̃
0
j )

2
)
×
∫
Rd−p

exp
(
− 1

2

d∑
i=p+1

y2i

)
d+1∏

i=p+1

1

(
−

p∑
j=1

θ̃i,j

p∑
k=1

[U−1]j,k θ̃
0
k +

d∑
j=p+1

θ̃i,j yj + θ̃0i ≥ 0
)
dyp+1 · · · dyd. (45)
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Recall that the definition of θ̃(s) is given in Equation (14). We note that the simplex region

Sd(Θ̃, θ̃0) = {x : Bd+1Σ
1
2x + Bd+1µ ≥ 0} contains only one point x∗ = −Σ−1/2µ. After ap-

plying the linear transform y = Ux, where U is defined as in (38), the simplex region becomes

{y : Bd+1Σ
1
2U−1y + Bd+1µ ≥ 0}, which also contains only one point y∗ = Ux∗. The integral re-

gion of (45) corresponding to {y : Bd+1Σ
1
2U−1y + Bd+1µ ≥ 0, yH = y∗

H}, also contains one point

only. Consequently, g(H)(Θ̃, θ̃0) in Equation (45) equals zero unless |H| = d. In this specific case, the

integral component in (45) vanishes, and the expression reduces to

(2π)−d/2

det(Θ̃H×H)
exp(−µ⊤Σ−1µ/2). (46)

When it comes to the case of H = I, we have

g(I)(Θ̃, θ̃0) =
∂

∂θ̃0d+1

g(D)(Θ̃, θ̃0) = 0,

because the expression in Equation (46) is independent of any θ̃0i , i ∈ I.

This completes the proof.
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