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Abstract

Weighted risk functionals have been well-studied to date. Indeed, this versatile class of risk

functionals has enjoyed a variety of applications in risk management and insurance and has been

generalized along a number of directions. Namely, some exemplary applications of the class of

weighted risk functionals in risk management and insurance include pricing, valuation, risk mea-

surement, risk capital allocation, and risk sharing, whereas existing variations of weighted risk

functionals allow for such enhancements as the multivariate probability weighting and the augmen-

tation of utility functions.

In this paper, we propose a class of generalized weighted risk functionals that incorporates

the possibility of arbitrary loss aggregations. To this end, we introduce the notion of aggregation

function in the context of the mentioned weighted risk functionals. Then we delineate the ways in

which distinct orders on the weight functions and on the aggregation functions impact the orders of

the generalized weighted risk functionals introduced herein. We conclude with several observations

that facilitate applications of the generalized weighted risk functionals.
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1 Introduction

Consider non-negative random variables (RVs) X, X1, . . . , Xn, n ∈ N, representing (insurance) losses,

and let X denote a collection of such losses. For a Borel-measurable non-negative – and as a rule non-

decreasing – ‘weight’ function x 7→ w(x), x ∈ [0, +∞), the functionals Hw : X → [0, +∞) ∪ {+∞},

such that the ratio of expectations below is well-defined and finite

Hw(X) =
E[Xw(X)]

E[w(X)]
, (1)

are often called ‘weighted’ risk measures; also called actuarial premium calculation principles, if the

bound Hw(X) ≥ E[X] holds for those RVs X ∈ X that have finite means (e.g., Sendov et al., 2011),

that is the non-negative loading property is satisfied. Most recently. the class of weighted functionals,

Hw, has been connected to a theory of stress-testing, in which case weight functions play the role

of ‘stressing’ mechanisms (e.g., Millossovich et al., 2021). In what follows, Hw is referred to as the

weighted risk functional(s) to recognize the manifold of existing applications across risk management

and insurance.

In actuarial science, weighted risk functionals, Hw, were introduced by Furman and Zitikis (2007,

2008a) as a unifying class of risk functionals that comprises, e.g., the Value-at-Risk and the Conditional

Tail Expectation risk measures, Esscher’s, Kamps’, and – under certain conditions – the distorted

premiums, among other popular risk measures and actuarial premiums. We refer to, e.g., Choo and

de Jong (2009); Kaluszka and Krzeszowiec (2012) and a more recent Castano-Martinez et al. (2020)

and references therein, for examples of works that explore properties of the class of weighted risk

functionals.

Generalizations of (1) have been developed in several directions, with the arguably simplest and

most-popular of these directions having led to the rise of the notion of weighted risk capital allocations,

put forward in Furman and Zitikis (2008b). More specifically, let S = X1 + · · · + Xn denote the

aggregate loss RV, then the functionals Aw(Xi, S) : X × X → [0, +∞) ∪ {+∞}, such that the ratio
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of expectations below is well-defined and finite

Aw(Xi, S) =
E[Xiw(S)]

E[w(S)]
, i ∈ {1, . . . , n}, (2)

are called weighted risk capital allocations (e.g., Dhaene et al., 2012; Guo et al., 2018, for details).

An alternative generalization of (1), which is referred to as a generalized weighted risk measure or

premium in Furman and Zitikis (2009), is obtained by considering the class of functionals Hv,w : X →

[0,+∞) ∪ {+∞}, such that

Hv,w(X) =
E[v(X)w(X)]

E[w(X)]
, (3)

where v, w are non-negative and Borel-measurable functions, E[v(X)w(X)] ∈ R+, and E[w(X)] ∈ R+

(e.g., Richards and Uhler, 2019, for a study of the monotonicity of the class of generalized weighted

risk functionals).

Yet another generalization of weighted risk functionals (1) was considered in Millossovich et al.

(2021); Porth et al. (2014); Zhu et al. (2019) (also, Furman and Zitikis, 2007, for an earlier note

in this respect). This generalization hinges on the assumption that the weight function w(·) ≥ 0

– non-decreasing in each variable and Borel-measurable – operates on vectors of loss RVs, that is

w : [0,∞)n → [0,∞). Clearly, if the weight function is chosen to be the ‘simple sum’ aggregation

function, that is w(x) = x1 + · · · + xn, x = (x1, . . . xn) ∈ [0,+∞)n, then functional (2) is recovered.

Zhu et al. (2019) focus on linear and log-linear combinations of rate-making factors as the weight

functions of interest and derive properties of what they call ‘multivariate’ weighted premiums (for

various weight functions that arise in the context of a multivariate stress-testing theory, we refer to

Millossovich et al. (2021).

Speaking generally, aggregate financial positions are not simple sums of loss RVs (e.g., (e.g., Chap-

ter 5 in Jaworski et al., 2010). Namely, let the function g : [0,+∞)n → [0,+∞) be non-decreasing in

each variable, Borel-measurable, and, for x ∈ [0,+∞)n, satisfy the boundary conditions

0 ≤ inf
x∈[0,+∞)n

g(x) < ∞, and 0 < sup
x∈[0,+∞)n

g(x) ≤ +∞,
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that is the function x 7→ g(x) is a general aggregation function (e.g., Grabisch et al., 2009), and

let Sg = g(X), X = (X1, . . . , Xn) ∈ X n, denote the g-aggregate loss RV. Examples of aggregation

functions are the already-mentioned (e.g., Zhu et al., 2019) simple sum aggregation function g(x) =∑n
i=1 xi and the exponential aggregation function g(x) =

∑n
i=1 e

xi . Other examples of aggregation

functions are, e.g.,

� the maximum aggregation function – also, the largest order statistic – g(x) = max(x1, . . . , xn);

� the minimum aggregation function – also, the smallest order statistic – g(x) = min(x1, . . . , xn);

� the product aggregation function g(x) = x1 × · · · × xn;

� the log-sum-exp aggregation function g(x) = log(ex1 + · · ·+ exn);

� the p-norm aggregation function g(x) = (xp1 + · · ·+ xpn)
1/p

, where p ∈ R+.

In this paper, we work with the class of g-aggregation functions, such that the projection onto

the i-th variable, Pi, i ∈ {1, . . . , n}, equals that variable; namely, we require Pi[g(x)] = g(xi) = xi.

This additional condition, which by passing implies that the class of weight functions and the class of

aggregation functions do not generally agree, is natural as an aggregation of a singleton is not really

an aggregation. Keeping the above in mind, in this paper we work with the following generalized

weighted risk functionals

Hw(Sg) =
E
[
Sg × w ◦ Sg

]
E
[
w ◦ Sg

] (4)

and, for i ∈ {1, . . . , n},

Aw(Xi, Sg) =
E
[
Xi × w ◦ Sg

]
E
[
w ◦ Sg

] ; (5)

unless stated otherwise, we assume in the sequel that the ratios of expectations above are finite and

well-defined. Clearly, if the g-aggregation function is the simple sum aggregation, then weighted risk

functionals (4) and (5) reduce to the original ones of Furman and Zitikis (2008a,b). Table 1 presents

some weighted functionals for the popular choices of weight functions.
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The rest of this paper is devoted to the study of various properties of functionals (4) and (5).

More specifically in Section 2, we investigate bounds for the pairs of weighted risk functionals Hw(Sg1)

and Hw(Sg2) as well as Aw(Xi, Sg1) and Aw(Xi, Sg2), i ∈ {1, . . . , n}, where the weight function, w, is

fixed and two distinct g-aggregation functions, g1 and g2, are considered. Notably, by selecting the

g-aggregation functions, g1 and g2, such that g2 = ξ ◦ g1 with the appropriately chosen non-decreasing

and Borel-measurable function ξ : [0,+∞) → [0,+∞), the results in Section 2 help compare the

riskiness of aggregate losses subject to coverage modifications. Then in Section 3, we repeat the

exercise by comparing weighted risk functionals Hw1(Sg) and Hw2(Sg) as well as Aw1(Xi, Sg) and

Aw2(Xi, Sg), i ∈ {1, . . . , n}, which this time share the same aggregation function, g, but have different

weight functions, w1 and w2. Not surprisingly, a departure from the simple sum aggregation function

results in a significant layer of complexity both when studying properties of generalized weighted risk

functionals (4) and (5) and when evaluating them. In Section 4, we characterise those loss RVs, for

which – irrespective of the choice of the g-aggregation function and the weight function – risk functional

(5) is either trivially obtained from risk functional (4) or equals a constant (e.g., Guan et al., 2021,

for a related discussion). Section 5 concludes the paper.

2 Orders based on different aggregation functions but the same

weight function

In what follows, we fix an atomless probability space and denote by X and X n the set of all non-

negative RVs and the set of all non-negative random vectors X = (X1, . . . , Xn); in both cases these

are interpreted as losses in a portfolio of losses, N = {1, . . . , n}, n ∈ N. The cumulative distribution

function and the decumulative distribution function of the RVs X ∈ X and X ∈ X n are denoted by

FX(x) = P(X ≤ x), FX(x) = 1− FX(x) and FX(x) = P(X ≤ x), FX(x) = P(X > x), respectively,

for non-negative x and x = (x1, . . . , xn).

It is easy to see that the generalized weighted risk functional as in Equation (5) satisfies the no-

unjustified loading property as well as the non-negative loading property (Furman and Zitikis, 2008b)

given that the weight function, w, is non-decreasing and the RVs Xi, i ∈ N and Sg are positively
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quadrant dependent (PQD) (e.g., Lehmann, 1966, for details). Also, while functionals (5) are fully

additive, i.e.
∑n

i=1Aw(Xi, Sg) = Hw(Sg), they admit a special form of the no-undercut property only

if the g-aggregation function is the simple sum aggregation function (Sg = S)(Recall in this respect

that the no-undercut property states that stand-alone losses are riskier – require more risk capital –

than those losses that are considered a part of a portfolio of losses). The no-undercut property for

the class of generalized weighted risk functionals (5) is formulated in the following proposition, which

holds due to the Jensen’s inequality.

Proposition 1. If the g-aggregation function is convex, then we have

g
(
Aw(X1, Sg), . . . , Aw(Xn, Sg)

)
≤ Hw(Sg) for all X ∈ X n and Sg = g(X). (6)

Proof. Let Ew(Sg)[ · ] = E[ · w(g(X))]/E[w(g(X))], then we have

g
(
Aw(X1, Sg), . . . , Aw(Xn, Sg)

)
= g

(
Ew(Sg)[X1], . . . ,Ew(Sg)[Xn]

)
,

≤ Ew(Sg)[g(X)]

= Hw(Sg),

which completes the proof.

Clearly, the p-norm, for 1 ≤ p ≤ ∞, as well as the log-sum-exp g-aggregation functions mentioned

in Section 1 satisfy the convexity condition in Proposition 1.

Next we turn to the study of how different choices of aggregation functions impact the value of

the generalized weighted risk functionals. Two notational conveniences are in place. First, let w(·) be

a weight function and let X and Y be two loss RVs in X , all such that the weighted risk functional

Aw(X,Y ) is well-defined and finite. Then, similarly to the notation in the proof of Proposition 1,

Hw(X,Y ) =: Ew(Y )[X], where the left-hand side is a w-biased expectation. Similarly, we can write (4)

and (5) as Hw(Sg) = Ew(Sg)[Sg] and Aw(Xi, Sg) = Ew(Sg)[Xi], where Sg = g(X) and i ∈ N . Second,

let us define the following regression functions, for X ∈ X n and y ≥ 0,
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h(y) = E
[
Sg1 |Sg2 = y

]
, where Sgj = gj(X), j = 1, 2

and

h̃(y) = E
[
w(Sg2) |w(Sg1) = y

]
.

Theorem 1. For a weight function w, which is assumed to be strictly increasing, let

Hj = Hw(Sgj ), with Sgj = gj(X), j = 1, 2,

be the weighted risk functionals associated with the aggregation functions g1 and g2. The following

relationships hold:

If h(y)

{
≥
<

}
y and the function y 7→ y

h̃(y)
, y ∈ R+, is

{
non-decreasing

decreasing

}
, then H1

{
≥
<

}
H2.

In particular, H1 = H2 holds when h(y) = y and the function y 7→ y/h̃(y) is constant.

The proof of Theorem 1 is relegated to Appendix Ai.

Remark 1. The relationship between y 7→ h(y) and y ∈ R+ specified in Theorem 1 compares the order

of the realizations of Sg1 and Sg2, for a portfolio X ∈ X n, in an average sense. Clearly, the order

between Sg1 and Sg2 implies the relationship between h(y) and y. Namely, if g1(y) ≥ g2(y) for all

y ∈ Rn
+, then h(y) ≥ y for all y ∈ R+. The same argument holds if the inequalities are reversed.

Remark 2. In Theorem 1, we assume that the weight function w is strictly increasing. However, this

assumption is violated in, e.g., the case of the Excess-of-loss (also, the conditional tail expectation)

risk measures and allocations, that is when the weight function is set to be w(y) = 1(y > d) for some

d ≥ 0. In this case, Theorem 1 remains true, but the monotonicity condition of y 7→ y/h̃(y) needs to

be replaced by that of

y 7→ w(y)

h̃(y)
, where Sgj = gj(X) and j = 1, 2.
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We note in passing that the function y 7→ y/h̃(y) is non-decreasing if h̃(y) grows at a slower rate

than y does. Note that the monotonicity property of h̃ is related to the dependence structure of the

RVs S̃g1 := w(Sg1) and S̃g2 := w(Sg2). Specifically, if S̃g2 is stochastically non-decreasing in S̃g1 , i.e.,

P
(
S̃g2 > x | S̃g1 = y

)
is non-decreasing in y ∈ R+ for all x ∈ R+,

then the function y 7→ E
[
S̃g2 | S̃g1 = y

]
is non-decreasing. Whether h̃ increases faster or slower than

y depends on the marginal distributions and dependence of the random pair (S̃g1 , S̃g2), which are

stipulated by the choices of g1, g2, and w.

The following assertion further clarifies the monotonicity behavior of the function y 7→ y/h̃(y)

when the dependence of the RVs S̃g1 and S̃g2 is chosen to be co-monotonic. (The RVs X and Y are

said to be co-monotonic if there exist two non-decreasing functions, ξ1 and ξ2, and a RV Z, such that

(X,Y )
d
= (ξ1(Z), ξ2(Z)); here ‘

d
=’ denotes equality in distribution.),

Theorem 2. For all y ∈ Rn
+, let ξ ◦ g1(y) = g2(y), where ξ : R+ → R+ is a non-decreasing func-

tion; hence the RVs S̃g1 and S̃g2 are co-monotonic. Moreover, suppose that the weight function w is

diffentiable and log-convex.

If ξ(y)

{
≤
>

}
y with ξ′(y)

{
≤
>

}
1 for y ∈ R+, then we have H1

{
≥
<

}
H2.

The proof of Theorem 2 is relegated to Appendix Aii.

Among the examples outlined in Table 1, the following weighted risk functionals are associated

with a log-convex weight function: Net, Esscher, Aumann-Shapley (when F is convex), distorted

(when h
′ ◦ F is log-convex), and proportional hazard (when F is log-convex).

The mere ordering of the g-aggregation functions is not sufficient in order to have the generalized

weighted risk functionals ordered, as becomes evident from the following example.

Example 1. Suppose that g1(X) ∼ Pa(II)(α, θ), that is the RV g1(X) is distributed Pareto of the

second kind with the shape parameter α ∈ R+, scale parameter θ ∈ R+, and the probability density
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function (PDF) given by

f(x) =
α

θ

(
1 +

x

θ

)−(α+1)
, x > 0.

Further, let ξ(y) = max(0, c y − d), which represents the risk reduction due to the introduction of a

coinsurance factor c ∈ (0, 1) and a deductible d > 0. It is straightforward to check that ξ(y) ≤ y and

ξ′(y) ≤ 1, and thus the first set of assumptions about ξ in Theorem 2 is satisfied. Meanwhile, let

w(y) = yb, b > 0, hence the log-convexity condition on w required in Theorem 2 is violated.

Let Sg = g1(X), then we have

H1 =
E
[
Sg

b+1
]

E
[
Sg

b
] = θ

1 + b

α− b− 1
,

in which we require α > 1+ b so that the expectations above are well-defined. In a similar fashion, we

have

H2 =
E
[
ξ(Sg)× w ◦ ξ(Sg)

]
E[w ◦ ξ(Sg)]

=
cb+1 E

[
(Sg − d/c)b+1 |Sg > d/c

]
cb E

[
(Sg − d/c)b |Sg > d/c

] .

Note that Sg
∗:=(Sg − d/c |Sg > d/c) ∼ Pa(II)

(
α, d/c+ θ

)
, thus

H2 = c
E
[
(Sg

∗)b+1
]

E
[
(Sg

∗)b
] = c (d/c+ θ)

1 + b

α− b− 1
= (c θ + d)H1.

Set θ = 1, then we obtain H1 ≥ H2 if c + d ≤ 1, and H1 < H2 if c + d > 1. All in all, this example

shows that the order between the aggregation functions g1 and g2 is not sufficient to determine the

order between the weighted risk functionals H1 and H2.

Next we turn to study the impact of the choice of the g-aggregation function on functionals (5). At
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the outset, let us define, for Sgj = gj(X), j = 1, 2, i ∈ N , and y ≥ 0, the following regression function

ℓi,j(y) = E
[
w(Sgj )|Xi = y

]
.

Theorem 3. For a weight function w, let

Ai,j = Aw(Xi, Sgj ), where j = 1, 2 and i ∈ N ,

be generalized weighted risk functionals á la (5) associated with the aggregation functions g1 and g2.

The following relationships hold:

If the ratio y 7→ ℓi,1(y)

ℓi,2(y)
is

{
non-decreasing

decreasing

}
on y ∈ R+, then Ai,1

{
≥
<

}
Ai,2.

In particular, Ai,1 = Ai,2 if y 7→ ℓi,1(y)/ℓi,2(y) is a constant function.

Proof. The result follows from Proposition 3.1 of Furman and Zitikis (2008b).

Knowing the order between the aggregation functions, g1 and g2, may not suffice to determine the

monotonicity behavior of the ratio y 7→ ℓi,1(y)/ℓi,2(y). The following theorem further confirms the

critical role that the weight function w plays in shaping the order between the weighted risk functionals

Ai,1 and Ai,2.

Theorem 4. Suppose that individual losses within a portfolio have marginal CDFs FXi, i ∈ N and are

co-monotonic, namely Xi
d
= F−1

i (U), where U ∼ Uniform[0, 1]. Let the element-wise non-decreasing

aggregation functions satisfy ξ ◦ g1(y) = g2(y) for y ∈ Rn
+, where ξ : [0,+∞) → [0,+∞) is non-

decreasing. Further assume that the weight function w is differentiable and log-convex. The following

relationships hold

If ξ(y)

{
≤
>

}
y with ξ′(y)

{
≤
>

}
1 for y ∈ R+, then we have Ai,1

{
≥
<

}
Ai,2 for i ∈ N .

The proof of Theorem 4 is relegated to Appendix Aiii.

In Theorem 4, the log-convexity condition on the weight function w is again minimal, which is

reaffirmed in the example below.
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Example 2. Consider two loss RVs distributed Pareto of the second kind, that is Xi ∼ Pa(II)(α, θi),

α ∈ R+, θi ∈ R+, i = 1, 2, and assume that the RVs X1 and X2 are co-monotonic. Set g1(x) = x1+x2

and g2(x) = ξ ◦ g1(x), where ξ(y) = max(0, y − d) represents the risk reduction function due to the

inclusion of a deductible d > 0. Furthermore, consider the same weight function as in Example 1,

i.e., w(x) = xb, b ∈ R+, which is log-concave and thus violates the conditions on w in Theorem 4.

Let Sg = g1(X) = X1 + X2, then since the loss RVs are co-monotonic, we have Sg ∼ Pa(II)(α, θ∗),

where θ∗ = θ1 + θ2. Finally, assume that the succeeding expectations are well-defined and finite, or

equivalently α > b+ 1, and have

Ai,1 =
E
[
Xi × w(Sg)

]
E
[
w(Sg)

]
=

E
[
Xi (X1 +X2)

b
]

E
[
(X1 +X2)b

]
=

E
[
X1+b

i

]
E
[
Xb

i

]
= θi

1 + b

α− b− 1
, i = 1, 2.

Also, we have, for i = 1, 2,,

Ai,2 =
E
[
Xi × w ◦ ξ(Sg)

]
E
[
w ◦ ξ(Sg)

]
=

E
[
Xi (X1 +X2 − d)b |X1 +X2 > d

]
E
[
(X1 +X2 − d)b |X1 +X2 > d/c

]
=

θi
θ∗

E
[
Sg (Sg − d)b |Sg > d

]
E
[
(Sg − d)b |Sg > d

]
=

θi
θ∗

E
[
(Sg − d)b+1 |Sg > d

]
+ dE

[
(Sg − d)b |Sg > d

]
E
[
(Sg − d)b |Sg > d

] .

Note that Sg − d |Sg > d ∼ Pa(II)(α, d+ θ∗), and so we obtain

Ai,2 =
θi
θ∗

[(
d+ θ∗

) 1 + b

α− b− 1
+ d

]
= Ai,1 +

αd θi
(α− b− 1) θ∗

≥ Ai,1, i = 1, 2.

12



In conclusion, we have seen in this example that if the log-convexity assumption on the weight function

w is violated, then the desired relationship Ai,1 ≥ Ai,2 reported in Theorem 4 is not guaranteed.

Thereby, the order of the aggregation functions g1 and g2 is not sufficient to determine the order of

the associated generalized weighted risk functionals. Moreover, if the weight function w is not log-

convex, then (5) may fail to capture the risk reduction due to the introduction of policy modifications.

This completes Example 2.

3 Orders based on different weight functions but the same aggrega-

tion function

We are now in a position to examine the role that the weight function plays in the determination of

the order of risk functionals (4) and (5), given that they share the same aggregation function. We start

with the study of the former generalized weighted risk functional, in which context our observations

are summarized in the following theorem.

Theorem 5. For an aggregation function g : [0,+∞)n → [0,+∞), let

H̃j = Hwj (Sg), j = 1, 2

denote two generalized weighted risk functionals associated with the weight functions w1 and w2. Then

the following relationships hold:

If the ratio y 7→ w1(y)
w2(y)

, y ∈ R+, is

{
non-decreasing

decreasing

}
, then H̃1

{
≥
<

}
H̃2.

Particularly, if y 7→ w1(y)/w2(y) ≡ c, y ∈ R+, for some constant c ∈ R+, then H̃1 = H̃2.

Proof. The result follows from Theorem 4 of Patil and Rao (1978) and statement (4.3) of Furman and

Zitikis (2008a).

Interestingly, Theorem 5 shows that for a loss position X ∈ X n with a fixed aggregation function g,

the monotonicity behaviour of the ratio of the two weight functions w1 and w2 may yield the order of

13



the associated generalized weighted risk functionals. Furthermore, suppose that the g-aggregate RV Sg

has a continuous CDF, then Table 2 summarizes the conditions under which the ratio y 7→ w1(y)/w2(y)

is non-decreasing, and thus Hw1(Sg) ≥ Hw2(Sg) as per Theorem 5. Several observations pertaining to

the conditions outlined in Table 2 are warranted and follow.

First, note that the net premium risk functional and the modified variance risk functional are

special cases of the size-biased risk functional with t = 0 and t = 1, respectively (see, Table 1).

Thereby, Table 2 can be immediately used to study the order of these two risk functionals.

Second, with the exception of the distortion functionals, the diagonal cells in Table 2 indicate

that, for any two weight functions belonging to the same class, it is sufficient to use the value of the t

parameter to determine the order of the associated weighted risk functionals.

Third, when comparisons are made across different classes of weight functions (and hence distinct

weighed risk functionals), then the monotonicity behavior of the ratio y 7→ w1(y)/w2(y) may depend

on the support and/or the probability distribution of the RV Sg, except for the comparison between

the size-biased and Kamps’ risk functionals. More specifically, for the comparison between the size-

biased and Esscher’s risk functionals, the ratio y 7→ w1(y)/w2(y) is non-decreasing (resp. decreasing)

only when the g-aggregate RV Sg is bounded from above (resp. below) by t1/t2.

14
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When it comes to the comparison between the size-biased and the Aumann-Shapley risk function-

als, note that commonly used absolutely continuous distributions such as the ones with unbounded

supports outlined in the distribution inventory of Klugman et al. (2012), have y 7→ f(y) y bounded for

all y ∈ R+, where f denotes the respective PDF. Therefore, we can find sufficiently large t1 and/or

small t2 such that the corresponding inequality condition is satisfied, and thus the ratio w1(y)/w2(y) is

non-decreasing. On a different note, it is also worth mentioning that y 7→ f(y) y is not always bounded

from above. A counter example is the arcsine distribution, or more generally a Beta distribution with

the second shape parameter being less than one, whose density is given by

f(y) =
1

π
√
y(1− y)

, y ∈ (0, 1);

it is evident that limy↑1 f(y) y = +∞. It is also possible that y 7→ f(y) y is bounded from below by

a positive value (e.g., the right-shifted uniform distribution). In this case, we can find an appropriate

pair of t1 and t2 such that f(y) y ≥ t1/t2, thus y 7→ w1(y)/w2(y) is decreasing for all y ∈ R+. For

such common absolutely continuous distributions as gamma, log-normal, Pareto, and Weibull, we have

limy↓0 f(y) y = 0, thus it is impossible that f(y) y ≥ t1/t2 for all y ∈ R+, and y 7→ w1(y)/w2(y) can

not be decreasing.

Turning to the Esscher functional, its comparison with Kamps functional suggests that the support

of the g-aggregate RV Sg must have a positive lower (resp. upper) bound t2
−1 log (t2/t1 + 1) such that

y 7→ w1(y)/w2(y) is non-decreasing (resp. decreasing). To implement the comparison between the

Esscher and Aumann-Shapley functionals, we require the density of Sg to be bounded from above or

from below by a positive value. When the RV Sg has an unbounded support, then it is impossible

that the PDF f has a positive lower bound, thus y 7→ w1(y)/w2(y) can not be non-decreasing.

Penultimately, let us consider the comparison between the Kamps and Aumann-Shapley func-

tionals. The inequality for ensuring the non-decreasing behavior of w1/w2 depends on both the

support of the RV Sg and the behaviour of the PDF f . If f is unbounded at a positive point, then

log
(
t2(t1 f(y))

−1 + 1
)
→ 0 as y approaches that point. So the corresponding inequality condition

specified in Table 2 holds, and the non-decreasing property of w1/w2 can be established in a neigh-
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bourhood of the mentioned positive point. However, when the PDF f(y) converges to zero as y

approaches a finite point (e.g., the gamma distribution having the PDF f(y) = 1
2y

2e−y, y ∈ R+), then

log
(
t2(t1 f(y))

−1 +1
)
→ ∞ as y approaches zero, and it is impossible that y ≥ log

(
t2(t1 f(y))

−1 +1
)

for all y ∈ R+; thus the function y 7→ w1(y)/w2(y) can not be non-decreasing.

Finally, the comparison between the distorted functional and all others is quite simple, as it can

solely depend on the function h. The sufficient condition of positive second derivative, of h, ensures

that y 7→ w1(y)/w2(y) is non-decreasing. As h is usually chosen non-decreasing, then h
′ ≥ 0 is

automatically satisfied, then the only remaining restriction is that imposed on the second degree.

If h is convex, meaning h
′′ ≥ 0, then we get the desired monotonicity behaviour of the ratio. If we

compare two distortion functionals then the behaviour of the product of the two derivatives determines

the functional order.

In what follows, we proceed to studying the conditions for determining the order of generalized

weighted risk functionals (5) subject to different weight functions but with a common aggregation

function. To this end, we need the following additional notation

ℓ̃i,j(y) = E[wj(Sg)|Xi = y], where Sg = g(X), j = 1, 2, i ∈ N , and y ≥ 0.

Theorem 6. For an aggregation function g, let

Ãi,j = Awj (Xi, Sg), for Sg = g(X) and j = 1, 2,

denote the weighted risk functionals associated with the weight functions w1 and w2.

If the ratio y 7→ ℓ̃i,1(y)

ℓ̃i,2(y)
, y ∈ R+, is

{
non-decreasing

decreasing

}
, then Ãi,1

{
≥
<

}
Ãi,2.

In particular, if ℓ̃i,1(y)/ℓ̃i,2(y) ≡ c for some constant c ∈ R+, then Ãi,1 = Ãi,2.

Proof. The result follows from Proposition 3.1 of Furman and Zitikis (2008b).

Interestingly, for co-montonic losses Theorem 6 simplifies significantly.
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Theorem 7. Let us consider X = (X1, . . . , Xn) with Xi
d
= F−1

Xi
(U), where U ∼ Uniform(0, 1) and

FXi is the CDF of the RV Xi, i ∈ N . Fix a component-wise non-decreasing aggregation function g,

then following relationships hold:

If the ratio y 7→ w1(y)

w2(y)
, y ∈ R+, is

{
non-decreasing

decreasing

}
, then Ãi,1

{
≥
<

}
Ãi,2.

In particular, if w1(y)/w2(y) ≡ c for some constant c ∈ R+, then Ãi,1 = Ãi,2.

Proof. The proof of Theorem 7 is relegated to Appendix Aiv.

Theorem 7 seems to suggest that the monotonicity behavior of ratios of the weight functions may

be a decisive factor as to the orders of risk functionals (5), as it is in the context of risk functionals

(4). The next example shows that it is not the case, if the co-monotonicity assumption on the losses

of interest is lifted.

Example 3. Consider the loss RV X = (X1, X2), whose probabilistic behavior is governed by a

two-component mixture of gamma distributions with the joint PDF (Chen et al., 2021)

fX1,X2(x1, x2) = p

2∏
i=1

xαi1−1
i θαi1

i

Γ(αi1)
e−θixi + (1− p)

2∏
i=1

xαi2−1
i θαi2

i

Γ(αi2)
e−θixi , x1, x2 ∈ R+, p ∈ (0, 1).

In this example, we set the aggregation function g(x) = x1 + x2, and consider two weight functions

wj(y) = ynj , where nj ∈ N, j = 1, 2, with n1 ≥ n2. Clearly, the ratio y 7→ w1(y)/w2(y) is non-

decreasing. Next, let us fix p = 0.5, α11 = 2, α12 = 1, α21 = α > 0, and α22 = 8. Also, let

n1 = 2 and n2 = 1. Figure 1 depicts the Pearson correlation of the pair of losses, (X1, X2), and the

corresponding weighted risk functionals (5) as functions of α, which are computed based on Corollary 3

and Proposition 2 of (Chen et al., 2021). As observed, the order Ã1,1 < Ã1,2 holds for smaller α ∈ R+.

Hence, the non-decreasing property of w1/w2 is not sufficient to yield the desired order Ã1,1 ≥ Ã1,2

as per Theorem 7 after the co-monotonicity assumption is lifted. Nevertheless, as the value of the

parameter α increases, the loss RVs X1 and X2 become more positively correlated, as demonstrated by

the non-decreasing pattern of the Pearson correlation, and the order between Ã1,1 and Ã1,2 tends to

coincide with the one suggested by Theorem 7 for co-monotonic losses.
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Figure 1: Plots of the Pearson correlation of the pair of loss RVs (X1, X2) and weighted risk functionals

(5) as functions of α ∈ (0, 10).

In summary, the study in this section suggests that while the monotonicity behavior of the ratio

of two weight functions, y 7→ w1(y)/w2(y), may play a decisive role in the determination of the orders

of risk functionals (4), this is not generally the case in the context of risk functionals (5).

4 Afterthoughts and related results

The results we have established thus far suggest that the choices of the aggregation function, g, and

the weight function, w, have rather complex interactive effects on the orderings of the generalized

weighted risk functionals. Therefore, the precise values of functionals (4) and (5) may be frequently

needed to be computed in applications. We note in this respect that the determination of the value

of the latter generalized weighted risk functional is in general significantly more involved than the

determination of the value of the former generalized weighted risk functional. That being said, there

exist loss RVs X ∈ X n, for which the two mentioned exercises turn out to be of the same complexity.

Such special loss RVs are discussed in this section.

At the outset, we observe the following identity, for i ∈ N ,

Aw(Xi, Sg) = E[Xi] +
Cov(Xi, w(Sg))

Cov(Sg, w(Sg))
(Hw(Sg)− E[Sg]) , (7)
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where we routinely assume that all the involved quantities are well-defined and finite. Equation (7) is

reminiscent of the renowned Capital Asset Pricing Model. For this reason, Furman and Zitikis (2010)

call a special case of (7), in which Sg = X1+ · · ·+Xn, the Weighted Insurance Pricing Model (WIPM).

Further, for some non-negative αi and βi, i ∈ N , let us define the following collection of loss RVs

T =
{
X ∈ X n : Aw(Xi, Sg) = αi + βi ×Hw(Sg) for any choice of w and i ∈ N

}
;

here αi and βi do not depend on the weight function w. Also, for αi ≡ 0 and βi ≡ 0, the particular

cases of the set T are in what follows denoted by T1 and T2, respectively. The loss RVs that belong to

the set T are such that the complexity of computing generalized weighted risk functionals (4) and (5) is

the same. Moreover, the loss RVs that comprise the set T1 imply Aw(Xi, w(Sg))/Hw(Sg) = βi, i ∈ N ,

and we thus refer to this phenomenon as ‘proportional triviality’. Finally, the set T2 contains those

loss RVs X ∈ X n, for which Aw(Xi, w(Sg)) = αi, i ∈ N , a phenomenon that is naturally refered to

as ‘absolute triviality’.

The characterization of the distributions of the loss RVs in the collection of losses T for the case

of the simple sum aggregation function is studied in Furman and Zitikis (2008b) and in a more recent

Mohammed et al. (2021). As therein, the regression function y 7→ E[Xi| Sg = y], y ∈ R+ plays in our

deliberations an important role, as readily follows from the following auxiliary statement.

Assume that

P
(
Sg ∈ [0, ϵ)

)
> 0 for any ϵ > 0, (8)

and hence E[Xi| Sg ∈ [0, ϵ)] is well-defined.

Lemma 8. For a fixed aggregation function g and the aggregate loss RV Sg = g(X), we have X ∈ T

if and only if

E[Xi |Sg] ≡ αi + βi Sg, i ∈ N . (9)

Proof. The proof is kindred to the proof of Theorem 3.1 in Furman et al. (2018) and is thus omitted.

In order to state and prove the main result of this section, we need the following notion of the

20



‘multivariate size-biased transform’.

Definition 1. Let X ∈ X n be a loss RV with positive univariate coordinates Xi, i ∈ N having finite

means. Then the multivariate coordinate-wise size-biased counterpart of X, denoted by X(i), is

P
(
X(i) ∈ dx

)
=

xi
E[Xi]

P
(
X ∈ dx

)
for all x = (x1, . . . , xn) ∈ Rn

+. (10)

Here the RVs X and X(i) are independent.

Remark 3. When n = 1, then the multivariate size-biased transform considered in Definition 1

reduces to the classical notion of univariate size-biased transforms (Patil and Rao, 1978). Namely, the

size-biased counterpart of the RV X ∈ X with E[X] < +∞, denoted by X∗, is such that

P
(
X∗ ∈ dx

)
=

x

E[X]
P
(
X ∈ dx

)
for all x ∈ R+.

The RVs X and X∗ are independent.

We are now ready to formulate and prove the main statement of this section. (When the aggregation

function g is the simple sum aggregation function, i.e., g(x) = x1 + · · · + xn, then the conclusions of

Theorem 9 are analogous to the ones of Theorem 1 in Mohammed et al. (2021).)

Assume

g(x1, . . . , xn) ↓ 0 only when max(x1, . . . , xn) ↓ 0, (11)

which ensures that no positive losses of a portfolio of losses are neglected when the aggregation function

is zero.

Theorem 9. Consider a loss RV X ∈ X n that has positive univariate coordinates Xi, i ∈ N with

finite means. Fix an aggregation function g and suppose that the conditions in (8) and (11) hold

implying that αi ≡ 0. Then X ∈ T1 if and only if

Sg
(1) d

= Sg
(2) d

= · · · d
= Sg

(n), (12)
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where Sg
(i) := g

(
X(i)

)
, i ∈ N . Further, we have Sg

(1) d
= Sg

∗, where Sg
∗ is the size-biased counterpart

of Sg. Furthermore, it must hold that βi = E[Xi] /E[Sg], i ∈ N .

Proof. The proof of Theorem 9 is relegated to Appendix Av.

It is evident that if the loss RVX ∈ X n is exchangeable, and the aggregation function is symmetric,

then distributional equalities (12) hold. If this is the case, the Aw(Xi, Sg) = 1/n for all i ∈ N . Thereby,

(12) implies certain symmetric structure inherent in both the distribution of the loss RV X and in

the choice of the aggregation function. When the notion of multivariate size-biased transform as per

Definition 1 is interpreted in terms of loading for, e.g., model risk, then equalities (12) signify that the

choice of the loading direction does not impact the end-distribution of the aggregate loss.

One may now wonder under which conditions the other (extremal) case, in which αi ∈ R+ and

βi ≡ 0, holds. Namely, we are interested in studying the collection of losses T2 or the case of absolute

– rather than proportional as in Theorem 9 – triviality.

Theorem 10. Consider a loss RV X ∈ X n. Suppose that none of the coordinates of the RV X is

degenerate (i.e., P(Xi = const) < 1, i ∈ N ). Then it holds that X ∈ T2 if and only if

P(Sg = c) = 1 with Sg = g(X) and a positive constant c. (13)

Proof. The proof of Theorem 10 to Appendix Avi.

While Theorem 9 shows that proportional triviality allows for certain degree of richness of the

corresponding class of distributions of the loss RVs X ∈ T1, the case of absolute triviality in Theorem

10 is notably more restrictive with the condition g(X) = c almost surely for a constant c ∈ R+ for the

loss RVs X ∈ T2. For both trivialities, nonetheless, the underlying central condition is the regression

function y 7→ E[Xi|Sg = y] being either linear or constant in y ∈ R+. The regression condition draws

similarities with, e.g., Guan et al. (2021), where an axiomatic formulation, in particular the axiom of

shrinking independence, is used to reach absolute triviality.

Going back to Theorem 10, we note that the loss RVs that belong to the collection of losses T2 are

referred to as g-joint mix RVs and are those RVs that have their CDFs supported on non-increasing
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sets (Bignozzi and Puccetti, 2015).

5 Conclusions

In this paper, we have introduced a generalized version of the nowadays well-studied class of weighted

risk functionals. The generalization herein arises from the recognition that insurers’ aggregate finan-

cial loss position must not be a result of a simple sum of losses, but rather can be specified by a

general aggregation function. Loss aggregation in internal models is one example that elucidates the

importance of general aggregation mechanisms, whereas coverage modifications are another example.

Naturally, generalizations bode complexity, and we admit that the proposed generalized weighted

risk functionals are not easy to deal with. Nevertheless, we have identified a number of sufficient

conditions, under which, the generalized weighted risk functionals can be ordered with respect to

the choices of the aggregation functions and the weight functions, thus providing valuable insights

to risk professionals. Moreover, we have characterized those loss RVs, for which the evaluation of

the generalized weighted risk functionals - irrespective of the aggregation and weight functions - is of

surprising simplicity.

Appendix A Proofs

i Proof of Theorem 1

Proof. We only prove the first case in which h(y) ≥ y and the function y 7→ y/h̃(y) is non-decreasing.

The other case holds based on the same argument. Let us write

H1 =
E
[
Sg1 × w(Sg1)

]
E
[
w(Sg1)

] =
Eh̃◦w(Sg1 )

[
Sg1 × w(Sg1)×

(
h̃ ◦ w(Sg1)

)−1]
Eh̃◦w(Sg1 )

[
w(Sg1)×

(
h̃ ◦ w(Sg1)

)−1] .

Since y 7→ y/h̃(y) is non-decreasing, then using Chebyshev’s sum inequality we have

Eh̃◦w(Sg1 )

[
Sg1 × w(Sg1)×

(
h̃ ◦ w(Sg1)

)−1] ≥ Eh̃◦w(Sg1 )
[Sg1 ]
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× Eh̃◦w(Sg1 )

[
w(Sg1)×

(
h̃ ◦ w(Sg1)

)−1]
.

Thereby, it holds that

H1 ≥ Eh̃◦w(Sg1 )
[Sg1 ] =

E
[
Sg1 × w(Sg2)

]
E
[
w(Sg2)

] =
E
[
h(Sg2)× w(Sg2)

]
E
[
w(Sg2)

]
≥

E
[
Sg2 × w(Sg2)

]
E
[
w(Sg2)

] = H2,

where the second inequality holds because of the condition h(y) ≥ y, y ∈ R+. The proof is now

completed.

ii Proof of Theorem 2

Proof. We only prove the first case in which ξ(y) ≤ y with ξ′(y) ≤ 1 for all y ∈ R+. A repeated

application of the same argument yields the desired conclusion for the second case.

Recall that Sgj = gj(X) for j = 1, 2. Since ξ ◦ g1(y) = g2(y), we can write

w(y)

E
[
w(Sg2) |Sg1 = y

] =
w(y)

w ◦ ξ(y)
,

which has the same monotonicity behavior as y 7→ log
(
w(y)

)
− log

(
w ◦ ξ(y)

)
, y ∈ R+. Consider

d

dy

[
log

(
w(y)

)
− log

(
w ◦ ξ(y)

)]
=

d

dt
log

(
w(t)

)∣∣
t=y

− d

dt
log

(
w(t)

)∣∣
t=ξ(y)

ξ′(y).

By assumption, we have ξ′(y) ∈ (0, 1] for y ∈ R+. Moreover, since ξ(y) ≤ y and t 7→ w(t) is log-convex,

we have

d

dt
log

(
w(t)

)∣∣
t=y

≥ d

dt
log

(
w(t)

)∣∣
t=ξ(y)

.

Together with the assumption that y 7→ w(y) is non-decreasing on y ∈ R+, we conclude

d

dy

[
log

(
w(y)

)
− log

(
w ◦ ξ(y)

)]
≥ 0,
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thus the function y 7→ w(y)/E[w(Sg2) |Sg1 = y] is non-decreasing on y ∈ R+.

Further, note that ξ(y) ≤ y implies h(y) ≥ y for all y ∈ R+ based on Remark 1. According to

Theorem 1 and Remark 2, we obtain H1 ≥ H2. The proof is now completed.

iii Proof of Theorem 4

Proof. Let Sg = g1(X), then the following string of equations holds, for x ∈ R+,

ℓi,1(x)

ℓi,2(x)
=

E
[
w(Sg)|Xi = x

]
E
[
w ◦ ξ(Sg)|Xi = x

]
=

E
[
w(Sg)|U = FXi(x)

]
E
[
w ◦ ξ(Sg)|U = FXi(x)

]
=

w ◦ g̃(x)
w ◦ ξ ◦ g̃(x)

, (14)

where g̃(x) = g1(x) with x =
(
F−1
Xj

(FXi(x))
)
j∈N .

Since the aggregation function is element-wise non-decreasing, the monotonicity behaviour of the

ratio in (14) is same as that of y 7→ w(y)/w ◦ ξ(y). Evoking the argument used in the proof of Theorem

2, we conclude that x 7→ ℓi,1(x)/ℓi,2(x) is non-decreasing if ξ(y) ≤ y and ξ′(y) ≤ 1, and the function is

decreasing if ξ(y) > y and ξ′(y) > 1. Applying Theorem 3 yields the desired result and thus completes

the proof.

iv Proof of Theorem 7

Proof. Fix an aggregation function g. Then let us write

ℓ̃i,1(x)

ℓ̃i,2(x)
=

E
[
w1(Sg)|Xi = x

]
E
[
w2(Sg)|Xi = x

]
=

E
[
w1 ◦ g(X)|U = FXi(x)

]
E
[
w2 ◦ g(X)|U = FXi(x)

]
=

w1 ◦ g̃(x)
w2 ◦ g̃(x)

, (15)

where g̃(x) = g(x) with x =
(
F−1
Xk

(FXi(x))
)
k∈N .

25



Since the aggregation function g is component-wise non-decreasing, the function x 7→ g̃(x) is non-

decreasing. We can conclude that the ratio x 7→ ℓ̃i,1(x)/ℓ̃i,2(x) has the same monotonicity behavior as

the ratio y 7→ w1(y)/w2(y). An application of Theorem 6 yields the desired result, which completes

the proof.

v Proof of Theorem 9

Proof. Let us begin with the sufficiency of the statement. First note that conditions (8) and (11)

together imply E[Xi|Sg = y] ↓ 0 when y ↓ 0, i ∈ N . Then evoking Lemma 8 yields that if X ∈ T ,

then αi in (9) must be zero, i.e. X ∈ T1, and thus

E[Xi|Sg] = βi Sg, i ∈ N .

Taking expectations throughout thus implies βi = E[Xi] /E[Sg].

The Laplace transform of the RV Sg
(i) can be computed via, for t ∈ R+,

E
[
Xi e

−tSg
]

E[Xi]
=

E
[
E[Xi|Sg] e

−tSg
]

E[Xi]

=
βi

E[Xi]
E
[
Sg e

−tSg
]

=
E
[
Sge

−tSg
]

E[Sg]
,

which readily implies the desirable equalities in distribution, that is Sg
(1) d

= Sg
(2) d

= · · · d
= Sg

(n) d
= Sg

∗.

To prove the necessity direction, note that for any t ∈ R+, we have

E
[
E[Xi|Sg] e

−tSg
]

E[Xi]
−

E
[
Sge

−tSg
]

E[Sg]
= 0

is equivalent to

E
[(

E[Xi|Sg]−
E[Xi]

E[Sg]
Sg

)
e−tSg

]
= 0, (16)
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which in turn yields

E[Xi|Sg] =
E[Xi]

E[Sg]
Sg,

and hence X ∈ T1. This completes the proof.

vi Proof of Theorem 10

Proof. Based on Lemma 8 with βi = 0, i ∈ N , we obtain that X ∈ T2 is equivalent to E[Xi|Sg] = αi

and αi = E[Xi].

In order to prove the sufficiency direction, consider the Laplace transform of the RV Sg
(i), that is

E
[
e−tSg

(i)
]
=

E
[
Xi e

−tSg
]

E[Xi]
=

E
[
E[Xi|Sg] e

−tSg
]

E[Xi]

=
αi

E[Xi]
E
[
e−tSg

]
= E

[
e−tSg

]
, t ∈ R+. (17)

Since the RVs Xi are non-degenerate, (17) implies P(Sg = c) = 1 for some constant c ∈ R+. The

implication holds since otherwise Sg
(i) d

= Sg, which leads to a contradiction.

To prove the necessity direction, note that for any t ∈ R+, we have

E
[
E[Xi|Sg] e

−tSg
]

E[Xi]
− E

[
e−tSg

]
= 0,

which is equivalent to

E
[(
E[Xi|Sg]− E[Xi]

)
e−tSg

]
= 0.

This implies

E[Xi|Sg] = E(Xi),

or equivalently, X ∈ T2. This completes the proof of the theorem.
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