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1 Introduction

The tail conditional allocation (TCA) of a pair of real-valued random variables X and Y is

the conditional expectation

TCA(p) = E
(
X | Y > G−1(p)

)
,

where p ∈ [0, 1) is a fixed parameter and G−1 is the generalized (left-continuous) inverse of

the cumulative distribution function (cdf) G of Y , defined by

G−1(p) = inf{y ∈ R : G(y) ≥ p}.

In general, both X ∼ F and Y ∼ G are dependent. Denote their joint cdf by H. The special

case X = Y leads to what is known in the literature as the expected shortfall, also known

by several other names such as the tail conditional expectation and the conditional value at

risk. The TCA has played important roles in areas such as economics, finance, insurance, and

management.

Since the aforementioned cdf’s are not known in practice, they are estimated using the

realized values of random pairs (X1, Y1), . . . , (Xn, Yn). Assume that the pairs are independent

and identically distributed according to the joint cdf H of (X, Y ). The empirical TCA is

TCAn(p) =
1

(1− p)n

n∑
i=1

Xi1(G−1
n (p),∞)(Yi), (1.1)

where G−1
n (p) is the p-th quantile of the empirical cdf Gn based on Y1, . . . , Yn, that is,

G−1
n (p) = inf{y ∈ R : Gn(y) ≥ p}.

Using a specially designed example, Gribkova et al. (2021) showed that establishing consis-

tency of the estimator TCAn(p) is not possible without a continuity-type assumption on the

cdf G. Subsequently, Gribkova et al. (2022) proved that it is enough to have the continuity of

G only in an open neighbourhood of the interval [G−1(p), G←(p)], where the right-continuous

quantile function G← is defined by

G←(p) = inf{y ∈ R : G(y) > p}.

Since G−1(p) ≤ G←(p) for all p ∈ (0, 1), the functions G−1 and G← are often called the lower
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and upper quantile functions, respectively.

As discussed by Gribkova et al. (2021, 2022), the fulfillment of practical needs starts with

the construction of confidence intervals for the population TCA(p), followed by the assessment

of the coverage probability. That is, given ε > 0, which could be very large in absolute terms

but only a fraction of the (estimated value of the) population TCA(p), we wish to assess the

magnitude of

Πn(ε) := P
(∣∣TCAn(p)− TCA(p)

∣∣ ≤ ε
)
.

This probability relies on the population distribution and is therefore unknown. Often, the

magnitude of such probabilities is assessed by deriving CLT-type results, which in our case

would mean establishing the CLT for the estimator TCAn(p). Gribkova et al. (2021) postu-

lated such a result in the concluding section of their paper, deferring its rather complex proof

to the follow-up paper by Gribkova et al. (2022). It is shown in the latter paper that, under

certain conditions, there is a finite constant σ > 0 such that

Πn(ε) ≈ Φ
(
ε
√
n/σ

)
− Φ

(
− ε
√
n/σ

)
(1.2)

for large n, where Φ denotes the standard normal cdf. Under further conditions, Gribkova et

al. (2022) have derived a consistent estimator of σ and thus enabled researchers to empirically

assess the magnitude of Πn(ε) from available data.

While the above stratagem for the assessment of Πn(ε) is appealing to theoretical minds,

it nevertheless requires more time and energy than practitioners could often afford for its

understanding and implementation, because the stratagem relies on additional conditions and

also on tuning of various parameters, and all these tasks are in addition to what is required

to show that Πn(ε) tends to 1 when the sample size n increases. This is of course natural

because the right-hand side of statement (1.2) reveals the fastest rate of convergence to 1

that the probability Πn(ε) can achieve. Hence, a natural question arises: can we assess the

magnitude of Πn(ε) in a more adaptable way? With the help of a resampling technique, we

shall next show that the answer is in affirmative.

2 The main result and its numerical illustration

To avoid the unnecessary at this stage complication of technicalities, we restrict ourselves to

the Efron’s m-out-of-n non-parametric bootstrap. For this, we generate a bootstrap sample

(X∗1 , Y
∗

1 ), . . . , (X∗m, Y
∗
m) of size m := mn from the empirical cdf Hn that arises from the original
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sample (X1, Y1), . . . , (Xn, Yn). That is, we have the following probability distribution

P∗
(

(X∗j , Y
∗
j ) = (Xi, Yi)

)
=

1

n
, i = 1, . . . , n, j = 1, . . . ,m,

where P∗ denotes the conditional on the sample (X1, Y1), . . . , (Xn, Yn) probability P. The

bootstrapped version of the TCA is given by the formula

TCA∗n,m(p) =
1

(1− p)m

m∑
i=1

X∗i 1((G∗
m)−1(p),∞)(Y

∗
i ).

A serious question now arises: when does TCA∗n,m(p) estimate TCA(p)? To see the non-

triviality of this problem, we first recall the work of Gribkova et al. (2021) where it is shown

that some kind of a continuity assumption is necessary but, unavoidably, the bootstrapped

version of the TCA lives in the “bootstrap world,” which is inherently discrete, as it is based

on the discrete cdf Hn. The following theorem settles the matter.

Theorem 2.1. Suppose that the following three conditions hold:

(C1) E(X | Y > G−1(p− δ)) is finite for a (small) δ > 0.

(C2) G is continuous on an (open) neighbourhood of the interval [G−1(p), G←(p)].

(C3) lim sup(m/n) <∞ as n ∧m := min{n,m} → ∞.

Then, for every ε > 0 and when n ∧m→∞,

P∗
(∣∣TCA∗n,m(p)− TCA(p)

∣∣ ≤ ε
)

P−→ 1. (2.1)

Clearly, instead of relying on statement (1.2) to assess Πn(ε), we can now rely on state-

ment (2.1), which immediately leads to the in-probability approximation

Πn(ε) ≈ Π∗n,m(ε) := P∗
(∣∣TCA∗n,m(p)− TCAn(p)

∣∣ ≤ ε
)

(2.2)

for all sufficiently large n and m. This gives an easily implementable in practice way to assess

Πn(ε). We shall next explore the performance of this approximation in a simulation study.

The proof of Theorem 2.1, which is rather complex, is in Section 3, followed by Section 4

containing a host of auxiliary lemmas and their proofs.

Hence, to illustrate the bootstrap methodology, and to do so efficiently and also in the

context of the earlier developed methodologies of Gribkova et al. (2021, 2022), we employ the
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set-up of the latter two papers. Namely, we consider a multi-peril insurance product which

consists of two insurance coverage. We assume that the associated losses random variables,

denoted by L1 and L2, follow the bivariate Pareto distribution

P(L1 > l1, L2 > l2) =
(
1 + l1/θ1 + l2/θ2

)−α
, l1 > 0, l2 > 0, (2.3)

where θ1 > 0 and θ2 > 0 are scale parameters, and α > 0 is a shape parameter: the smaller

the value of α, the heavier the distribution tails of L1 and L2. Due to the presence of policy

deductibles d1 > 0 and d2 > 0, the payment random variables are

Wi = (Li − di)× 1(di,∞)(Li), i = 1, 2.

To analyze the risk contribution of, say, the first insurance coverage out of the total loss of the

insurance product, we calculate the TCA with X = W1 and Y = W1 +W2. We already know

from Gribkova et al. (2022) that TCAn(p) yields an asymptotically precise estimate of TCA(p).

Concerning the performance of TCAn(p), Gribkova et al. (2022) used the asymptotic normality

of the estimator to approximate the coverage probability Πn(ε). We shall next contrast the

currently developed bootstrap approach with the normality approach of Gribkova et al. (2022)

in the context of evaluating Πn(ε).

If the population distribution (2.3) is known, then we can apply the matrix analytic method

of Furman et al. (2021) to compute TCA(p) explicitly. Moreover, the coverage probability

Πn(ε) can be assessed via Monte Carlo as follows:

Π̂MC
n (ε) =

1

T

T∑
t=1

1[−ε,ε]

(
TCAt

n(p)− TCA(p)
)
,

where TCAt
n(p) is the empirical estimate of TCA(p) obtained from the tth set of simulated

data, t = 1, . . . , T . We choose large T = 100 000 to ensure that Πn(ε) is calculated accurately.

In the more practical scenario when the population distribution is unknown and only a

single data set is available, statement (2.2) advocates sampling from the empirical distribution

obtained from the observed data in order to compute Πn(ε). Specifically, we obtain T sets

of re-samples with replacement from the original data, and then within each newly obtained

dataset, we calculate TCA∗,tn,m, where m = n and t = 1, . . . , T . The coverage probability Πn(ε)
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is estimated by

Π̂∗n,n(ε) =
1

T

T∑
t=1

1[−ε,ε]

(
TCA∗,tn,n(p)− T̂CA∗(p)

)
,

where

T̂CA∗(p) =
1

T

T∑
t=1

TCA∗,tn,n(p).

In what follows, we fix θ1 = 100 and θ2 = 50, but vary the shape parameter α ∈ {1.8, 3, 4}
in order to see how the tail behavior of distribution (2.3) is impacting the performance of

Π∗n,m(ε) as an estimator of Πn(ε), with n = i× 10 000 and i ∈ {0.5, 1, 1.5, 2}. The margin of

error ε is set to 5%×TCA(p), and the policy deductables are set to d1 = 25 and d2 = 12, which

correspond to the medians of L1 and L2, respectively, under the shape parameter value α = 3.

We are interested in estimating TCA(p) at the confidence levels p = 97.5% and p = 99%.

Figure 2.1 compares the coverage probabilities based on the herein proposed bootstrap

method and the CLT-based method of Gribkova et al. (2022). Next are several observations:

(i) The actual coverage probabilities are increasing with respect to α and n, but decreasing

with respect to p. These patterns are well captured by both estimation methods.

(ii) For fixed n and p, smaller values of the shape parameter α, that is, more heavily tailed

distributions (2.3) diminish the performance of the two coverage-probability estimators.

When α ≤ 2, normal approximation is unavailable because of the lack of a finite second

moment (see Gribkova et al. (2022) for technical details).

(iii) For fixed α and n, smaller values of p improve the performance of both estimators, which

is natural because more data in the tail portion are used.

(iv) Across all the choices of α and p, the estimation intervals of Πn(ε) shrink as the sample

size n increases, and the relationship is more noticeable when α is large.

In Tables 2.1 and 2.2 we compare the performance of the bootstrap and normal estimators

based on their biases and mean absolute errors (MAE) with respect to the actual value of

Πn(ε). We see that the bootstrap method outperforms the normal approximation in terms

of smaller bias and MAE across all considered scenarios. As the sample size n grows, the

performance of the two estimators becomes very similar, especially when p = 97.5%.
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(a) p = 0.975 and α = 1.8 (b) p = 0.99 and α = 1.8

(c) p = 0.975 and α = 3 (d) p = 0.99 and α = 3

(e) p = 0.975 and α = 4 (f) p = 0.99 and α = 4

Figure 2.1: Box plots comparing the coverage-probability estimators based on the bootstrap
(BS) and normal-approximation methods.
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α
n

10 000
Π̂MC
n (ε)

Bootstrap Normal

Bias MAE Bias MAE

1.8

0.5 0.247 0.094 (38%) 0.13 (52%) - -

1.0 0.323 0.091 (28%) 0.139 (43%) - -

1.5 0.377 0.096 (25%) 0.148 (39%) - -

2.0 0.421 0.096 (23%) 0.150 (36%) - -

3

0.5 0.461 0.022 (4.8%) 0.082 (17%) 0.029 (6.4%) 0.086 (19%)

1.0 0.607 0.016 (2.6%) 0.077 (12%) 0.019 (3.1%) 0.079 (13%)

1.5 0.701 0.017 (2.5%) 0.073 (10%) 0.019 (2.7%) 0.073 (11%)

2.0 0.766 0.013 (1.6%) 0.058 (7.6%) 0.013 (1.7%) 0.059 (7.7%)

4

0.5 0.533 0.016 (3.0%) 0.070 (13%) 0.025 (4.8%) 0.073 (13.8%)

1.0 0.692 0.010 (1.5%) 0.057 (8.2%) 0.013 (1.9%) 0.058 (8.4%)

1.5 0.786 0.009 (1.1%) 0.041 (5.2%) 0.011 (1.4%) 0.041 (5.2%)

2.0 0.847 0.006 (0.7%) 0.038 (4.5%) 0.007 (0.8%) 0.038 (4.5%)

Table 2.1: Performance of the bootstrap and normal estimators of Πn(ε) in terms of their biases
and MAE’s when p = 97.5%. (The normal approximation is unavailable when α = 1.8.)

α
n

10 000
Π̂MC
n (ε)

Bootstrap Normal

Bias MAE Bias MAE

1.8

0.5 0.178 0.094 (53%) 0.118 (66%) - -

1.0 0.233 0.091 (39%) 0.124 (53%) - -

1.5 0.272 0.096 (35%) 0.133 (49%) - -

2.0 0.305 0.098 (32%) 0.137 (45%) - -

3

0.5 0.335 0.031 (9.2%) 0.084 (25%) 0.056 (17%) 0.099 (29%)

1.0 0.449 0.025 (5.6%) 0.085 (19%) 0.064 (14%) 0.105 (23%)

1.5 0.530 0.028 (5.2%) 0.085 (16%) 0.045 (8.4%) 0.095 (18%)

2.0 0.591 0.022 (3.7%) 0.074 (13%) 0.034 (5.8%) 0.081 (14%)

4

0.5 0.396 0.026 (6.5%) 0.080 (20%) 0.054 (14%) 0.093 (23%)

1.0 0.531 0.019 (3.6%) 0.073 (14%) 0.064 (12%) 0.096 (18%)

1.5 0.621 0.018 (2.9%) 0.059 (9.6%) 0.039 (6.2%) 0.068 (11%)

2.0 0.688 0.015 (2.2%) 0.062 (8.9%) 0.029 (4.1%) 0.068 (9.7%)

Table 2.2: Performance of the bootstrap and normal estimators of Πn(ε) in terms of their
biases and MAE’s when p = 99%. (The normal approximation is unavailable when α = 1.8.)
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3 Proof of Theorem 2.1

Unless noted otherwise, all convergence statements are when n ∧m → ∞, where ∧ denotes

the minimum, and we shall also use the notation ∨ for the maximum.

Statement (2.1) is equivalent to

E
(
P∗
(∣∣TCA∗n,m(p)− TCA(p)

∣∣ > ε
))
→ 0. (3.1)

By Theorem 1.1 of Gribkova et al. (2022), the empirical estimator TCAn(p) consistently

estimates TCA(p), and thus proving statement (3.1) is equivalent to showing that, for every

ε > 0,

E
(
P∗
(∣∣TCA∗n,m(p)− TCAn(p)

∣∣ > ε
))
→ 0. (3.2)

We write

(1− p)
(

TCA∗n,m(p)− TCAn(p)
)

= In,m + Jn,m,

where

In,m =
1

m

m∑
j=1

X∗i 1((G∗
m)−1(p),∞)(Y

∗
i )− 1

m

m∑
j=1

X∗i 1(G−1
n (p),∞)(Y

∗
i )

and

Jn,m =
1

m

m∑
j=1

X∗i 1(G−1
n (p),∞)(Y

∗
i )− 1

n

n∑
i=1

Xi1(G−1
n (p),∞)(Yi).

Hence, we need to prove that in the “bootstrap world,” both In,m and Jn,m converge to 0

in the sense specified in the following two statements, where, and throughout the rest of the

paper, we use the notation

δm =

√
logm

m
.

Statement 3.1. For every ε > 0 and when n ∧m→∞, we have

E
(
P∗
(
|In,m| > ε

))
→ 0. (3.3)

Proof. Denote the event

An,m =
{
G−1(p− 2δm) < G−1

n (p− δm)
}
∩
{
G−1
n (p+ δm) ≤ G−1(p+ 2δm)

}
.
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By Lemma 4.1 (statements (4.2) and (4.3) with c1 = 1 and c2 = 2), we have

P
(
Acn,m

)
→ 0. (3.4)

Hence,

E
(
P∗
(
|In,m| > ε

))
≤ E

(
P∗
(
|In,m| > ε

)
1An,m

)
+ P

(
Acn,m

)
= E

(
P∗
(
|In,m| > ε

)
1An,m

)
+ o(1). (3.5)

Let X∗1,m, . . . , X
∗
m,m denote the concomitants (a.k.a. induced order statistics) of X∗1 , . . . , X

∗
m

corresponding to the order statistics Y ∗1:m, . . . , Y
∗
m:m (e.g., Bhattacharya, 1974; Yang, 1976;

David and Nagaraja, 2003, Section 6.8). Then we write

In,m =
1

m

(
m∑
j=1

X∗j,m1((G∗
m)−1(p),∞)

(
Y ∗j:m

)
−

m∑
j=1

X∗j,m1(G−1
n (p),∞)

(
Y ∗j:m

))

=
1

m

(
m∑

j=K∗

X∗j,m −
m∑

j=M∗

X∗j,m

)

=
sgn
(
M∗ −K∗

)
m

K∗∨M∗−1∑
j=K∗∧M∗

X∗j,m, (3.6)

where

K∗ = min
{
j : Y ∗j:m > (G∗m)−1(p), 1 ≤ j ≤ m

}
,

M∗ = min
{
j : Y ∗j:m > G−1

n (p), 1 ≤ j ≤ m
}
,

with sgn(a) denoting the sign function, which is equal to 0 when a = 0 and a/|a| when a 6= 0.

In the definitions of K∗ and M∗, we take the minimum over those j ∈ {1, . . . ,m} that satisfy

the noted inequalities, but if there is not any such j, then the corresponding minimum is set

to m+ 1. Hence,

P∗
(
|In,m| > ε

)
≤ P∗

(
1

m

K∗∨M∗−1∑
j=K∗∧M∗

|X∗j,m| > ε

)

≤ P∗
(

1

m

K∗∨M∗−1∑
j=K∗∧M∗

|X∗j,m| > ε, BK∗,n,m ∩ BM∗,n,m

)
+ P∗

(
BcK∗,n,m

)
+ P∗

(
BcM∗,n,m

)
, (3.7)
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where

Bk,n,m =
{
Y ∗k:m ∈

(
G−1
n (p− δm), G−1

n (p+ δm)
]}

with k = K∗ and k = M∗. We estimate the first probability on the right-hand side of

bound (3.7) as follows:

P∗
(

1

m

K∗∨M∗−1∑
j=K∗∧M∗

|X∗j,m| > ε, BK∗,n,m ∩ BM∗,n,m

)

= P∗
(

1

m

K∗∨M∗−1∑
j=K∗∧M∗

|X∗j,m|1(G−1
n (p−δm),G−1

n (p+δm)
](Y ∗j:m) > ε, BK∗,n,m ∩ BM∗,n,m

)

≤ P∗
(

1

m

m∑
j=1

|X∗j,m|1(G−1
n (p−δm),G−1

n (p+δm)
](Y ∗j:m) > ε

)

≤ 1

εm

m∑
j=1

E∗
(
|X∗j,m|1(G−1

n (p−δm),G−1
n (p+δm)

](Y ∗j:m))
=

1

ε
E∗
(
|X∗1 |1(G−1

n (p−δm),G−1
n (p+δm)

](Y ∗1 ))
=

1

εn

n∑
i=1

|Xi|1(
G−1

n (p−δm),G−1
n (p+δm)

](Yi).
Consequently,

E

(
P∗
(

1

m

K∗∨M∗−1∑
j=K∗∧M∗

|X∗j,m|1(G−1
n (p−δm),G−1

n (p+δm)
](Y ∗j:m) > ε

)
1An,m

)

≤ E

(
1

εn

n∑
i=1

|Xi|1(
G−1(p−2δm),G−1(p+2δm)

](Yi))

=
1

ε
E
(
|X|1(

G−1(p−2δm),G−1(p+2δm)
](Y ))

=
1

ε

∫ p+2δm

p−2δm

h(G−1(t))dt, (3.8)

where h(y) = E(|X| | Y = y). The integral on the right-hand side of bound (3.8) converges

to 0 because of condition (C1) and δm → 0. It remains to reach analogous conclusions about

the expected values of the last two probabilities on the right-hand side of bound (3.7).

We start with the statement

E
(
P∗
(
BcM∗,n,m

))
→ 0. (3.9)
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Using the notation

Cn,m =
{
Gn(G−1

n (p)) ≤ p+ 0.25δm

}
∩
{
p+ 0.75δm ≤ Gn(G−1

n (p+ δm))
}
,

we have

E
(
P∗
(
BcM∗,n,m

))
≤ E

(
P∗
(
BcM∗,n,m

)
1Cn,m

)
+ P

(
Ccn,m

)
= E

(
P∗
(
BcM∗,n,m

)
1Cn,m

)
+ o(1), (3.10)

where the right-most equation holds due to Lemmas 4.2 and 4.3. We have

P∗
(
BcM∗,n,m

)
= P∗

(
Y ∗M∗:m /∈

(
G−1
n (p− δm), G−1

n (p+ δm)
])

= P∗
(
Y ∗M∗:m /∈

(
G−1
n (p), G−1

n (p+ δm)
])

= P∗
(
Y ∗j /∈

(
G−1
n (p), G−1

n (p+ δm)
]
, 1 ≤ j ≤ m

)
=

(
1− 1

n

n∑
i=1

1(
G−1

n (p),G−1
n (p+δm)

](Yi))m
=

(
1−

(
Gn(G−1

n (p+ δm))−Gn(G−1
n (p))

))m
.

Consequently,

P∗
(
BcM∗,n,m

)
1Cn,m ≤

(
1− 0.5δm

)m
≤ e−0.5mδm (3.11)

with the right-hand side converging to 0 because mδm →∞. Bounds (3.10) and (3.11) imply

statement (3.9)

To complete the proof of Statement 3.1, we are left to show

E
(
P∗
(
BcK∗,n,m

))
→ 0. (3.12)

For this, we start with the equations

P∗
(
BcK∗,n,m

)
= P∗

(
Y ∗K∗:m /∈

(
G−1
n (p− δm), G−1

n (p+ δm)
])

= P∗
(
Y ∗K∗:m ≤ G−1

n (p− δm)
)

+ P∗
(
Y ∗K∗:m > G−1

n (p+ δm)
)

(3.13)
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and then work with the two probabilities on the right-hand side separately.

We first prove

E
(
P∗
(
Y ∗K∗:m ≤ G−1

n (p− δm)
))
→ 0. (3.14)

Since Y ∗K∗:m > (G∗m)−1(p), we have

P∗
(
Y ∗K∗:m ≤ G−1

n (p− δm)
)
≤ P∗

(
(G∗m)−1(p) ≤ G−1

n (p− δm)
)

= P∗
(
G∗m(G−1

n (p− δm)) ≥ p
)

= P∗
(√

m
(
G∗m(G−1

n (p− δm))− pn,m
)
≥
√
m (p− pn,m)

)
, (3.15)

where

pn,m = E∗
(
G∗m(G−1

n (p− δm))
)

= Gn(G−1
n (p− δm)).

By Lemma 4.4,
√
m (p − pn,m) tends in probability to +∞, which means that for every

L ∈ (0,∞),

P
(√

m (p− pn,m) ≤ L
)
→ 0.

Denote the event

Fn,m =
{√

m (p− pn,m) > L
}
.

Continuing with bound (3.15), we therefore have

E
(
P∗
(
Y ∗K∗:m ≤ G−1

n (p− δm)
))

= E
(
P∗
(
Y ∗K∗:m ≤ G−1

n (p− δm)
)
1Fn,m

)
+ o(1)

≤ E
(
P∗
(
κ∗n,m > L

))
+ o(1), (3.16)

where

κ∗n,m =
√
m sup

x∈R

∣∣G∗m(x)−Gn(x)
∣∣.

By the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Dvoretzky et al., 1956; Massart, 1990),

we have

P∗
(
κ∗n,m > L

)
≤ 2e−2L2

. (3.17)

Hence, statement (3.14) follows from inequality (3.16).

Finally, we show that the expectation of the last probability on the right-hand side of

13



equation (3.13) vanishes asymptotically, that is,

E
(
P∗
(
Y ∗K∗:m > G−1

n (p+ δm)
))
→ 0. (3.18)

We start with the equation

P∗
(
Y ∗K∗:m > G−1

n (p+ δm)
)

= P∗
(
S∗n,m < K∗

)
, (3.19)

where

S∗n,m =
m∑
i=1

1(
−∞,G−1

n (p+δm)
](Y ∗i )

=mG∗m(G−1
n (p+ δm)).

Since

K∗ = min
{
j : Y ∗j:m > (G∗m)−1(p), 1 ≤ j ≤ m

}
= 1 + max

{
j : Y ∗j:m ≤ (G∗m)−1(p), 1 ≤ j ≤ m

}
= 1 +

m∑
i=1

1(
−∞,(G∗

m)−1(p)
](Y ∗i )

= 1 +mG∗m
(
(G∗m)−1(p)

)
,

equation (3.19) implies

P∗
(
Y ∗K∗:m > G−1

n (p+ δm)
)

= P∗
(
G∗m(G−1

n (p+ δm)) < m−1 +G∗m((G∗m)−1(p))
)

= P∗
(√

m
(
G∗m(G−1

n (p+ δm))− qn,m
)
< m−1/2 +

√
m
(
G∗m((G∗m)−1(p))− qn,m

))
, (3.20)

where

qn,m = E∗
(
G∗m(G−1

n (p+ δm))
)

= Gn(G−1
n (p+ δm)).

14



By Lemma 4.6, we have, for every L ∈ (0,∞),

E
(
P∗
(√

m
(
G∗m((G∗m)−1(p))− qn,m

)
≥ −L

))
→ 0.

Denote the event

Gn,m =
{√

m
(
G∗m((G∗m)−1(p))− qn,m

)
< −L

}
.

Continuing with bound (3.20), we therefore obtain

E
(
P∗
(
Y ∗K∗:m > G−1

n (p+ δm)
))

= E
(
P∗
(
Y ∗K∗:m > G−1

n (p+ δm)
)
1Gn,m

)
+ o(1)

≤ E
(
P∗
(
κ∗n,m > L

))
+ o(1).

Consequently, in view of inequality (3.17), statement (3.18) follows. This establishes State-

ment 3.1.

Statement 3.2. For every ε > 0 and when n ∧m→∞, we have

E
(
P∗
(
|Jn,m| > ε

))
→ 0. (3.21)

Proof. Since (e.g., Shorack, 2000, Inequality 3.1, p. 350)

P∗
(
|Jn,m| > ε

)
≤ 7ε

∫ 1/ε

0

(
1− Re

(
E∗
(
eitJn,m

)))
dt

≤ 7ε

∫ 1/ε

0

∣∣E∗(eitJn,m
)
− 1
∣∣dt,

statement (3.21) follows if, for every real t ∈ R,

E
(∣∣E∗(eitJn,m

)
− 1
∣∣)→ 0. (3.22)

To verify statement (3.22), we first write

Jn,m =
m∑
j=1

ζj,n,m,

where

ζj,n,m =
1

m

(
X∗j 1(G−1

n (p),∞)(Y
∗
j )− 1

n

n∑
i=1

Xi1(G−1
n (p),∞)(Yi)

)
.

Note that for fixed n and m, conditionally on (X1, Y1), . . . , (Xn, Yn), the random variables

15



ζj,n,m, j = 1, . . . ,m, are independent and identically distributed. They are also centered, that

is, E∗(ζj,n,m) = 0. Let Dn,m denote an event (to be specified later) whose complement satisfies

P
(
Dcn,m

)
→ 0. (3.23)

Then

E
(∣∣E∗(eitJn,m

)
− 1
∣∣) ≤ E

(∣∣E∗(eitJn,m
)
− 1
∣∣1Dn,m

)
+ o(1)

= E

(∣∣∣∣∣
m∏
j=1

E∗
(
eitζj,n,m

)
−

m∏
j=1

1

∣∣∣∣∣1Dn,m

)
+ o(1)

≤ 2 max{|t|, t2}∆n,m + o(1), (3.24)

where we obtained the right-most inequality by following the proof of Theorem 1 of Borovkov

(1988, p. 518–519) and using the notation

∆n,m = E

(
m∑
j=1

E∗
(
g1(ζj,n,m)

)
1Dn,m

)

with g1(x) = min{|x|, x2}. Furthermore, following Borovkov (1988, inequality (3), p. 517), we

have

∆n,m ≤ τ
m∑
j=1

E
(
E∗
(
|ζj,n,m|

)
1Dn,m

)
+

m∑
j=1

E
(
E∗
(
|ζj,n,m|1[τ,∞)(|ζj,n,m|)

)
1Dn,m

)

for every τ ∈ (0, 1). Hence, due to bound (3.24), statement (3.22) holds if

m∑
j=1

E
(
E∗
(
|ζj,n,m|

)
1Dn,m

)
= O(1) (3.25)

and, for every τ ∈ (0, 1),

m∑
j=1

E
(
E∗
(
|ζj,n,m|1[τ,∞)(|ζj,n,m|)

)
1Dn,m

)
= o(1). (3.26)

Note that the left-hand side of equation (3.25) is equal to the left-hand side of equation (3.26)

if we set τ = 0. This explains why we next temporarily shift from τ ∈ (0,∞) to τ ∈ [0,∞).
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To prove statements (3.25) and (3.26), we define the aforementioned event Dn,m as follows:

Dn,m :=

{
G−1
n (p) > G−1(p− δm)

}
∩
{

1

n

n∑
i=1

|Xi|1(G−1
n (p),∞)(Yi) ≤ Λ

}
,

where Λ ∈ (0,∞) is a sufficiently large constant that ensures condition (3.23); see Lemma 4.1

(statement (4.2) with c1 = 0 and c2 = 1) and Lemma 4.7. Then, for every τ ∈ [0, 1),

E∗
(
|ζj,n,m|1[τ,∞)(|ζj,n,m|)

)
1Dn,m

=
1

mn

n∑
k=1

(∣∣∣Xk1(G−1
n (p),∞)(Yk)−

1

n

n∑
i=1

Xi1(G−1
n (p),∞)(Yi)

∣∣∣
× 1[mτ,∞)

(∣∣∣Xk1(G−1
n (p),∞)(Yk)−

1

n

n∑
i=1

Xi1(G−1
n (p),∞)(Yi)

∣∣∣))1Dn,m

≤ 1

mn

n∑
k=1

|Xk|1(G−1
n (p),∞)(Yk)1[mτ−Λ,∞)

(
|Xk|1(G−1

n (p),∞)(Yk)
)
1Dn,m

+
Λ

mn

n∑
k=1

1[mτ−Λ,∞)

(
|Xk|1(G−1

n (p),∞)(Yk)
)
1Dn,m

≤ 1

mn

n∑
k=1

|Xk|1(G−1(p−δm),∞)(Yk)1[mτ−Λ,∞)

(
|Xk|1(G−1(p−δm),∞)(Yk)

)
+

Λ

mn

n∑
k=1

1[mτ−Λ,∞)

(
|Xk|1(G−1(p−δm),∞)(Yk)

)
. (3.27)

We next show that the just derived inequality implies statements (3.25) and (3.26), for which

we again resume considering the cases τ = 0 and τ ∈ (0,∞) separately.

To prove statement (3.25), we set τ = 0 in inequality (3.27) and have

m∑
j=1

E
(
E∗
(
|ζj,n,m|1Dn,m

))
≤

m∑
j=1

E
(

1

mn

n∑
k=1

|Xk|1(G−1(p−δm),∞)(Yk)

)
+ Λ

= E
(

1

n

n∑
k=1

|Xk|1(G−1(p−δm),∞)(Yk)

)
+ Λ

= E
(
|X|1(G−1(p−δm),∞)(Y )

)
+ Λ. (3.28)

The right-hand side is finite for all sufficiently large m, due to condition (C1). This establishes

statement (3.25).

17



To prove statement (3.26), we set any τ ∈ (0,∞) in inequality (3.27) and have

m∑
j=1

E
(
E∗
(
|ζj,n,m|1[τ,∞)(|ζj,n,m|)1Dn,m

))

≤ E
(

1

n

n∑
k=1

|Xk|1(G−1(p−δm),∞)(Yk)1[mτ−Λ,∞)

(
|Xk|1(G−1(p−δm),∞)(Yk)

))
+ E

(
Λ

n

n∑
k=1

1[mτ−Λ,∞)

(
|Xk|1(G−1(p−δm),∞)(Yk)

))
= E

(
|X|1(G−1(p−δm),∞)(Y )1[mτ−Λ,∞)

(
|X|1(G−1(p−δm),∞)(Y )

))
+ ΛE

(
1[mτ−Λ,∞)

(
|X|1(G−1(p−δm),∞)(Y )

))
. (3.29)

No matter what the (fixed) value of Λ ∈ (0,∞) is, the right-most side of bound (3.29)

converges to 0 when m → ∞ because E
(
|X|1(G−1(p−δ),∞)(Y )

)
< ∞ for some δ > 0. Hence,

statement (3.26) holds. This, in turn, completes the proof of statement (3.22) and establishes

Statement 3.2. Theorem 2.1 is proved.

4 Auxiliary lemmas

Throghout this section, we frequently use the notation

κn =
√
n sup
x∈R

∣∣Gn(x)−G(x)
∣∣

as well as the DKW inequality (Dvoretzky et al., 1956; Massart, 1990), according to which

the bound

P
(
κn > L

)
≤ 2e−2L2

(4.1)

holds for every L ∈ (0,∞).

Lemma 4.1. If conditions (C2) and (C3) are satisfied, then, for all real constants c1 < c2 and

when n ∧m→∞, we have

P
(
G−1
n (p− c1δm) ≤ G−1(p− c2δm)

)
→ 0 (4.2)

and

P
(
G−1
n (p+ c1δm) > G−1(p+ c2δm)

)
→ 0. (4.3)
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Proof. We have

P
(
G−1
n (p− c1δm) ≤ G−1(p− c2δm)

)
= P

(
p− c1δm ≤ Gn(G−1(p− c2δm))

)
≤ P

(
p− c1δm ≤ G(G−1(p− c2δm)) + κn/

√
n
)

≤ P
(
κn ≥ (c2 − c1)

√
nδm

)
, (4.4)

where we used condition (C2) to have G(G−1(p − c2δm)) = p − c2δm for all sufficiently large

m. The right-hand side of bound (4.4) converges to 0 due to DKW inequality (4.1) and

(c2 − c1)
√
nδm →∞. This establishes statement (4.2).

Furthermore, we have

P
(
G−1
n (p+ c1δm) > G−1(p+ c2δm)

)
= P

(
p+ c1δm > Gn(G−1(p+ c2δm))

)
≤ P

(
p+ c1δm > G(G−1(p+ c2δm))− κn/

√
n
)

≤ P
(
κn > (c2 − c1)

√
nδm

)
, (4.5)

where we used condition (C2) to have G(G−1(p + c2δm)) = p + c2δm for all sufficiently large

m. The right-hand side of bound (4.5) converges to 0 due to DKW inequality (4.1) and (c2−
c1)
√
nδm →∞. This establishes statement (4.3) and completes the proof of Lemma 4.1.

Lemma 4.2. If conditions (C2) and (C3) are satisfied, then, when n ∧m→∞,

P
(
Gn(G−1

n (p)) ≥ p+ 0.25δm

)
→ 0.

Proof. By Lemma 4.1 (statement (4.3) with c1 = 0 and c2 = 0.1) we have

P
(
G−1
n (p) > G−1(p+ 0.1δm)

)
→ 0.

Therefore,

P
(
Gn(G−1

n (p)) ≥ p+ 0.25δm

)
≤ P

(
Gn(G−1

n (p)) ≥ p+ 0.25δm, G
−1
n (p) ≤ G−1(p+ 0.1δm)

)
+ o(1)

≤ P
(
Gn(G−1(p+ 0.1δm)) ≥ p+ 0.25δm

)
+ o(1)

≤ P
(
G(G−1(p+ 0.1δm)) ≥ p+ 0.25δm − κn/

√
n
)

+ o(1)

= P
(
κn ≥ 0.15

√
nδm

)
+ o(1).
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By DKW inequality (4.1), the right-hand side converges to 0 because
√
nδm → ∞. This

establishes Lemma 4.2.

Lemma 4.3. If conditions (C2) and (C3) are satisfied, then, when n ∧m→∞,

P
(
Gn(G−1

n (p+ δm)) ≤ p+ 0.75δm

)
→ 0.

Proof. By Lemma 4.1 (statement (4.2) with c1 = −1 and c2 = −0.9), we have

P
(
G−1
n (p+ δm) ≤ G−1(p+ 0.9δm)

)
→ 0.

Therefore,

P
(
Gn(G−1

n (p+ δm)) ≤ p+ 0.75δm

)
≤ P

(
Gn(G−1

n (p+ δm)) ≤ p+ 0.75δm, G
−1
n (p+ δm) > G−1(p+ 0.9δm)

)
+ o(1)

≤ P
(
Gn(G−1(p+ 0.9δm)) ≤ p+ 0.75δm

)
+ o(1)

≤ P
(
G(G−1(p+ 0.9δm)) ≤ p+ 0.75δm + κn/

√
n
)

+ o(1)

= P
(
κn ≥ 0.15

√
nδm

)
+ o(1).

The right-hand side converges to 0 because of DKW inequality (4.1) and
√
nδm → ∞. This

establishes Lemma 4.3.

Lemma 4.4. If conditions (C2) and (C3) are satisfied, then, for every L ∈ R and when

n ∧m→∞,

P
(√

m
(
p−Gn(G−1

n (p− δm)
)
≤ L

)
→ 0.

Proof. By Lemma 4.1 (statement (4.3) with c1 = −1 and c2 = −0.5), we have

P
(
G−1
n (p− δm) > G−1(p− 0.5δm)

)
→ 0.
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Hence,

P
(
Gn(G−1

n (p− δm)) ≥ p− L/
√
m
)

≤ P
(
Gn(G−1

n (p− δm)) ≥ p− L/
√
m,G−1(p− 0.5δm) ≥ G−1

n (p− δm)
)

+ o(1)

≤ P
(
Gn(G−1(p− 0.5δm)) ≥ p− L/

√
m
)

+ o(1)

≤ P
(
G(G−1(p− 0.5δm)) ≥ p− L/

√
m− κn/

√
n
)

+ o(1)

≤ P
(
κn ≥ 0.5

√
nδm − L

√
n/m

)
+ o(1)

≤ P
(
κn ≥ 0.5

√
n
(
δm − L

√
1/m

))
+ o(1),

where we used condition (C2) to have G(G−1(p− 0.5δm)) = p− 0.5δm for all sufficiently large

m. The right-hand side of the above bound converges to 0 because of DKW inequality (4.1)

and
√
nδm →∞. This establishes Lemma 4.4.

The following lemma is a bootstrap-version of statement (4.3), which we shall later need

for establishing Lemma 4.6.

Lemma 4.5. If conditions (C2) and (C3) are satisfied, then, for all real constants c1 < c2 and

when n ∧m→∞, we have

E
(
P∗
(

(G∗m)−1(p+ c1δm) > G−1(p+ c2δm)
))
→ 0.

Proof. We have

P∗
(

(G∗m)−1(p+ c1δm) > G−1(p+ c2δm)
)

= P∗
(
p+ c1δm > G∗m(G−1(p+ c2δm))

)
≤ P∗

(
p+ c1δm > G(G−1(p+ c2δm))− 1√

m
κ∗n,m −

1√
n
κn

)
≤ P∗

(
κ∗n,m +

√
m

n
κn > (c2 − c1)

√
mδm

)
,

where we used condition (C2) to have G(G−1(p + c2δm)) = p + c2δm for all sufficiently large

m. Hence,

E
(
P∗
(

(G∗m)−1(p) > G−1(p+ δm)
))
≤ E

(
P∗
(
κ∗n,m +

√
m

n
κn > (c2 − c1)

√
mδm

))
.
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To prove that the right-hand side converges to 0, we use DKW inequalities (3.17) and (4.1),

and also the fact that (c2 − c1)
√
mδm →∞. This finishes the proof of Lemma 4.5.

Lemma 4.6. If conditions (C2) and (C3) are satisfied, then, for every L ∈ R and when

n ∧m→∞,

E
(
P∗
(√

m
(
G∗m((G∗m)−1(p))−Gn(G−1

n (p+ δm))
)
≥ L

))
→ 0.

Proof. We have

G∗m((G∗m)−1(p))−Gn(G−1
n (p+ δm)) = G∗m((G∗m)−1(p))−Gn((G∗m)−1(p))

+Gn((G∗m)−1(p))−G((G∗m)−1(p))

+G((G∗m)−1(p))−G(G−1
n (p+ δm))

+G(G−1
n (p+ δm))−Gn(G−1

n (p+ δm))

≤ G((G∗m)−1(p))−G(G−1
n (p+ δm))

+
1√
m
κ∗n,m +

2√
n
κn.

Hence,

E
(
P∗
(√

m
(
G∗m((G∗m)−1(p))−Gn(G−1

n (p+ δm))
)
≥ L

))
≤ E

(
P∗
(√

m
(
G((G∗m)−1(p))−G(G−1

n (p+ δm))
)

+ κ∗n,m + 2

√
m

n
κn ≥ L

))
.

To prove that the right-hand side converges to 0, we use DKW inequalities (3.17) and (4.1),

and in this way reduce the problem to showing

E
(
P∗
(√

m
(
G((G∗m)−1(p))−G(G−1

n (p+ δm))
)
≥ L

))
→ 0. (4.6)

By Lemma 4.1 (statement (4.2) with c1 = −1 and c2 = −0.75), we have

P
(
G−1
n (p+ δm) ≤ G−1(p+ 0.75δm)

)
→ 0, (4.7)

and by Lemma 4.5 (with c1 = 0 and c2 = 0.5), we have

E
(
P∗
(

(G∗m)−1(p) > G−1(p+ 0.5δm)
))
→ 0. (4.8)
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Therefore, statement (4.6) follows because, due to condition (C2) and
√
mδm → ∞, the

inequality
√
m
(
G(G−1(p+ 0.5δm))−G(G−1(p+ 0.75δm))

)
≥ L (4.9)

is never satisfied for all sufficiently large m. This completes the proof of Lemma 4.6.

Lemma 4.7. If conditions (C1) and (C2) are satisfied, then, for every constant Λ > 0 such

that

Λ > E
(
|X|1(G−1(p),∞)(Y )

)
,

we have, when n ∧m→∞,

P

(
1

n

n∑
i=1

|Xi|1(G−1
n (p),∞)(Yi) > Λ

)
→ 0.

Proof. This is an immediate consequence of Gribkova et al. (2022) who proved that the empir-

ical TCA is a consistent estimator of the population TCA under conditions (C1) and (C2).
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