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Abstract

The classical Yaari (1965) lifecycle model (LCM) lies at the very heart of much modern retirement

research generally, and the economic understanding of annuity demand particularly. The LCM predicts

a high annuity demand among individuals facing retirement, yet it is rarely the case in reality. The

disconnection between economic theory and practice—widely known as the annuity puzzle—has spurred

intensified research attempting to demystify the economic and behavioral underpinnings.

In this paper, we examine the cause of low annuity demand through the angle of mortality model

uncertainty. To this end, we advance Yaari’s LCM via incorporating with a mortality perturbation

analysis. We obtain the optimal robust consumption rule and the annuity equivalent wealth. We

find that investors may understate the incremental utility gained by annuitization if mortality model

uncertainty is disregarded.
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1 Introduction

Owing to the growing public concern on retirement funding inadequacy, retirement planning has become

a very active research area during recent decades. A constant focus has been placed on studying about

how retirees should wisely drawdown their retirement nest eggs in order to maintain the standard of living

in retirement. Toward this aim, researchers resort to the rational economic theory and seek the optimal

blueprint for guiding retirees’ saving and consumption behaviors. Originally postulated in Fisher (1930)

under the assumption of deterministic time horizon and then refined by Yaari (1965) to a stochastic

lifetime, the lifecycle model (LCM) of consumption has evolved as the building block of much modern

retirement research. Namely, Yaari (1965) derived the optimal consumption rule for a utility-maximizing

retiree who has no bequest motive and faces a stochastic time of death. Under an additively separable

utility function, Yaari’s (1965) analysis suggested that a rational investor should convert all the savings

into an actuarially fair annuity upon retirement. Later on, rigorous analysis by Davidoff et al. (2005)

showed that Yaari’s (1965) conclusion remains valid even when most of the economic assumptions are

relaxed.

Though economic theory predicts a high annuity demand, this is rarely the case in reality. Very few

consumers facing retirement choose to annuitize a substantial portion of their retirement savings (Benartzi

et al., 2011). This disparity between theory and the actual consumers’ behavior, commonly referred

to as the annuity puzzle, has spurred intensified research attempting to demystify the economic and

behavioral underpinnings. Several explanations of the annuity puzzle have been proposed, which include

low retirement savings amongst the population (Dushi and Webb, 2004), decreased asset liquidity (Pang

and Warshawsky, 2010; Peijnenburg et al., 2017), lack of bequest motive (Lockwood, 2012), incomplete

annuity market (Horneff et al., 2008; Koijen et al., 2011), unfair annuity pricing (Mitchell et al., 1999),

and default risk of the annuity providers (Agnew et al., 2008), to name but only a few. It is fair to argue

that none of the existing explanations have been shown to fully account for the low annuity demand in

reality. However, the aforementioned studies together essentially benefit us to better understand the issue

from different angles.

This paper bears another effort to unravel the annuity puzzle via the angle of mortality model un-

certainty. With all the other complexities involved in retirement planning, the assessment of retiree’s

future mortality pathway plays a decisive role in the decision-making process. Unexpected deviations of
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the actual mortality evolution from the mortality model’s prediction may pose a substantial influence on

the lifespan discounted utility, turning the original model implied optimal strategy to be inferior. Never-

theless, modeling the individual mortality is notoriously hard from the statistical standpoint. Different

than the objective mortality model which can be estimated from the population data, the micro-structure

of the subjective mortality is extremely complicated and is closely related to the retiree’s occupation,

wealth, life style, and other socioeconomic determinants (Hurd and McGarry, 1995, 2002). To develop an

effective retirement strategy, the subjective mortality model should be “best-estimated” using available

data, while we also have to be mindful of the model risk associated with the best-estimated model.

In this paper, we treat the uncertainty surrounding the subjective mortality model as a robust control

problem. That is, in addition to the best-estimated reference mortality model, we should consider an

alternative set of statistically similar mortality models, among which we solve the retirement planning

problem based on the so-called endogenous worst-case mortality scenario. Consequently, the consump-

tion strategy obtained in our study will remain desirable even when the best-estimated mortality model

performs inadequately. As a side note, in behavioral economics, an investor’s fear of the uncertainty

in the estimated probability distributions of future outcomes, is referred to as ambiguity aversion. In

the context of this current paper, mortality ambiguity aversion represents a retiree’s concern about the

mortality model’s misspecification. If a retiree has no mortality ambiguity aversion, that means the re-

tiree would ignore the uncertainty surrounding the mortality model and fully trust the best-estimated

mortality curve.

1.1 Summary of the contributions and findings

Our paper makes both technical and economic contributions. In terms of the technical contributions, we

extend the classical Yaari’s LCM in two innovative aspects. First, we integrate a perturbation analysis

into the study of Yaari’s LCM and obtain the optimal consumption policy that is robust to mortality

model uncertainty. Both the complete annuity market and complete bond market are considered, and

under the endogenous worst-case mortality scenario, we calculate the annuity equivalence wealth (AEW)

which quantifies the incremental welfare gained by annuitization. Second, we generalize the additive

utility considered in Yaari’s LCM to the more general Epstein-Zin recursive utility (Duffie and Epstein,

1992). Particularly, recent retirement studies based on Yaari’s LCM often assume the constant relative

risk aversion (CRRA) utility. It is known that the CRRA utility restricts the risk aversion parameter
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to be the reciprocal of the elasticity of intertemporal substitution (EIS) parameter. However, these two

parameters characterize very distinct features of retiree’s preferences. The adoption of recursive utility in

our study allows us to distinguish the coefficient of relative risk aversion from the EIS parameter. It will

be interesting to study the roles of these two different risk preference parameters that play in determining

the retiree’s perception about mortality model uncertainty, the optimal consumption policy, and AEW.

Capitalizing on the extended LCM described above, we obtain the following economic findings. First,

we discover that compared with the best-estimated mortality model, the worst-case mortality scenario

obtained in the robust control analysis can be a deteriorate or improved mortality trajectory, depending on

the value of the EIS parameter. If the EIS coefficient is smaller than one, which is prevalent as suggested

by Yogo (2004), then the worst-case mortality scenario corresponds to an improved mortality trajectory,

or equivalently a longevity risk scenario in retirement planning. This is a rather non-trivial yet appealing

finding. It reveals that the recent retirement literature focusing on longevity risk is also meaningful from

the mortality model uncertainty standpoint. Moreover, the worst-case perturbed mortality model is a

proportional shift of the best-estimated reference mortality curve. This type of transform, also known

as the proportional hazard distortion in Wang (1996), is often used in actuarial practice to examine

the sensitivity of mortality assumptions, perhaps mainly because of its inherent simplicity. As a by-

product, our study shows that the choice of proportional shock in sensitivity analysis is indeed sufficiently

conservative for covering the worst-case mortality scenario in the sense of mortality model uncertainty.

Second, by comparing the optimal consumption policies between retirees with and without mortality

ambiguity aversion, we show rigorously that the presence of mortality ambiguity aversion increases the

value of AEW for retirees having EIS coefficient smaller than one. In other words, if mortality model

uncertainty is ignored, then the actual economic welfare gained by annuitization may be understated. We

believe that this is a new behavioral explanation to the enduring economic puzzle on low annuity demand.

We note that another similar stream of recent studies on optimal annuity (and tontine) demand

attack the mortality model uncertainty problem via mortality shocks that obey a parametric law (e.g.,

Chen et al., 2019, 2021, 2020). Specifically, they assume that the true state of the mortality model

is shocked by a known random variable (RV) which is exogenous in the annuity demand problem and

has a prior probability distribution. Another application of this mortality shock approach is for pricing

mortality-linked securities (Chen et al., 2019). The robust control approach adopted by our paper contains

mortality/longevity shocks that are determined endogeneously by a perturbation analysis, thus it is
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strikingly different from the aforementioned mortality shock approach.

It is noteworthy that Shen and Su (2019) studied the implications of models’ uncertainty in a life-

cycle asset allocation problem. However, this current paper should not be viewed as just a special case

of Shen and Su (2019), and they are different in the following three major aspects. First, the focuses

of the two papers are different. Namely, Shen and Su (2019) aimed to study the life-cycle optimal

consumption-investment-insurance strategies under economics and mortality models uncertainty. To this

end, they considered a substantially more complicated asset allocation model in order to mimic the real

life actuarial and economic environments as realistic as possible. As such, intensive numerical analysis

must be adopted to study the associated economic implications. In this paper, we aim to understand

the implications of mortality model uncertainty on the annuity puzzle. Hence, we focus on Yaari’s LCM

which originally gave rise to the annuity puzzle. The inherent elegance of Yaari’s LCM greatly benefits

us to establish the relationship between mortality ambiguity aversion and annuity value. Almost all the

results we obtain in this paper are explicit and very intuitive to interpret. Second, we calculate the AEW

based on the proposed extended LCM, which promotes the major argument that we aim to convey via

this paper. There was no investigation related to the AEW in Shen and Su (2019). Third, Shen and

Su (2019) assumed the CRRA utility and showed that the worst-case mortality scenario is an improved

(resp. deteriorated) mortality case if the relative risk aversion parameter is smaller (resp. greater) than

one. In this paper, we consider the more general Epstein-Zin recursive utility. In so doing, we discover

that the determinant of the worst-case mortality scenario is the EIS parameter but not the relative risk

aversion parameter.

The annuity puzzle under ambiguous life expectancy was studied in Han and Hung (2021) based on

the robust control approach. Their mathematical framework is similar to that of Shen and Su (2019),

so our current paper is different from Han and Hung (2021) in at least the same aspects mentioned in

the previous paragraph. In addition, instead of the optimal annuity purchase considered in Han and

Hung (2021), our current paper attacks the annuity puzzle problem via the notion of AEW which has the

merit of conciseness and transparency in communicating the utility increment coming from annuitization

(Bernard et al., 2021; Milevsky and Huang, 2018). Further, the utility function considered in Han and

Hung (2021) is restricted to be positive, while we consider both positive and negative utility function. Our

study finds that the sign of utility function indeed plays a very important role in studying the relationship

between mortality model uncertainty and annuity value.
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The rest of this paper is organized as follows. After a recap of the original Yaari’s LCM in Section

2, we introduce the proposed extended LCM in Section 3. Section 4 derives the optimal consumption

strategy and AEW with discussions about the associated economic implications. A numerical illustration

is presented in Section 5. Section 6 concludes the paper. In order to facilitate the reading, all technical

proofs are relegated to Appendix A. Throughout, we consider a probability space (Ω,F ,P) satisfying the

usual conditions, in which P is a reference probability measure.

2 A recap of Yaari’s lifecycle model

Before putting our paper into perspective, this section provides a coarse review of the economic logic

behind Yaari’s (1965) argument about full annuitization. Consider a rational retiree aged y at time 0.

Non-negative RV τy denotes the retiree’s remaining lifespan, with λy+t being the corresponding subjective

force of mortality at time t ≥ 0. The survival probability function of τy can be computed via

tpy := P(τy > t) = exp

(
−
∫ t

0
λy+sds

)
. (1)

Suppose that the retiree does not have any bequest motive, and neither is willing (or able) to invest

in the stock market. As a matter of choice, the retiree can either invest the retirement savings in a bond

or an annuity, and then fully consume the payment generated from the holdings. In a complete annuity

(CA) market which refers to the availability of a complete set of annuities at actuarially fair prices and

any maturities, the rational retiree will convert all the retirement savings into an annuity. An initial

retirement saving of x0 > 0 can support a stream of annuity payments described by a function of time

cA : R+ → R+, such that

x0 = E
[ ∫ τy

0
e−rscA(s)ds

]
=

∫ ∞
0

e−rs spy cA(s) ds =

∫ ∞
0

e−
∫ s
0 (r+λy+u)du cA(s) ds, (2)

where r > 0 denotes the instantaneous risk-free interest rate. The time-t actuarial present value of the

future annuity payments can be evaluated via

XA(t) = Et
[ ∫ τy

t
e−r(s−t) cA(s) ds

]
=

∫ ∞
t

e−
∫ s
t (r+λy+u)du cA(s) ds, (3)
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which satisfies the following differential equation:

dXA(t) =
(
(r + λy+t)XA(t)− cA(t)

)
dt, XA(0) = x0. (4)

Without other means of living, the retiree’s wealth trajectory is exactly {XA(t)}t≥0. Here and thereafter,

the subscript “A” attached to the payout function and wealth process is used to emphasize the CA market

assumption. (Similarly, we should use subscript “B” to spell out the complete bond market condition

that will be introduced in a moment.)

For γ > 0 and c > 0, let u(c) = c1−γ/(1− γ) denote the CRRA utility of consumption1 (when γ = 1,

the utility function can be understood as u(c) = log c). The rational retiree will choose an annuity payout

for which c(·) maximizes the discounted lifetime utility over consumption:

E
[ ∫ τy

0
e−ρs u

(
c(s)

)
ds

]
=

∫ ∞
0

e−
∫ s
0 (ρ+λy+u) du × c(s)1−γ

1− γ
ds, (5)

where ρ > 0 is the subjective discount rate which may or may not be equal to the risk-free interest rate.

The optimal annuity payout function, or equivalently the optimal consumption path, is solved to be

c∗A(t) = x0 ×
[

exp
(
− t (ρ− r)

)]1/γ∫∞
0 tpy

[
exp(−ρ s) exp(−r s)γ−1

]1/γ
ds
. (6)

In analogy to the CA market, it is the complete bond (CB) market wherein pure discount bonds are

available for all maturities, but annuities are absent. Thus, the retiree has to rely on bonds as the only

means of investment. In this case, we denote the bond payout function by cB : R+ → R+, which satisfies

the budget constraint:

x0 =

∫ ∞
0

e−rs cB(s) ds. (7)

The evolution of the corresponding wealth trajectory is given by

dXB(t) =
(
rXB(t)− cB(t)

)
dt, XB(0) = x0.

1The LCM considered in Yaari (1965) assumed a more general additive utility, but the choice of CRRA utility in our
paper simplifies the presentation.

7



The rational retiree will base on the same objective function (5) to derive the optimal consumption path

which is computed via

c∗B(t) = x0 ×
[
tpy exp

(
− t (ρ− r)

)]1/γ∫∞
0

[
tpy exp(−ρ s) exp(−r s)γ−1

]1/γ
ds
. (8)

When γ > 1, then c∗A(t)/X∗A(t) ≥ c∗B(t)/X∗B(t) for all t > 0, where X∗A and X∗B denote the wealth

processes associated with the optimal consumption rules c∗A and c∗B, respectively. The above inequality

implies that by annuitization, the optimal consumption rate out of the present wealth is higher at all

time when the retiree is alive, which leads to the conclusion that the rational retiree should convert all

the retirement savings into an annuity upon retirement.

The difference between AEW and x0 captures the amount of extra initial wealth needed to compensate

the absence of annuity in the CB market compared to the CA market. Formally, AEW is defined through

VA
(
x0

)
= VB

(
AEW

)
,

where for “�” being either “A” or “B”,

V�(x) = E
[ ∫ τy

0
e−ρs u

(
c∗�(s)

)
ds

]
=

∫ ∞
0

e−
∫ s
0 (ρ+λy+u) du × c∗�(s)1−γ

1− γ
ds, x0 = x,

denotes respectively the discounted lifetime consumption utility function following the optimal consump-

tion rules (6) and (8), or equivalently, the value functions of the two optimization problems under the CA

and CB markets. Under Yaari’s LCM, the AEW is given by

AEW = x0 ×

[∫∞
0

[
tpy exp(−ρ s) exp(−r s)γ−1

]1/γ
ds∫∞

0 tpy
[

exp(−ρ s) exp(−r s)γ−1
]1/γ

ds

] γ
γ−1

> x0, for all γ > 0,

which means that the retiree would need a larger amount of initial retirement wealth in the CB market

in order to achieve the same level of utility as in the CA market.
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3 Formulation of the extended LCM with mortality model uncertainty

As mentioned in the introduction, we aim to advance Yaari’s (1965) LCM along two directions, namely

recursive utility and mortality model uncertainty. We start off by introducing a continuous-time version

of the Epstein-Zin recursive utility (Duffie and Epstein, 1992; Gârleanu and Panageas, 2015) to model

the retiree’s preferences. For any t > 0, define the actuarial subjective discount factor αt = ρ+ λy+t, and

let J(t) be the discounted future utility at time t. The recursive utility is defined via

J(t) = Et
[ ∫ ∞

t
f
(
αs, c(s), J(s)

)
ds

]
, (9)

where c(·) denotes the consumption function, Et[·] denotes the conditional expectation given the filtration

Ft, and

f(α, c, v) =
(1− γ) v

1− 1/φ

( c(
(1− γ)v

) 1
1−γ

)1−1/φ

− α

 for α, c, v > 0, (10)

is known as the normalized aggregator of consumption and utility. In Equation (10), γ > 0 is the relative

risk aversion coefficient which measures the retiree’s aversion against consumption fluctuations due to the

future random state, and φ > 0 is the EIS coefficient which measures the aversion against consumption

fluctuations over time in a deterministic world. This spells out the merit of adopting the recursive utility

over the CRRA utility in that the retiree’s preferences over the timing of the resolution of uncertainty

is disentangled from risk aversion, so that we can study the implications of the two risk parameters

separately.

It is noted that the recursive utility specified in (9) actually includes the CRRA utility as a special

case. This is summarized in the following remark.

Remark 1. If φ = 1/γ, then the aggregator defined in Equation (10) becomes

f(α, c, v) =
c1−γ

1− γ
− αv,

and the recursive discounted utility (9) reduces to

J(t) = Et
[ ∫ ∞

t
e−

∫ s
t αudu × c(s)1−γ

1− γ
ds

]
, (11)
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which coincides with the CRRA discounted utility (5) considered in Section 2. Note that different than

the CRRA utility, the recursive utility is not necessarily additive.

Next we turn to specify a set of plausible probability measures to account for the mortality model

uncertainty. Following the mortality perturbation approach proposed in Shen and Su (2019), for any

t > 0, we introduce an Ft-predictable process θ(t) > 0 to be chosen endogenously by the retiree for

adjusting the reference subjective mortality model. Consider an equivalent probability measure Q which

is defined via the Radon–Nikodým derivative:

dQ
dP

∣∣∣∣
Ft

= exp

{∫ t∧τy

0

[
log(θ(s))− θ(s) + 1

]
λy+s ds+

∫ t

0
log(θ(s)) dZ(s)

}
, (12)

where Z(s) := 1{τy≤s} −
∫ s

0 1{τy>u} λy+u du is a martingale associated with the single jump process

1{τy≤s}. By Girsanov’s Theorem, from P to Q, the subjective force of mortality is perturbed from λy+t

to λQy+t = θ(t)λy+t, t > 0. Hence, we refer to Q as the perturbed measure and θ(·) as the mortality

perturbation function. The survival probability function of τy under the perturbed measure Q can be

computed similarly as (1), but with the force of mortality replaced by θ(t)λy+t. That is,

tp
Q
y := Q(τy > t) = exp

(
−
∫ t

0
θ(s)λy+sds

)
. (13)

The perturbation function θ(t) controls the difference between the alternative model and the reference

model at each time t > 0. To quantify the overall discrepancy, the relative entropy is a commonly used

statistical measure of distance, suitable for robust control problems. In the context of this current paper,

the relative entropy between the perturbed mortality model and the best-estimated reference mortality

model can be computed via

D
(
Q |P

)
= EQ

t

[
log

(
dQ
dP

∣∣∣∣
Ft

)]
= EQ

[ ∫ t∧τy

0

[
log(θ(s))− θ(s) + 1

]
λy+sds+

∫ t

0
log(θ(s))dZ(s)

]
= EQ

[ ∫ t∧τy

0

[
θ(s) log(θ(s))− θ(s) + 1

]
λy+sds+

∫ t

0
log(θ(s))dZQ(s)

]
= EQ

[ ∫ t∧τy

0

[
θ(s) log(θ(s))− θ(s) + 1

]
λy+sds

]
.
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For notational convenience, define

g(θ) := θ log θ − θ + 1, θ > 0,

then we can write

D(Q |P) = EQ
[ ∫ t∧τy

0
g
(
θ(s)

)
λy+sds

]
. (14)

The g(θ) function is an infinitesimal generator quantifying the distance between the two probability

measures. It is straightforward to check that g(1) = 0 and g′(θ) = log θ, so if θ(t) ≡ 1, then the perturbed

mortality model coincides with the reference mortality model, and so the relative entropy D = 0. For

θ1 and θ2 both smaller than or both greater than one, if |θ1(t) − 1| > |θ2(t) − 1| for all t > 0, then the

perturbed mortality curve associated with θ1 is farther away from the reference mortality curve than that

associated with θ2, so the corresponding entropy satisfies D1 > D2.

The discussion above is about how to construct a set of alternative mortality models to be considered

by the retiree. Another important question is how large the set of alternative mortality models should

be. The answer to this question is not unique, but a widely-accepted principle is that alternative models

should not be statistically too far away from the reference model which has been best estimated, and

those alternative models that are statistically hard-to-be-distinguished from the reference model should

be considered more seriously. The penalty approach employed in the literature, such as Maenhout (2004,

2006) and Shen and Su (2019), reflects the aforementioned principle. One can also refer to Lin and Riedel

(2021) for an alternative setting of optimal investment and consumption problems with ambiguity, in

which no penalty function is involved.

Formally, given the consumption function c(·) and perturbation function θ(·), we specify a penalty

term incurred to the retiree’s discounted utility such that

J(t) = EQ
t

[ ∫ ∞
t

f
(
αs, c(s), J(s)

)
ds

]
+

1

ψ
× Γ(t, θ), t > 0, (15)

where ψ > 0 is the robustness preference parameter indicating the extent of the retiree’s concern about
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the mortality model uncertainty, and

Γ(t, θ) = EQ
t

[ ∫ ∞
t

(1− γ) J(s) g
(
θ(s)

)
λy+sds

]

can be viewed as a scaled counterpart of the relative entropy given in (14). The scaling factor (1−γ) J(s)

is included in the penalty term mainly for an analytic tractability reason. With a fixed ψ, a perturbed

model that is farther away from the reference model will cause a larger penalty to the utility, thus

the perturbed model is less likely to be accepted by the retiree. Meanwhile, the robustness preference

parameter ψ controls the set of alternative mortality models that the retiree is willing to consider. Namely,

as ψ increases, the penalty term becomes smaller even for those alternative models that are significantly

different from the reference model, so the acceptable set of alternative mortality models expands. In

other words, a more ambiguity averse retiree having a high robustness preference ψ, will put less faith on

the reference model and consider more diverse alternative mortality models that possess larger relative

entropy. When ψ = 0, any deviation from the reference model will add an infinitely large penalty to the

utility. Hence in this case, the retiree has no ambiguity aversion and fully trusts the reference mortality

model. This case corresponds to Yaari’s LCM under the recursive utility but without mortality model

uncertainty.

Given the mortality perturbed measure and recursive utility, the robust decision problem faced by the

retiree can be formulated in terms of the following two contemporaneous courses of action. In one course of

action, from the pool of plausible mortality models, the retiree seeks to identify the worst-case mortality

perturbation function θ∗(·) that is most unfavourable to the retiree’s consumption utility. In another

course of action, the retiree selects the optimal consumption policy to maximize the recursive utility

under the worst-case mortality scenario. Collectively, the value function associated with the retirement

problem of interest reads as

V (t, x) = max
c∈C

min
θ∈T

J(c, θ; t, x), t > 0 and x > 0, (16)

where J(c, θ; t, x) is the objective function defined as per (15) with (c, θ) and x = X(t) spelled out to

highlight its dependence on the controls and the initial state, C and T are the admissible spaces for

consumption and perturbation functions to be specified in Definition 1 below.
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Definition 1. A consumption function c(t) is said to be admissible if

• c(t) ≥ 0, for all t > 0;

•
∫∞

0 c(s)ds <∞;

• the wealth process X(t) associated with c(t) stays positive over the entire planning horizon.

The space containing all admissible consumption functions is denoted by C.

Moreover, a perturbation function θ(t) is said to be admissible if

• θ(t) > 0, for all t > 0;

• Q is a well-defined probability measure equivalent to P.

The space containing all admissible perturbation functions is denoted by T.

Inspired by the original study of LCM in Yaari (1965), we consider both the CA and CB market

conditions, under which the retirement problem (16) satisfies the budget constraints specified in Equations

(2) and (7), respectively. In particular, we have a keen interest in studying the following questions:

Q1. If mortality model uncertainty is concerned, what will be the worst-case mortality scenario?

Q2. How mortality model uncertainty will influence the optimal consumption policies?

Q3. What are the implications of mortality model uncertainty on the AEW and the annuity puzzle?

4 Main results

Table 1 summaries the cases that we aim to investigate and compare in this section. Among the four

cases, Cases A and B have been studied in Yaari (1965) under the additively separable utility function,

but we extend the results to a more general recursive utility framework. The first part of this section

studies the optimal consumption policies under Case C and Case D, thus answering Questions Q1 and

Q2. The comparisons between Case A and Case C, and between Case B and Case D, are considered in

the second part of this section, which answers Question Q3.

4.1 Optimal consumption policies under mortality model uncertainty

In this section, by applying the dynamic programming principle to the max-min problem in Equation (16),

we solve the optimal consumption strategies for the retiree described in Section 3. The succeeding theorem
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Ambiguity neutral Ambiguity averse

Complete annuity market Case A Case C

Complete bond market Case B Case D

Table 1: Summary of the four different retirement cases considered in this current paper.

summarizes the main mathematical results. Recall that quantities related to the CA and CB market

conditions are distinguished by the subscripts “A” and “B”, respectively. The robustness preference

parameter ψ is specified in the optimal decision rules in order to highlight their dependencies with the

retiree’s aversion of mortality model uncertainty which is the major objective in our paper.

Theorem 1. Suppose the retirement environment as per the description in Section 3, the worst-case

perturbation function associated with the optimization problem (16) can be computed via

θ∗A(t ;ψ) = θ∗B(t ;ψ) ≡ θ∗(ψ) = exp
( ψ

1− 1/φ

)
for all t > 0,

where ψ > 0 is the robust preference parameter and φ > 0 is the EIS coefficient. The optimal robust

consumption strategies are given by

c∗�(t;ψ) = c∗�(0;ψ)× exp

{∫ t

0

[
(1−G�(ψ))λy+u − (ρ− r)φ

]
du

}
, (17)

where “�” can be either “A” or “B”, and

GA(ψ) = (1− φ) +GB(ψ), GB(ψ) = φ θ∗ +
1− φ
ψ

g(θ∗).

Moreover, the optimal initial consumption quantities can evaluated via

c∗�(0 ;ψ) =
x0

K�(ψ)
, with K�(ψ) =

∫ ∞
0

exp

(
−
∫ s

0
(β +G�(ψ)λy+u)du

)
ds, (18)

in which β = (1 − φ) r + φ ρ is the weighted average between the risk-free interest rate and subjective

discount rate.

Given the optimal robust strategies c∗� and θ∗, the value function (16) at the present time can be
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computed via

V�(0, x0 ;ψ) =
[
K�(ψ)

]− 1−γ
1−φ x1−γ

0

1− γ
,

where “�” is either “A” or “B”.

Proof. See Appendix A.

A careful inspection of the optimal strategies outlined in Theorem 1 reveals the following findings.

First, the worst-case perturbation functions are identical under the CA and CB market conditions. This

is because the optimization problems under the two market conditions differ only up to the associated

budget constraints which depend on the risk-free interest rate and the reference mortality curve, while

the worst-case perturbation functions θ∗A(·) and θ∗B(·) only depend on the EIS coefficient φ and robustness

preference parameter ψ but not the other parameters. Interestingly, the worst-case perturbation functions

are constant over time, and the optimal perturbed mortality model is given by

λ∗y+t = θ∗ × λy+t, t > 0, (19)

corresponding to a proportional shift of the best-estimated reference mortality curve. In the language of

actuarial mathematics, transformation (19) is also known as the proportional hazard distortion (Wang,

1996). The proportional transform is commonly used to test the sensitivity of mortality assumption in

retirement research (see, e.g., Han and Hung, 2021; Milevsky and Young, 2007; Shen and Su, 2019). This

type of transform is applied in earlier studies mainly because of its inherent simplicity. However, our

finding herein provides a theoretical justification for the choice of proportional shock in sensitivity tests,

which is perhaps sufficiently conservative for covering the worst-case mortality scenario, so far at least

when Yaari’s LCM is concerned.

Second, the selection of the worst-case mortality shock θ∗ depends on the interplay between the EIS

coefficient φ and the robustness preference ψ. Recall that ψ−1 determines the amount of faith that a retiree

puts on the reference model. The larger the value of ψ is, the larger the value of |θ∗−1| becomes, implying

that a retiree concerning more about model uncertainty will rationally consider the worst-case perturbed

model to be farther away from the reference model. Meanwhile, if (1 − 1/φ) < 0, or equivalently φ < 1,

then θ∗ < 1, meaning that the worst-case perturbed probability measure corresponds to an improved
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mortality scenario, and vice versa. Empirical study has already suggested that the EIS coefficient φ for

an investor is typically less than 1 (e.g., Yogo, 2004). In this sense, the longevity risk is more relevant to

the context of this current paper.

What is more, as mentioned in Remark 1, if 1/φ = γ, then the recursive utility reduces to the CRRA

utility. In this case, the worst-case mortality shock becomes

θ∗(t) = e
ψ

1−γ , t > 0. (20)

Based on a more complicated LCM, Shen and Su (2019) adopted the same penalty approach to obtain the

optimal robust consumption-investment-insurance strategies when there are both economics and mortality

models uncertainty, and the investor’s preference is depicted by the CRRA utility. Though analytical

expression is not available for θ∗(t) in their case due to the involved mathematical complexity, it is shown

in Shen and Su (2019) that θ∗(t) < 1 if the risk aversion parameter of the CRRA utility satisfies γ > 1,

and vice versa. In this sense, the implication of (20) is consistent with the finding in Shen and Su (2019).

Adopting a more general recursive utility framework in this current paper allows us to distinguish the

EIS coefficient from the risk aversion parameter. As a result, we further clarify the assertion in Shen

and Su (2019) by theorizing that, under Yaari’s LCM, whether the worst-case perturbed mortality curve

corresponds to a mortality risk scenario (i.e., θ∗ > 1) or a longevity risk scenario (i.e., θ∗ < 1) depends

solely on the EIS parameter, but not the risk aversion parameter. Our discussion thus far in this current

section answers Question Q1 posted at the end of Section 3.

Next, we focus on the optimal consumption strategies obtained in Theorem 1. Curiously, the optimal

consumption function (17) is independent of the risk aversion parameter γ of the recursive utility. To see

the reason, recall that γ captures the risk aversion against consumption fluctuations due to the uncertain

state in the future. As the retiree has converted all retirement savings into either an annuity or a bond

investment at the beginning of the planning horizon, there is no uncertainty involved in the future cash

flows as long as the retiree is alive. Meanwhile, the stochastic lifetime acts as an extra deterministic

discount factor in the expected utility optimization problem (see, Equation (3)). Consequently, the

optimal consumption strategies c∗A(·) and c∗B(·) depend only on the EIS coefficient together with other

actuarial parameters including mortality and discount rates, but not the risk aversion parameter γ.

It is also interesting to study the patterns of the optimal consumption pathways over time. The
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succeeding corollary summarizes the monotonicity property for the optimal consumption function (17).

Corollary 2. For � ∈ {A,B} and any t ≥ 0, if (1−G�(ψ))λy+t ≥ (ρ−r)φ, then the optimal consumption

function c∗�(t;ψ) is increasing in t, and vice versa.

Proof. The proof follows immediately from the expression of optimal consumption function (17).

The following lemma is of auxiliary importance in our later discussion.

Lemma 3. For all ψ > 0, the functions GA(ψ) and GB(ψ) are decreasing in ψ if the EIS φ < 1, and

increasing in ψ otherwise. Further, if φ < 1, then

1− φ ≤ GA(ψ) ≤ 1 and 0 ≤ GB(ψ) ≤ φ.

Otherwise,

1 ≤ GA(ψ) ≤ ∞ and φ ≤ GB(ψ) ≤ ∞.

Proof. See Appendix A.

Corollary 2 and Lemma 3 together imply that the optimal consumption paths may present an asym-

metric U -shaped pattern over time. For instance, if φ < 1 and ρ > r, then at the beginning of the retire-

ment phase when the force of mortality is still low, the condition of Corollary 2, (1−G�(ψ))λy+t ≤ φ (ρ−r),

is satisfied, thus the optimal consumption function may be decreasing in time. But the optimal consump-

tion will ultimately become increasing in time as the mortality rate grows during the later stage of

retirement.

The next assertion compares the optimal consumption rules between the CA market and the CB

market (i.e., Case C versus Case D in Table 1). Let π(t) = c(t)/X(t) be the consumption-to-wealth

ratio at time t > 0, which indicates the retiree’s propensity to consumption out of the present wealth.

The consumption-to-wealth ratios associated with the optimal robust strategies reported in Theorem 1

is denoted by π∗�(t ;ψ) = c∗�(t ;ψ)/X∗�(t ;ψ), where X∗�(· ;ψ) is the corresponding wealth process, � ∈

{A,B}.

Proposition 4. The following relationships hold for the optimal strategies outlined in Theorem 1:
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I. If the EIS φ

{
<

>

}
1, then π∗A(t ;ψ)

{
>

<

}
π∗B(t ;ψ) for all t > 0 and ψ > 0.

II. If the EIS φ < 1 (resp. φ > 1), then there exists a time epoch t∗ > 0 such that c∗A(t ;ψ) is greater

(resp. smaller) than or equal to c∗B(t ;ψ) for t ≤ t∗, but the inequality is reversed for t > t∗.

III. For any EIS φ > 0 and robustness preference ψ > 0, V ∗A(0, x0 ;ψ) > V ∗B(0, x0 ;ψ).

Proof. See Appendix A.

Proposition 4 answers Question Q2 posted in Section 3. Specifically, it shows that even with mortality

model uncertainty, annuitization may increase the optimal consumption rate at all times if the EIS

parameter φ < 1 which is a realistic case supported by Yogo (2004). Although there is a twisted pattern

in the comparison of the absolute consumption amounts between the CA and CB markets, the discounted

lifetime utility in consumption is always higher by annuitization.

In concluding this subsection, we report another important quantity in our study, namely the AEW

in the state of mortality model uncertainty and recursive utility.

Theorem 5. Suppose the retirement environment as per the description in Section 3. Given the initial

wealth x0 > 0, the annuity equivalent wealth can be computed via

AEW(ψ) = x0

[
KB(ψ)

KA(ψ)

]1/(1−φ)

, ψ > 0.

Proof. See Appendix A.

As mentioned earlier, the full annutization (resp. bond investment) in the CA (resp. CB) market

removes the uncertainty in the future cash flow, so the AEW does not depend on the risk aversion

parameter γ.

Remark 2. Note that the AEW reported in Theorem 5 is always greater than or equal to x0. To see why,

recall that GA(·) = (1 − φ) + GB(·), which implies GA(·) ≥ GB(·) (resp. GA(·) > GB(·)) if φ ≤ 1 (resp.

φ > 1). Thus, it always holds
[
KA(·)

]1/(1−φ) ≤
[
KB(·)

]1/(1−φ)
according to Equation (18). Speaking

plainly, the inequality means that annuitization will induce an incremental utility to the retiree even when

there is a presence of mortality ambiguity aversion.
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4.2 Implications of mortality model uncertainty

The prior section is devoted to the study of the optimal robust consumption strategies for Yaari’s LCM

equipped with the recursive utility. In this section, we proceed to study the implications of mortality

model uncertainty on the optimal consumption rules as well as the AEW.

Proposition 6. For any fixed t > 0 and � ∈ {A,B}, the optimal consumption-to-wealth ratio π∗�(t ;ψ) is

decreasing in the robustness preference parameter ψ if the EIS parameter φ < 1, or increasing otherwise.

Proof. See Appendix A.

The above result shows that when the EIS φ < 1, increasing mortality ambiguity aversion will lower

the percentage of consumption out of the present wealth at every instant, no matter whether or not

annuity is purchased. This is because if φ < 1, then the worst-case perturbation function θ∗ < 1, which

corresponds to a longevity risk scenario. Consequently, the retiree reduces the consumption rate in order

to lower the risk of outliving the retirement savings. Alternatively, if the EIS φ > 1, then the worst-case

perturbed mortality curve corresponds to a mortality risk scenario. In order to maximize the discounted

lifespan utility, the rational retiree will choose to increase the consumption ratio.

In addition to the relative consumption ratio, we are also interested in studying the impacts of mor-

tality model uncertainty on the absolute consumption amounts. Intuitively, if the robustness preference

parameter ψ changes, the optimal robust consumption rules should decrease for some t while increase

for the others, so that the budget constraint (2) or (7) can be maintained. The next assertion shows

that in the case of φ < 1 where longevity risk is more concerned, the retiree will rationally reduce the

consumption amount at the beginning of the retirement phase so as to keep more savings for the future.

In another case where the EIS parameter φ > 1 and thus mortality risk is concerned, then the rational

retiree will choose to increase the consumption amount at the beginning of the retirement phase so as to

make sure that a desirable level of consumption utility can be gained before death.

Proposition 7. For � ∈ {A,B}, if the EIS φ < 1, then there exists a time epoch t∗ > 0, the optimal

consumption function c∗�(t ;ψ) reported in Theorem 1 is decreasing in ψ for all t ≤ t∗ and becomes

increasing in ψ for t > t∗. Otherwise, the behavior of the optimal consumption function is reversed.

Proof. See Appendix A.
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Remark 3. Consider the case where ψ → 0 meaning that the retiree has no mortality ambiguity aversion,

then

lim
ψ→0

GA(ψ) = 1 and lim
ψ→0

GB(ψ) = φ.

The optimal consumption functions become

lim
ψ→0

c∗A(t ;ψ) = x0 ×
exp

(
−
∫ t

0 φ (ρ− r) du
)∫∞

0 exp
(
−
∫ s

0 (β + λy+u) du
)
ds

(21)

and

lim
ψ→0

c∗B(t ;ψ) = x0 ×
exp

{
−
∫ t

0 [φ (ρ− r + λy+u)− λy+u] du
}∫∞

0 exp
(
−
∫ s

0 (β + φλy+u) du
)
ds

. (22)

Further, suppose that the EIS and risk aversion parameters satisfy φ = 1/γ so the recursive utility reduces

to the CRRA utility, then Equations (21) and (22) collapse respectively to the optimal consumption

functions (6) and (8) under the classical Yaari’s LCM.

Finally, the impacts of mortality model uncertainty on the value functions are considered. Recall

again that if the EIS parameter φ < 1, then the associated worst-case perturbed mortality model corre-

sponds to a longevity scenario, and as ψ increases, the concern about longevity risk becomes stronger, so

annuity should become more valuable. In other words, the AEW increases with the robustness preference

parameter ψ when the EIS parameter φ < 1, and vice versa. The succeeding assertion confirms our

conjecture.

Proposition 8. If φ < 1 (resp. φ > 1), then AEW(ψ) is increasing (resp. decreasing) in ψ > 0.

Proof. See Appendix A.

Based on Proposition 8, we argue that mortality model uncertainty is a potential contributor to the

enduring puzzle of low annuity demand. Namely, if the uncertainty surrounding the mortality model—

even though it has been best estimated—is overlooked by the retiree, then the value of annuity may

be understated when ψ < 1. Our study acknowledges that retirees should not place full conviction on

a specific mortality assumption. Otherwise, the longevity risk inherent in retirement planning will be

underestimated. Educating investors to recognize the mortality model uncertainty may be one of the
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possible ways to resolve the issue of low annuity demand in the present retirement market. The study in

this current subsection answers Question Q3 posted in Section 3.

4.3 Other considertations

It will be also interesting to investigate the dependence of AEW on other parameters such as the subjective

discount rate and interest rate. With a slight abuse of notation, in what follows, we use AEW(ρ) and

AEW(r) to denote the AEW as a function of ρ or r.

Proposition 9. (i) If φ < 1 (resp. φ > 1), then AEW(ρ) is decreasing (resp. increasing) in ρ > 0.

(ii) For any φ > 0, AEW(r) is decreasing in r > 0.

Proof. See Appendix A.

A comparison of Assertions (i) and (ii) shows that the impact of the subjective discount rate ρ on

the AEW is interacted with the EIS, while that of the risk-free interest rate r is independent of the EIS.

This difference is determined by the subjective and objective natures of the two parameters ρ and r. The

former has a natural interaction with the EIS, which is also a subjective parameter, reflecting the retiree’s

aversion against consumption flucations.

Moreover, we study how the AEW responds to changes in the mortality curve {λy+t}t≥0. In general,

it is very challenging to develop a general result for ordering the AEW associated with two arbitrary

mortality curves. Thereby, we confine ourselves to a simpler case in which the benchmark mortality curve

is shocked by a parallel shift {λy+t + ∆}t≥0, ∆ > 0. The succeeding proposition studies the sensitivity

of AEW(∆) as a function of the magnitude of the shock. The proposition contains an assumption about

increasing mortality rate over time, which is very natural for modeling the future lifetime of a retiree.

Proposition 10. For any φ > 0 and suppose that λy+t is increasing in t, then AEW(∆) is increasing in

∆ ≥ 0.

Proof. See Appendix A.

The above result hints that a worsen mortality pathway may yield an increase in the AEW. An

intuitive explanation behind the result is that a worsen mortality pathway lowers the price of an annuity

and thus increases the utility increment via annuitization.
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5 Numerical illustration

In this section, we illustrate numerically the theoretical findings established thus far. Suppose that the

rational retiree of interest is now aged 65 and endowed with a retirement saving of $100 (thousand).

We estimate the baseline mortality model using the celebrated Gompertz law (Gompertz, 1825; also see

Milevsky, 2020 for a recent development):

λGM
x = w1 exp(w2 x), x, w1, w2 > 0. (23)

We fit the Gompertz mortality model (23) into the 2015–2019 U.S. mortality table extracted from the

Human Mortality Database2. The parameters are estimated to be ŵ1 = 5.01×10−5 and ŵ2 = 8.39×10−2

for female, and ŵ1 = 8.10× 10−5 and ŵ2 = 8.25× 10−2 for male. Figure 1 depicts the probability density

function as well as the survival probability associated with the fitted mortality model. As shown in the

right panel of Figure 1, the female survival probability function dominates that of male, implying that

female is more likely to survive longer than male at any future time points.
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Figure 1: The probability density functions (left panel) and survival probability functions (right panel)
for the female and male retirees’ remaining life time RV’s.

We set the risk-free rate to be 1.9% according to the U.S. cash rate in the 2021 Long-Term Capital

Market Assumptions report published by the J.P. Morgan Asset Management. We assume the subjective

discount rate to be 3% which is a standard choice in the related literature. Indeed, Frederick et al. (2002)

conducted a comprehensive literature review on estimated discount rates and found a predominance of

2Source: http://www.mortality.org/
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high discount rates, being well above market interest rate. The choices of the EIS coefficient φ and

robustness parameter ψ are rather subjective, mainly depending on the retiree’s individual risk profile.

Motivated by the empirical study in Yogo (2004), we set φ = 0.5 and ψ = 1 as the baseline parameters

and then use sensitivity tests to study their implications on the optimal consumption strategies and the

AEW.

Based on the aforementioned setting, Figure 2 presents the optimal consumption pathways computed

according to Theorem 1. We find that the optimal consumption amount and consumption-to-wealth ratio

for male are higher than that of female, under both the CA and CB market conditions. This is intuitive

because the life expectancy of female is longer than male, the female retiree will rationally lower the

consumption in order to save more wealth for future. Meanwhile, for both the female and male retirees,

the optimal consumption amount under the CA market is higher than that under the CB market at the

beginning of the retirement phase, but becomes lower after certain time point. This occurs because by

purchasing an annuity, the retiree earns higher returns than by purchasing a bond due to the mortality

credit. However, when it comes to the optimal consumption-to-wealth ratio, it always holds that π∗A > π∗B.

These observations coincide with the theoretical investigation in Proposition 4.
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Figure 2: The optimal consumption amounts (left panel) and optimal consumption-to-wealth ratios (right
panel) under the baseline parameters.

Next we are going to study the sensitivities of the optimal consumption policies in response to varying

EIS parameter φ ∈ (0, 1). As mentioned in Section 1.1, an empirical study conducted by Yogo (2004)

suggested that the EIS parameter for a typical investor falls into this range. We have already seen in

Figure 2 that the optimal consumption rules between female and male have very similar patterns, thus

23



we should only focus on the female retiree herein. Figure 3 displays the optimal consumption rules with

different values of the EIS parameter. We observe that under the CA market condition, a smaller value

of EIS leads to a flatter optimal consumption function over time, and the optimal consumption-to-wealth

ratio tends to be higher. However, the optimal consumption pathways under the CB market do not

seem to have a monotonic pattern in response to the changing EIS coefficient. This is caused by the fact

that the EIS φ determines not only the optimal consumption decision but also the worst-case perturbed

mortality scenario, which complicates the impacts of φ on the optimal robust consumption rules.
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Figure 3: The optimal consumption amounts (first row) and optimal consumption-to-wealth ratios (second
row) with varying robustness preference parameter φ ∈ {0.25, 0.5, 0.75}.

Different than the EIS coefficient, the impact of the robustness preference parameter ψ > 0 is much

more predictable. According to Figure 4, we find that a lower robustness preference ψ increases the

optimal consumption amount only at the beginning of the retirement phase, but increases the optimal
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consumption-to-wealth ratio at all times. This is consistent with the theoretical results in Propositions 6

and 7. We refer the readers to Section 4.2 for intuitive explanations of the observed patterns.
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Figure 4: The optimal consumption amounts (first row) and optimal consumption-to-wealth ratios (second
row) with varying EIS coefficient ψ ∈ {0.5, 1, 2}.

Finally, we study the impact of the robustness preference parameter ψ on the AEW. Two cases are

considered. In the first case, we stick with the baseline EIS φ = 0.5 which is smaller than one and indicates

a retiree’s preference for more stable consumption pattern over time, then the AEW is increasing in the

retiree’s robustness preference parameter ψ. In another case where φ = 1.5 which is greater than one,

indicating that a retiree has a higher tolerance for future consumption fluctuations, then the relationship

between ψ and AEW is reversed. In other words, the aversion of future consumption fluctuations caused

by mortality model misspecification can be translated into a fear of longevity risk when φ < 1. A

growing concern about mortality model uncertainty will essentially cause the AEW to increase. The
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observed pattern coincides with our assertion in Proposition 8 (also see more detailed discussions about

the economic implications at the end of Section 4.2). It is also worth mentioning that in Figure 5, the

magnitude of the AEW is as high as 190% of the intial wealth, which is consistent with numerous results

reported in the literature (see e.g., Brown, 2001; Milevsky and Huang, 2018). It is caused by the fact

that LCM is based on a utility maximization framework, and utility functions are non-linear and concave.

Thus, an immoderate amount of wealth is needed for compensating the utility reduction due to the

absence of annuity within the CB market. Moreover, we note that the AEW for the female retiree is

always lower than that for the male retiree. The reason is that the female retiree has lower mortality rate

than the male retiree, so the annuity price for the female retiree is higher, which lowers the utility gained

by annuitization. This observed pattern was hinted by Proposition 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

150

155

160

165

170

175

180

185

190

195

A
E

W

Female

Male

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

100

105

110

115

120

125

130

135

A
E

W

Female

Male

Figure 5: The AEW’s for the female and male retirees when the EIS φ = 0.5 (left panel) and φ = 1.5
(right panel).

6 Conclusions

In this paper, we proposed and studied a revamped LCM in which there is an incorporation with recursive

utility and mortality model uncertainty. We calculated the optimal robust consumption rule as well as

the associated AEW in explicit forms. Our major economic findings include the following. First, we

found that for a typical retiree having EIS in consumption smaller than one, the worst-case perturbed

mortality curve corresponds to an improved mortality scenario, meaning that the longevity risk is more

of a concern than mortality risk in the presence of mortality model uncertainty. Second, under mortality
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model uncertainty, annuity should be still attractive to retirees in the sense that by annuitization, the

optimal consumption rate becomes higher. However, mortality ambiguity aversion will lower the optimal

consumption rate. Third, if mortality model uncertainty is disregarded by retirees, then the value of

annuity will be understated, potentially causing a lower than expected annuity demand.

There are several topics for future research. First, it will be very interesting to extend the current study

from a deterministic mortality framework to a stochastic one. It is likely that the optimal consumption

and annuity demand would depend on a retiree’s ambiguity and risk aversion levels. How the two different

types of aversion behaviors interact with each other is a worthwhile topic for further study. Second, while

the current paper focuses on life annuity, it will be interesting to investigate the retiree’s optimal decisions

when facing multiple retirement income products, such as deferred annuity, variable annuity, and tontine.

In particular, it is found in recent literature (see, e.g., Chen et al., 2019, 2021, 2020) that compared with

life annuity, tontine may be a more attractive option for retirees to drawdown their retirement savings.

Whether or not this result remains valid in presence of endogenous mortality uncertainty is an important

follow-up research question. Third, in later life, retirees have to cope with not only mortality risk but

also health risk (e.g. long-term care risk). It will be interesting to incorporate a health state transition

model into the analysis and study the joint impacts of mortality and health models uncertainty on the

optimal consumption rule and optimal demand for annuity and long-term care insurance.
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Appendix A Proofs

Proof of Theorem 1. We only provide the proof for the CA market. The proof for the CB market is

essentially the same, thereby omitted. To simplify our notation, we suppress the subscript “A” in functions

V and K in the sequel.

Given Xt = x > 0, the Hamilton–Jacobi–Bellman (HJB) equation for the optimization problem (16)

can be specified as

max
c∈C

min
θ∈T

{
Vt + Vx

[
(r + λ)x− c

]
+

(1− γ)V

1− 1/φ

[(
c

((1− γ)V )
1

1−γ

)1−1/φ

− (ρ+ θλ)

]
+

1− γ
ψ

g(θ)λV

}
= 0.

By the first order conditions of c and θ, we get

−Vx +
(1− γ)V

1− 1/φ

1− 1/φ

((1− γ)V )
1

1−γ

(
c

((1− γ)V )
1

1−γ

)−1/φ

= 0 (24)
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and

−λ(1− γ)V

1− 1/φ
+

1− γ
ψ

g′(θ)λV = 0. (25)

We conjecture the following ansatz

V (t, x ;ψ) =
[
K(t ;ψ)

]− 1−γ
1−φ x1−γ

1− γ
with K(∞ ;ψ) = 0,

is a solution to the HJB equation above. Then from Equations (24) and (25), we obtain

c∗(t ;ψ) =
x

K(t ;ψ)
and θ∗(t ;ψ) ≡ θ∗(ψ) = e

ψ
1−1/φ . (26)

To solve K, we substitute c∗ and θ∗ back to the HJB equation and get

− 1

1− φ
Kt(t ;ψ)

[
K(t ;ψ)

]− 1−γ
1−φ−1

x1−γ +
[
K(t ;ψ)

]− 1−γ
1−φx1−γ

[
(r + λ)− 1

K(t ;ψ)

]

+

[
K(t ;ψ)

]− 1−γ
1−φ x1−γ

1− 1/φ

[
1

K(t ;ψ)
−
(
ρ+ θ∗(ψ)λ

)]
+
λ

ψ
g
(
θ∗(ψ)

)
[K(t ;ψ)]

− 1−γ
1−φ x1−γ = 0.

Standard algebraic manipulation yields

Kt(t ;ψ)− (1− φ)

[
(r + λ)− ρ+ θ∗(ψ)λ

1− 1/φ
+
λ

ψ
g(θ∗(ψ))

]
K(t ;ψ) + 1 = 0,

whose solution is given by

K(t ;ψ) =

∫ ∞
t

exp

(
−
∫ s

t
(β +G(ψ)λy+u)du

)
ds.

Let X∗(·) be the wealth trajectory associated with the optimal consumption function derived above.

The dynamic of the optimal consumption c∗ evolves as

dc∗(t;ψ) =
1

K(t;ψ)

[
− (β +G(ψ)λy+t) + (r + λy+t)

]
X∗(t;ψ)dt

=
[
(1−G(ψ))λy+t − φ(ρ− r)

]
c∗(t;ψ)dt.
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Hence,

c∗(t;ψ) = c∗(0;ψ) exp

{∫ t

0

[
(1−G(ψ))λy+u − (ρ− r)φ

]
du

}
.

The proof is now completed.

Proof of Lemma 3. First, we consider the monotonicity for GA and GB. Standard algebraic manipulations

yield

∂

∂ψ
GA(ψ) =

∂

∂ψ
GB(ψ) =

1− φ
ψ2

[
e

ψ
1−1/φ

(
1− ψ

1− 1/φ

)
− 1

]
.

Note that ea (1− a) < 1 for any a ∈ (−∞,∞). We have, for � ∈ {A, B},

∂

∂ψ
G�(ψ) =


< 0, if φ < 1;

> 0, if φ > 1.

Next, let us focus on GA, and we have

lim
ψ→0

GA(ψ) = 1− φ+ lim
ψ→0

1− φ
ψ

(1− e
ψ

1−1/φ
)

= 1

and

lim
ψ→∞

GA(ψ) = 1− φ+ lim
ψ→∞

1− φ
ψ

(
1− e

ψ
1−1/φ

)
=

 1− φ, if φ < 1;

∞, if φ > 1.

Moreover, note that GB(ψ) = GA(ψ) − (1 − φ), the desired results are readily obtained. The proof is

completed.

Proof of Proposition 4. We prove the three relationships one by one. For the first relationship, we know

from Equation (26) in the proof of Theorem 1 that π∗�(t ;ψ) = 1/K�(t ;ψ) for a fixed t > 0 and � ∈ {A,B}.
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For all ψ > 0, we readily obtain

φ

{
<

>

}
1 ⇒ GA(ψ)

{
>

<

}
GB(ψ) ⇒ KA(t ;ψ)

{
<

>

}
KB(t ;ψ) ⇒ π∗A(t ;ψ)

{
>

<

}
π∗B(t ;ψ).

(27)

Collectively, the above inequalities yield

φ

{
<

>

}
1 ⇒ c∗A(0 ;ψ)

{
>

<

}
c∗B(0 ;ψ).

Meanwhile, we have

c∗A(t ;ψ)

c∗B(t ;ψ)
=
KB(ψ)

KA(ψ)
× exp

{∫ t

0
[GB(ψ)−GA(ψ)]λy+udu

}
,

which is decreasing in t > 0 if φ < 1, or increasing otherwise. This yields the second relationship in the

proposition.

Another repeated application of the inequalities in (27) yields the third relationship. This completes

the proof.

Proof of Theorem 5. By definition, the AEW is obtained via solving

V ∗A
(
0, x0 ;ψ

)
= V ∗B

(
0,AEW ;ψ

)
.

According to Theorem 1, the AEW solves

[
KA(ψ)

]− 1−γ
1−φ x1−γ

0

1− γ
=
[
KB(ψ)

]− 1−γ
1−φ AEW1−γ

1− γ
.

This yields

AEW(ψ) = x0

[
KB(ψ)

KA(ψ)

]1/(1−φ)

,

which completes the proof.
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Proof of Proposition 6. From the proof of Proposition 4, we have already known that π∗�(t ;ψ) = 1/K�(t ;ψ)

for a fixed t > 0 and � ∈ {A,B}. Consider

∂

∂ψ
K�(t;ψ) = − ∂

∂ψ
G�(ψ)×

∫ ∞
t

[
exp

(
−
∫ s

t
(β +G�(ψ)λy+u)du

) ∫ s

t
λy+udu

]
ds =


> 0, if φ < 1;

< 0, if φ > 1.

So π∗�(t ;ψ) is decreasing in ψ if the EIS φ < 1, or increasing otherwise. The proof is completed.

Proof of Proposition 7. For t > 0 and � ∈ {A,B}, write

c∗�(t ;ψ) =
x0

K�(ψ)
exp

{∫ t

0

[
(1−G�(ψ))λy+u − φ(ρ− r)

]
du

}
,

so we have

∂

∂ψ
c∗�(t ;ψ) =

x0[
K�(ψ)

]2 exp

{∫ t

0

[
(1−G�(ψ))λy+u − φ(ρ− r)

]
du

}(
− ∂

∂ψ
G�(ψ)

)

×

{
K�(ψ)

∫ t

0
λy+udu−

∫ ∞
0

exp

(
−
∫ s

0
(β +G�(ψ)λy+u)du

) ∫ s

0
λy+udu ds

}
.

Suppose that φ < 1, from Corollary 2, we know ∂
∂ψ G�(ψ) < 0. An inspection of the partial derivative

formula above reveals

lim
t→0

∂

∂ψ
c∗�(0 ;ψ) < 0 as well as lim

t→∞

∂

∂ψ
c∗�(t ;ψ) > 0.

Thereby, ∂
∂ψ c
∗
�(t ;ψ) = 0 has an unique root. This establishes the desired results when φ < 1. If φ > 1,

then the behavior of the optimal consumption function is reversed. The proof is now completed.

Proof of Proposition 8. Recall that by Theorem 5, the AEW can be computed via

AEW(ψ) = x0

[
KB(ψ)

KA(ψ)

]1/(1−φ)

, ψ > 0.
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To study the monotonicity property for the AEW function, consider

∂

∂ψ

KB(ψ)

KA(ψ)
=
KA(ψ)K ′B(ψ) −K ′A(ψ)KB(ψ)

KA(ψ)2
,

which has the same sign as ωB(ψ)− ωA(ψ), where

ω�(ψ) =
K ′�(ψ)

K�(ψ)
, � ∈ {A,B}.

By letting

v(s) = − ∂

∂ψ
GA(ψ)×

∫ s

0
λy+udu, s > 0,

then we can write

ω�(ψ) =

∫ ∞
0

f�(s) v(s) ds = E
[
v(S�)

]
,

where S� has probability density function (PDF):

f�(s) =
exp

(
−
∫ s

0 (β +G�(ψ)λy+u)du
)

∫∞
0 exp

(
−
∫ s

0 (β +G�(ψ)λy+u)du
)
ds
, s > 0.

Note that

fA(s)

fB(s)
=

∫∞
0 exp

(
−
∫ s

0 (β +GB(ψ)λy+u)du
)
ds∫∞

0 exp
(
−
∫ s

0 (β +GA(ψ)λy+u)du
)
ds
× exp

{∫ s

0
[GB(ψ)−GA(ψ)]λy+udu

}
,

which is decreasing in s > 0 if φ < 1, or increasing otherwise. This implies that SB stochastically

dominates (of the first order) SA if φ < 1, and vice versa. Note that we have already known from Lemma

3, for � ∈ {A, B},

∂

∂ψ
G�(ψ) =


< 0, if φ < 1;

> 0, if φ > 1.

Thereby, v(s) is increasing in s > 0 if φ < 1, or decreasing otherwise. Collectively, we can conclude that

35



ωA(ψ) = E
[
v(SA)

]
< E

[
v(SB)

]
= ωB(ψ) for all φ > 0, so KB(ψ)/KA(ψ) is increasing in ψ. Thereby,

AEW(ψ) is increasing in ψ when φ < 1, or decreasing otherwise.

The proof is now completed.

Proof of Proposition 9. The proof can be adapted from that of Proposition 8. We only provide a sketch

below. Based on the same formulation as in (18), we specify K�(a) as a function of a = ρ or r, � ∈ {A,B}.

First, let’s consider AEW(ρ) which can be computed via

AEW(ρ) = x0

[
KB(ρ)

KA(ρ)

]1/(1−φ)

, ρ > 0.

Then the monotonicity of AEW(ρ) is determined by the sign of ∂
∂ρ

KB(ρ)
KA(ρ) , which is equivalent to that of

ωB(ρ)− ωA(ρ), where

ω�(ρ) =
K ′�(ρ)

K�(ρ)
, � ∈ {A,B}.

By letting v(s) = −φs, we can follow essentially the same arguments as in the proof of Proposition 8 to

show that ωB(ρ) − ωA(ρ) < 0. Therefore, we can conclude that AEW(ρ) is decreasing in ρ if φ < 1, or

increasing otherwise.

Second, for AEW(r), we need to define v(s) = −(1 − φ)s, which is decreasing if φ < 1, or increasing

otherwise. Then, ωB(r)−ωA(r) < 0 if φ < 1, or ωB(r)−ωA(r) > 0 otherwise. That is, if φ < 1 (resp. φ >

1), KB(r)
KA(r) is decreasing (resp. increasing) in r. However, the monotonicity of AEW(r) is also affected by

the exponent 1/(1− φ) of KB(r)
KA(r) . Therefore, in both cases φ < 1 and φ > 1, AEW(r) = x0

[
KB(r)
KA(r)

]1/(1−φ)

is decreasing in r.

The proof is now completed.

Proof of Proposition 10. For � ∈ {A,B}, function K�(∆) is associated with the parallelly shifted mor-

tality curve {λy+t + ∆}t≥0. Note

AEW(∆) = x0

[
KB(∆)

KA(∆)

]1/(1−φ)

, ∆ > 0,
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whose monotonicity is determined by that of KB(∆)
KA(∆) and the sign of 1− φ. To this end, we first check the

sign of ∂
∂∆

KB(∆)
KA(∆) , which is the same as the sign of ωB(∆)− ωA(∆), where

ω�(∆) =
K ′�(∆)

K�(∆)
, � ∈ {A,B}.

For s > 0, letting v�(s) = −G�(ψ)× s, we can write

ω�(∆) =

∫ ∞
0

f�(s) v�(s) ds = E
[
v�(S�)

]
,

where S� has PDF:

f�(s) =
exp

(
−
∫ s

0 [β +G�(ψ) (λy+u + ∆)]du
)

∫∞
0 exp

(
−
∫ s

0 [β +G�(ψ) (λy+u + ∆)]du
)
ds
, s > 0, � ∈ {A,B}.

It remains to compute

ωB(∆)− ωA(∆) = E
[
−GB(ψ)SB

]
− E

[
−GA(ψ)SA

]
= E

[
GA(ψ)SA

]
− E

[
GB(ψ)SB

]
.

Hence, unlike the proof of Proposition 8, we next study the first order stochastic dominance between

S∗A = GA(ψ)SA and S∗B = GB(ψ)SB, whose PDF’s can be computed via

f∗�(s) =
1

G�(ψ)
f�

(
s

G�(ψ)

)

=
exp

(
−
∫ s/G�(ψ)

0

[
β +G�(ψ) (λy+u + ∆)

]
du
)

G�(ψ)
∫∞

0 exp
(
−
∫ s

0

[
β +G�(ψ) (λy+u + ∆)

]
du
)
ds

=
exp

(
−
∫ s

0

[
β/G�(ψ) + (λy+u/G�(ψ) + ∆)

]
du
)

G�(ψ)
∫∞

0 exp
(
−
∫ s

0

[
β +G�(ψ) (λy+u + ∆)

]
du
)
ds
, s > 0, � ∈ {A,B}.

Then,

f∗A(s)

f∗B(s)
=
GB(ψ)

∫∞
0 exp

(
−
∫ s

0

[
β +GB(ψ) (λy+u + ∆)

]
du
)
ds

GA(ψ)
∫∞

0 exp
(
−
∫ s

0

[
β +GA(ψ) (λy+u + ∆)

]
du
)
ds

× exp

{
−
∫ s

0

(
β
[
1/GA(ψ)− 1/GB(ψ)

]
+
[
λy+u/GA(ψ) − λy+u/GB(ψ)

])
du

}
. (28)
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Note that if φ < 1 (resp. φ > 1), then 1/GA(ψ)−1/GB(ψ) < 0 (resp. > 0) and λy+u/GA(ψ)−λy+u/GB(ψ) <

0 (resp. > 0), for any u > 0. Thus, (28) is increasing in s > 0 if φ < 1, or decreasing otherwise.

We can now conclude S∗A stochastically dominates (of the first order) S∗B, which implies ωA(∆) =

E[−GA(ψ)SA] < E[−GB(ψ)SB] = ωB(∆) if φ < 1. The inequality is reversed if φ > 1. By taking into

account the sign of 1− φ when φ < 1 or φ > 1, we readily obtain the desired results in the proposition.

The proof of the proposition is now completed.
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