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Abstract

Risk measure and capital allocation are arguably two of the most important notions in quantitative risk man-
agement. They are closely related, as the former often shapes how the latter is implemented. In this paper,
we conduct asymptotic analysis of a proportional risk allocation derived using the geometric tail expectation
(GTE) risk measure. As a relative and robust variant of the widely adopted conditional tail expectation (CTE)
risk measure, the GTE risk measure has garnered increasing attention in recent literature. It induces a propor-
tional allocation that can be regarded as a stochastic counterpart of the deterministic composition that leads to
the CTE-induced proportional allocation. Our asymptotic analysis reveals that, across various tail scenarios, the
CTE-based and GTE-based allocation methods essentially converge when the confidence level is sufficiently
high. This is a welcome finding, since it reconciles discrepancies among risk analysts regarding the selection
between the absolute term CTE risk measure and the relative term GTE risk measure for risk allocation pur-
poses. Moreover, the asymptotic equivalence supports advocating for the use of GTE-based allocation as a more
versatile alternative to CTE-based allocation, in the sense that the GTE-based allocation is always well-defined
while the CTE-based allocation is not. Our simulation example also indicates that under certain data scenarios,
the empirical estimator of the GTE-based allocation may exhibit significantly smaller variance compared with
that of the CTE-based allocation.
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1 Introduction

Let X ≥ 0 be a loss random variable (RV), and the set X collect all such RV’s. Consider a risk portfolio consisting of
n ∈N business units (BUs), and let the i-th component of X = (X1, . . . ,Xn) ∈ X n represent the risk associated with
the i-th BU, i∈N = {1, . . . ,n}. Within the encompassing framework of quantitative risk management, determining
the total economic capital needed by a (financial/insurance) conglomerate stands as a centrally important task. The
process typically involves quantifying the riskiness associated with the aggregate RV S = X1 + . . .+Xn based on a
certain risk measure. Another equally important task pertains to the economic capital allocation, which revolves
around empolying a sensible scheme, typically depicted as relative percentages, for apportioning the total economic
capital back to the constituent BUs. An economic capital allocation can be described by a proportional allocation
principle using the set {

ri ∈ [0,1]
}

i=1,...,n such that ∑
n
i=1 ri = 1, (1)

where ri denotes the proportion of risk capital allocated to BU i, and the latter condition ensures that the total
capital is fully allocated. Capital allocation carries multiple business purposes, including risk-based pricing, risk
and profitability analysis, and risk budgeting (Balog et al., 2017; Chong et al., 2023; Guo et al., 2021; Homburg
and Scherpereel, 2008).

Capital allocation can be approached in various ways. Among the myriad methods available, the conditional
tail expectation (CTE) based allocation stands out as a prevalent choice among both academics and practitioners.
Formally, the CTE-based allocation is formulated as

CTEq(Xi,S) := E(Xi |S > sq), i ∈N , q ∈ [0,1), (2)

where sq = inf
{

s > 0 : P(S ≤ s) > q
}

denotes the value-at-risk (VaR) of S. Beside its practical interpretation,
the CTE-based allocation can be justified theoretically via such as Aumann-Shapely allocation (Boonen et al.,
2020; Denault, 2001), Euler allocation (Kalkbrener, 2005), distorted allocation (Tsanakas and Barnett, 2003) and
weighted allocation (Furman and Zitikis, 2008). Moreover, it is considered optimal according to Laeven and
Goovaerts (2004) and Dhaene et al. (2012). Correspondingly, the CTE-based proportional allocation is given by

ri,q :=
CTEq(Xi,S)

∑
n
i=1 CTEq(Xi,S)

=
CTEq(Xi,S)

CTEq(S)
, i ∈N , q ∈ [0,1), (3)

where CTEq(X) := CTEq(X ,X), X ∈ X , denotes the CTE risk measure.
The allocation problem described in equation (1) indicates an inherent connection with the examination of risk

composition/contribution (Belles-Sampera et al., 2016; Boonen et al., 2019; Furman et al., 2021). Specifically, let
x = (x1, . . . ,xn), s = x1 + · · ·+ xn, and denote by Ci(x) = xi/s the composition function, i ∈ N . The CTE-based
proportional allocation (3) can be regarded as

ri,q =Ci
(
CTEq(X1,S), . . . ,CTEq(Xn,S)

)
i ∈N , q ∈ [0,1). (4)

The formulation in (4) should be viewed as a deterministic composition approach for evaluating risk contribu-
tion. A stochastic composition alternative to (4), which is perhaps more natural to interpret from a probabilistic
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standpoint, can be given by

r̃i,q := CTEq(Ri, S) = E(Ri |S > sq), i ∈N , q ∈ [0,1), (5)

where

Ri =Ci(X) =
Xi

S
, i ∈N , (6)

denotes the relative, stochastic contribution of the risk attributed to the i-th BU (Bauer and Zanjani, 2016; Furman
et al., 2021). In contrast to the extensive literature on the CTE risk measure and its associated allocation methods,
relatively few results have been established for the aforementioned newly developing allocation rule described in
equation (5), which is the primary focus of this paper.

Some comparative discussions are warranted to motivate our study. Allocation rules (3) and (5) are mathe-
matically similar. While the former entails the composition of conditional expectations, the latter relies on the
conditional expectation of stochastic risk composition. Altering the order of composition and conditional expec-
tation generally results in different allocation outcomes, although there exist special cases where the two methods
produce identical allocations for all q ∈ [0,1) (Mohammed et al., 2021). It is known that the CTE-based propor-
tional allocation ri,q is a linear approximation of the stochastic composition counterpart r̃i,q (see Proposition 3 in
Mohammed et al., 2021).

Furthermore, akin to the CTE-based allocation, the stochastic composition counterpart (5) also has a sound
mathematical justification. Specifically, r̃i,q can be constructed as an Euler proportional allocation induced by the
geometric tail expectation (GTE) risk measure (Bauer and Zanjani, 2016; Mohammed et al., 2021):

GTEq(X) := exp
{

E
(

logX |X > xq
)}

, X ∈ X , q ∈ [0,1). (7)

Therefore, throughout the remainder of this paper, r̃i,q defined in (5) will also be referred to as the GTE-based
proportional allocation. The GTE risk measure (7) is characterized as a return risk measure according to Bellini
et al. (2018), and it is the relative variant of the CTE risk measure which is known as a monetary risk measure
(see discussions in Laeven and Gianin, 2022). The adoption of GTE risk measure for capital allocation can be
also motivated by the work of Bauer and Zanjani (2016), wherein economic modeling approach is used to reverse
engineer the desirable choice of risk measure for capital allocation purpose. Correspondingly, the GTE-based
allocation in (5) closely resembles the allocation rule proposed by Bauer and Zanjani (2016) for a profit-maximizing
insurer operating in an incomplete market with risk-averse counterparties.

Note that adhering to the “best practice” within the current regulatory environment necessitates a prudent as-
sessment of risk positions within a financial/insurance conglomerate. The confidence level q associated with risk
metrics (e.g., VaR, CTE) is usually set close to 1. Consequently, substantial scholarly interest has focused on the
asymptotic estimates of risk measures across various risk management contexts (Bassamboo et al., 2008; Cui et al.,
2024; Mao et al., 2023; Tang et al., 2019, 2021), as well as their induced capital allocation rules (Asimit and Bade-
scu, 2010; Chen and Liu, 2022, 2024; Hua and Joe, 2011; Qin and Zhou, 2021; Zhu and Li, 2012). This motivates
our investigation into the asymptotic behavior of the GTE-based allocation (5) for q approaching 1.

Here is a preview of our research and its findings. We carry out this study under a comprehensive set of
assumptions that take into account both heavy-tailed risks and light-tailed ones, both tail dependent risks and tail
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independent ones. Although we follow the most recent literature to formulate the assumptions via the notion
of M convergence, instead of the traditionally used vague convergence, we show that—apart from relaxed tail
indices—they are not much different from the assumptions used in the literature (Asimit et al., 2011). We derive
the limits of r̃i,q as q ↑ 1, for i ∈ N , and compare the limits of the GTE-based allocations with those of the CTE-
based allocations derived in the literature. Remarkably, we find that the two allocation methods (3) and (5) are
asymptotically identical under all of the scenarios considered for the risk components.

We believe that our finding is a welcome result to risk analysts. To be specific, we have mentioned earlier
that the difference between the CTE-based and GTE-based allocation methods hinges on the selection of either
the CTE or GTE risk measures to derive the respective allocation rules. Irrespective of whether one argues from
mathematical principles or business fundamentals (e.g., Bauer and Zanjani, 2016; Laeven and Gianin, 2022; Mo-
hammed et al., 2021), the choice of risk measure remains subjective. The asymptotic equivalence elucidated in
this study serves to reconcile the discrepancies among risk analysts’ divergent perspectives regarding the selection
between the CTE and GTE risk measures for risk allocation purposes. This desirable parity between the CTE-based
and GTE-based allocations was also studied by Mohammed et al. (2021), where they established the distributional
characteristics for the risk set:

W =
{
X ∈ X n : ri,q = r̃i,q for all i ∈N and all q ∈ [0,1)

}
.

Our current study has shown that relaxing the condition in W to a more practical scenario, where only q’s close to
1 are considered, results in a much broader set of the desirable equivalence.

Further, the asymptotic parity we have obtained provides a strong support for the adaption of the newly de-
veloping GTE-based allocation (5) as a more versatile alternative of the CTE-based allocation (3). Firstly, from a
probabilistic standpoint, the existence of the CTE-based allocation (3) requires the finitness of the first conditional
moment of X—for this reason, the literature on the CTE-based allocation for heavy-tailed risks has to restrict
to the cases where the the tail indices are greater than 1—whereas the GTE-based allocation (5) is always well
defined and is not subject to the restriction. In the realm of insurance risk management, encountering loss distribu-
tions having infinite (conditional) means is not uncommon (see discussions in Chen et al., 2024). The GTE-based
allocation can be used to deal with such “super heavy-tailed losses”, for which the CTE-based allocation is not
applicable. Additionally, from a statistical standpoint, when empirical estimators (e.g., Gribkova et al., 2022b)
are employed to calculate the allocation ratios, estimating the CTE-based proportional allocation (3) involves two
steps: one for estimating CTEq(Xi,S) and another for CTEq(S). In contrast, computing the GTE-based allocation
(5) requires applying an empirical estimator only once. This makes it much more convenient to study, for example,
the large sample properties of an empirical GTE allocation estimator for statistical inference. Moreover, our nu-
merical study demonstrates that when the tails of marginal distributions are heavy and tail dependencies are strong,
the GTE-based allocation estimator significantly outperforms the CTE-based allocation estimator in terms of lower
variations.

The rest of the paper is organized as follows. We start by establishing some standard notations and terminolo-
gies in the context of asymptotic analysis in Section 2. In Sections 3 and 4, we study the limit of r̃i,q under the
assumptions of asymptotic dependence and asymptotic independence for X , respectively. A simulation study is
provided in Section 5 to illustrate the findings obtained from the asymptotic analysis. Finally, Section 6 summarizes
the findings and concludes the paper.
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2 Preliminaries

This section contains some preliminaries on extreme value theory (EVT) and tail analysis, which will be needed to
present the main results. We start by listing our notational convention.

2.1 Notational convention

Throughout this paper, we denote the distribution functions of Xi by Fi and its survival function by F i, i∈N . When
no confusion could arise, for a positive integer n, we denote [0,∞)n by [0,∞) or Rn

+ and [−∞,∞)n by [−∞,∞) or
Rn, and likewise, shorthand (x1,∞)× . . .× (xn,∞) by (x,∞), where x= (x1, . . . ,xn) ∈Rn. Vector operations such
as x+y, cx, and x> y for x,y ∈ Rn and c ∈ R are to be understood component wise.

Denote by C a cone in Rn, which, by definition, is closed under positive scale multiplication, and by C0 a closed
cone in C. Denote by M(C\C0) the set of all Borel measures on C\C0 that assign finite measure to Borel subsets
bounded away from C0. For a measure µ ∈M(C\C0) and a measurable set A⊂ C\C0, we may write µ(A) as µA
when there is no confusion.

All limits are for t tending ∞ unless otherwise stated.

2.2 EVT, regular variation, M convergence, and tail dependence

Now let us recollect a fundamental result in EVT, the Fisher-Tippett-Gnedenko theorem. It states that if distribution
F is in the maximum domain of attraction (MDA) of some non-degenerate distribution G, namely, there exist some
am > 0 and bm ∈ R, m = 1,2, . . ., such that limm→∞ Fm(amx + bm) = G(x), x ∈ R, then G must be a Fréchet
distribution, a Weibull distribution, or a Gumbel distribution. While distributions in the Weibull case have finite
upper end points, those in the MDA of the Fréchet and Gumbel distributions may have unbounded right tails. In
the context of quantitative risk management, the calculations of economic capital and its allocation primarily rely
on the joint behavior of BUs in their right tails, often assumed to be unbounded, particularly for tail risk analysis.
Thus, in our paper we are going to focus on the Fréchet and Gumbel cases.

The distributions belonging to the Fréchet case are heavy-tailed and decay at a power rate. Specifically, a
distribution function F in the MDA of the Fréchet distribution, written as F ∈ MDA(Ψ), is known to have a
regularly varying tail, in the sense that

lim
t→∞

F(xt)
F(t)

= x−α, x > 0, (8)

for some α > 0. In this case we write F ∈ RV−α. Moreover, if equation (8) holds with α = ∞, then we write
F ∈ RV−∞.

A distribution function F with right endpoint tF := sup{x ∈ R : F(x) > 0} is said to be in the MDA of the
Gumbel distribution, written as F ∈MDA(Λ), if and only if there exists a positive function a(·) with a(t)→∞ and
a(t) = o(t), such that,

lim
t↑tF

F(t + xa(t))
F(t)

= e−x, x ∈ R. (9)
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In tail risk analysis, we are less concerned with bounded risks and hence in this paper we only focus on the case
with tF = ∞ and assume that is the case for every individual risk in portfolio X . Note that, the auxiliary function
a(t) is self-neglecting, with limt→∞ a(t +a(t)x)/a(t) = 1 holding locally uniformly.

To define regular variation for a random vector, we introduce the concept of M convergence (or, equivalently,
M∗ convergence). In general, for a sequence of measures µ and {µi}i≥1 in M(C\C0), we say

µn→ µ in M(C\C0) (10)

as n→ ∞ if limn→∞

∫
C f dµn =

∫
C f dµ holds for any f that is a continuous and bounded function on C \C0 with

support bounded away from C0. It is known that the M convergence in (10) is equivalent to the condition that

lim
n→∞

µn(A) = µ(A) (11)

for every Borel subset A bounded away from C0 such that the boundary of A is µ negligible; that is, µ(∂A) = 0.
The closed cone C0 is called a forbidden zone and a region bounded away from C0 is considered as a tail region.
In this paper, we focus on the case with C0 = {0} and C is either Rn

+ or Rn.
Note that there is no standard analogy that characterizes random vectors with marginal distributions in the MDA

of the Gumbel distribution through convergence of measures in a metric space. Nonetheless, the structure given in
Assumption 2.2 of Asimit et al. (2011) provides a resembling characterization and will be our modeling choice for
this paper.

It is well known that tail dependence is a major factor that impacts risk capital allocation. Naturally, we shall
consider both asymptotically dependent risks and asymptotically independent risks. A pair of risks Xi and X j with
cumulative distribution functions Fi and Fj respectively, are said to be asymptotically dependent if

liminf
q↑1

P
(
Fi(Xi)> q |Fj(X j)> q

)
> 0. (12)

We use the terms tail dependence and asymptotic dependence interchangeably. Asymptotic dependence for the
multivariate cases considered later will entail different forms, but are natural extensions of (12).

3 Asymptotically dependent portfolios

We first consider a portfolio of risks that are asymptotically dependent, exploring two scenarios: one with risks
exhibiting Fréchet tails and the other with risks displaying Gumbel tails.

3.1 Fréchet case

For the case where the risks have Fréchet tails, we use the multivariate regular variation (MRV) structure to model
the risks. MRV is an integrated structure that models both the marginal distributions with regularly varying tails
and their tail dependence. In this paper, we use the notion of M convergence to define MRV.

(C1) The nonnegative risk vector X possesses MRV; that is, for some nonzero and nondegenerate measure µ, it
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holds that

P(X/t ∈ ·)
F1(t)

→ µ in M
(
Rn
+ \{0}

)
. (13)

Moreover, the limit measure µ assigns positive mass to the interior; that is, µ(0,∞)> 0.

Note that the condition µ(0,∞)> 0 ensures that the risks are asymptotically dependent and, because of the homo-
geneity of the limit measure µ, is equivalent to the condition that µ(x,∞)> 0 for some x> 0.

It is noteworthy that, traditionally, MRV is defined through vague convergence of Radon measures (Resnick,
2007). However, a recent trend in the literature is to define MRV through M convergence of measures that are finite
on sets bounded away from a designated forbidden zone, which is simply {0} in relation (13). An advantage of
formulating MRV using M convergence is that compactification of the space—which causes problems with polar
coordinate transformation—is no longer needed. As an example, to define regular variation of a nonnegative n-
dimensional random vector, compactificiation of [0,∞) into [0,∞] used to be needed so that the Radon measures
take finite values on the tail regions; that is, regions bounded away from {0}. Such compactification poses problems
with, for example, establishing equivalence of vague convergences under Cartesian coordinate and polar coordinate,
since polar coordinate transformation such as x : 7→ (‖x‖,x/‖x‖), where ‖x‖ denotes a norm of x, is only defined
on [0,∞)\{0} and not on any lines through ∞. Compactification also makes geometric interpretations involving
lines through ∞ confusing. The new definition through M convergence is given by measures that are finite on
sets bounded away from {0}. The finiteness of the measures on such sets removes the need for compactifying
the space. Another advantage of the M convergence formulation is that MRV as described in (C1) enables the
definition of regular variation on a space with a chosen forbidden zone excluded, thereby facilitating the definition
of hidden regular variation on various types of spaces of interest (Das et al., 2013). For applications of hidden
regular variation in the context of capital allocation, we refer readers to Hua and Joe (2011).

One may equip the space of M
(
Rn
+ \{0}

)
with a topology similar to the vague topology (Resnick, 2007,

Section 3.3.5), and similar to the vague topology, it is also metrizable. For more discussions about the problems with
the traditional definition of MRV, advantages of using M convergence, how to define a topology for M

(
Rn
+ \{0}

)
,

a possible choice of metric for the space, etc., see Das et al. (2013), Lindskog et al. (2014), and Das and Resnick
(2017).

In general, to establish M convergence in M(C\C0), an easy way is to show that the sequence {µi}i≥1 is
relatively compact and that convergence holds on a class of convergence-determining sets, usually a π-system.
This is easier for the case of regular variation with C= Rn

+ or Rn and C0 = {0} since relative compactness of the
sequence of measures is easier to establish. For example, for regular variation on Rn

+ \ {0}, relative compactness
of the sequence is implied when the convergence of the sequence to the limit measure holds on the determining
class of sets that take the form of Ax = [0,x]c, x ∈ Rn

+. This means that M convergence in M
(
Rn
+ \{0}

)
can

be demonstrated by proving convergence on all sets of Ax given above. Therefore, M convergence of {µi}i≥1

in M
(
Rn
+ \{0}

)
is equivalent to vague convergence of {µi}i≥1 in the space of nonnegative Radon measures on

[0,∞]n \ {0}, and hence, at least in the case with C = Rn
+ or Rn and C0 = {0}, the switch from the traditional

definition of MRV to the new one is seamless and many results established under vague convergence are still
applicable. See, for example, Section 3.1 of Das et al. (2013) for related discussions.

A few comments on condition (C1) follow. Essentially, the condition is the same as Assumption 2.1 of Asimit
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et al. (2011), which implies asymptotic dependence among the risk RV’s in X . It is well known that it also implies
X has equivalent tails that are regularly varying. That is, we have Xi ∈ RV−α for some α > 0 and every i ∈ N .
Moreover,

lim
t→∞

F i(t)
F1(t)

= lim
t→∞

P
(
Xi > t,

⋂
j 6=i (X j ≥ 0)

)
F1(t)

= µ(R+×·· ·× (1,∞)×R+×·· ·×R+) =: ci, (14)

where ci ∈ (0,∞), i ∈N . Using similar reasoning, we can see that the nonnegativity of X j’s is not essential. In fact,
the same conclusion would hold as long as there exists a real-valued lower bound for X j’s, which is unsurprising
given that we are modeling the right tail behavior.

Theorem 1. Suppose that the risk vector X satisfies condition (C1). Then the GTE-based proportional allocation
in equation (5) satisfies

lim
q↑1

r̃i,q =
∫ 1

0

µ(Ai,z)

µ(ℵ)
dz, i ∈N , (15)

where Ai,z =
{
x ∈ Rn

+ : xi > z ∑
n
k=1 xk, ∑

n
k=1 xk > 1

}
and ℵ =

{
x ∈ Rn

+ : ∑
n
k=1 xk > 1

}
.

Proof. By equation (5), we have, for every i ∈N ,

lim
q↑1

r̃i,q = lim
q↑1

E(Ri |S > sq) = lim
t→∞

E(Ri |S > t), (16)

where t = sq. Since Ri given by (6) is nonnegative, we have

E(Ri |S > t) =
∫ 1

0
P(Ri > z |S > t) dz =

∫ 1

0

P(Xi > Sz, S > t)/F1(t)
P(S > t)/F1(t)

dz. (17)

On the one hand, it is well known (Resnick, 2007, Proposition 7.3) that under condition (C1), P(S > t) ∼
µ(ℵ)F1(t), where 0 < µ(ℵ)< ∞ because µ ∈M

(
Rn
+ \{0}

)
.

On the other hand, to examine the numerator in the last term of (17), write Bz = {x∈ [0,∞) : xi = z ∑
n
k=1 xk, ∑

n
k=1 xk >

1} for z∈ [0,1] and Z = {z∈ (0,1] : µ(Bz)> 0}; that is, Z is the collection of points z in (0,1] such that the measure
µ assigns a positive mass to the set Bz. We claim that there are at most countably many elements in Z. To see this,
for n = 1,2, . . ., write Zn = {z ∈ Z : µ(Bz) ≥ 1/n}. If there are uncountably many elements in Z, then, since the
union of countably many sets with finite members is at most countable, there exists a positive integer n0, such that
Zn0 has infinite members, and hence has a countable subset Zc

n0
with infinite members. Since Bz1

⋂
Bz2 = /0 for

any z1 6= z2, this implies µ
(⋃

z∈Zc
n0

Bz
)
= ∑z∈Zc

n0
µ(Bz) = ∞. However, noticing that

⋃
z∈[0,1] Bz = ℵ and that Bz’s

are disjoint, we have µ
(⋃

z∈Zc
n0

Bz
)
≤ µ
(⋃

z∈[0,1] Bz
)
= µ(ℵ)< ∞, which is a contradiction. Hence, the set Z has at

most countably many members.
For every z ∈ (0,1]\Z, we have

µ(∂Ai,z) = µ

(
Bz

⋃{
x ∈ [0,∞) : xi > z

n

∑
k=1

xk,
n

∑
k=1

xk = 1

})

≤ µ(Bz)+µ

({
x ∈ [0,∞) :

n

∑
k=1

xk = 1

})
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= 0. (18)

Hence, it holds for z ∈ (0,1]\Z that

lim
t→∞

P(Xi > Sz, S > t)
F1(t)

= lim
t→∞

P(Xi/t > Sz/t, S/t > 1)
F1(t)

= µ

(
x ∈ [0,∞) : xi > z

n

∑
k=1

xk,
n

∑
k=1

xk > 1

)
= µ(Ai,z) ,

where in the last step, we used equations (11) and (18). Thus,

lim
t→∞

E (Ri |S > t) = lim
t→∞

∫
(0,1]\Z

P(Xi > Sz, S > t)/F1(t)
P(S > t)/F1(t)

dz

=
∫
(0,1]\Z

lim
t→∞

P(Xi > Sz, S > t)/F1(t)
P(S > t)/F1(t)

dz

=
∫
(0,1]\Z

µ(Ai,z)

µ(ℵ)
dz

=
∫ 1

0

µ(Ai,z)

µ(ℵ)
dz,

where in the first and last steps we used the fact that Z has at most countably members, and in the second step we
used the Dominated Convergence Theorem. This completes the proof.

In practical applications, it may be more convenient to work with an asymptotic result expressed in terms of
the spectral measure rather than the limit measure. Next, we are going to rewrite our result in Theorem 1 via a
semi-parametric form using the spectral measure. To this end, write Y =

(
1/F1(X1), . . . ,1/Fn (Xn)

)
. Under the

condition of Theorem 1, there exists a measure µ∗, such that, for any x > 0,

t P

(
n⋃

i=1

(Yi > xit)

)
→ µ∗[0,x]c;

see, e.g., Proposition 5.10 of Resnick (2008). For some spectral measure H, which is a probability measure, on
Wn−1 =

{
x ∈ Rn

+ : ∑
n
k=1 xk = 1

}
, the limit measure µ∗ satisfies dµ∗ ◦T−1 = nr−2dr×dH, where T maps x ∈ Rn

+

into (r,w) = (∑n
k=1 xk,x/∑

n
k=1 xk) ∈ (0,∞)×Wn−1, and T−1 denotes its inverse.

Proposition 2. The asymptotic expression for the GTE-based proportional allocation in Theorem 1 can be rewritten
in terms of a spectral measure H as follows:

lim
q↑1

r̃i,q =

∫
Wn−1

c1/α

i w1/α

i

(
∑

n
k=1 c1/α

k w1/α

k

)α−1
H(dw)∫

Wn−1

(
∑

n
k=1 c1/α

k w1/α

k

)α

H(dw)
.

Proof. We use the idea of Barbe et al. (2006) to prove the proposition. Write bi(·) =
(
1/F i

)←
(·) and note that, for

9



any z ∈ (0,1],

P(Xi > zS, S > t) = P

(
bi (Yi)> z

n

∑
k=1

bk (Yk) ,
n

∑
k=1

bk (Yk)> t

)
= P

(
Y
s
∈ A∗z,t

)
,

where s = 1/F1(t) and A∗z,t =
{

a ∈ Rn
+ : bi (ais)> z∑

n
k=1 bk (aks) ,∑n

k=1 bk (aks)> t
}
. Here we used the facts that

bi (Yi) =
(
1/F i

)← (1/F i (Xi)
)
= F←i (Fi (Xi)) and P(F←i (Fi (Xi)) = Xi) = 1 (see McNeil et al., 2015, Proposition

A.4) and that copulas are invariant under componentwise-monotone increasing transforms. Recall equation (14),
which implies that bk(s)∼ c1/α

k b1(s)∼ c1/α

k t, k ∈ N. It follows that, for any i ∈ N and z ∈ (0,1],

P(Xi > zS,S > t)
F1(t)

= sP
(

Y
s
∈ A∗z,t

)
∼ sP

(
Y
s
∈ A∗z

)
→ µ∗

(
A∗z
)
,

where A∗z =
{

a ∈ Rn
+ : c1/α

i a1/α

i > z∑
n
k=1 c1/α

k a1/α

k ,∑n
k=1 c1/α

k a1/α

k > 1
}
. The proof of Theorem 1 shows that the

left-hand size tends to µ(Az), and hence, µ(Az) = µ∗
(
A∗z
)
. Note that

T−1 (A∗z) =

{
(r,w) ∈ (0,∞)×Wn−1 : c1/α

i (rwi)
1/α > z

n

∑
k=1

c1/α

k (rwk)
1/α ,

n

∑
k=1

c1/α

k (rwk)
1/α > 1

}

=

{
(r,w) ∈ (0,∞)×Wn−1 : c1/α

i w1/α

i > z
n

∑
k=1

c1/α

k w1/α

k ,r >

(
n

∑
k=1

c1/α

k w1/α

k

)−α}
.

Therefore, ∫ 1

0
µ(Az)dz =

∫ 1

0
µ∗
(
A∗z
)

dz

= n
∫ 1

0

∫
Wn−1

1(
c1/α

i w1/α

i >z∑
n
k=1 c1/α

k w1/α

k

) ∫ ∞(
∑

n
k=1 c1/α

k w1/α

k

)−α r−2drH(dw)dz

= n
∫ 1

0

∫
Wn−1

1(
c1/α

i w1/α

i >z∑
n
k=1 c1/α

k w1/α

k

)
(

n

∑
k=1

c1/α

k w1/α

k

)α

H(dw)dz

= n
∫

Wn−1

(
n

∑
k=1

c1/α

k w1/α

k

)α ∫ 1

0
1(

c1/α

i w1/α

i >z∑
n
k=1 c1/α

k w1/α

k

)dzH(dw)

= n
∫

Wn−1

(
n

∑
k=1

c1/α

k w1/α

k

)α

c1/α

i w1/α

i

∑
n
k=1 c1/α

k w1/α

k

H(dw)

= n
∫

Wn−1

c1/α

i w1/α

i

(
n

∑
k=1

c1/α

k w1/α

k

)α−1

H(dw).

Similarly, we can show that

µ(ℵ) = n
∫

Wn−1

(
n

∑
k=1

c1/α

k w1/α

k

)α

H(dw).

10



Together, this leads to an allocation to the ith line of

∫
Wn−1

c1/α

i w1/α

i

(
∑

n
k=1 c1/α

k w1/α

k

)α−1
H(dw)∫

Wn−1

(
∑

n
k=1 c1/α

k w1/α

k

)α

H(dw)
, (19)

which completes the proof.

As the succeeding remark will show, despite the distinct expressions between the asymptotic results for the
GTE-based allocation, given by (15) in this paper, and the CTE-based allocation, given by Theorem 2.1 of Asimit
et al. (2011), a closer examination reveals that they are actually identical. However, an important difference is
that the asymptotic result derived for the GTE-based allocation in this paper is applicable to infinite-mean models,
whereas the CTE-based allocation in the literature is not. Notably, infinite-mean models have attracted increasing
scholarly attention in risk management for areas such as climate risk, catastrophe risk, and operational risk (for re-
cent discussions on infinite-mean models, see, e.g., Chen et al., 2024). This suggests that the GTE-based allocation
is a more versatile alternative to the CTE-based allocation widely studied in the existing literature.

Remark 3. Under condition (C1), Theorem 2.1 of Asimit et al. (2011), together with Proposition 7.3 of Resnick
(2007) and equation (9) of Hua and Joe (2011), implies that, if α > 1, then

lim
q↑1

ri,q =
α−1

α

1
α−1 µ

(
x ∈ Rn

+ : xi > 1
)
+

∫ 1
0 µ
(
x ∈ Rn

+ : xi > z,∑n
k=1 xk > 1

)
dz

µ(x ∈ Rn
+ : ∑

n
k=1 xk > 1)

=
ci +(α−1)

∫ 1
0 µ
(
x ∈ Rn

+ : xi > z,∑n
k=1 xk > 1

)
dz

αµ(ℵ)
, i ∈N ,

where ci is given by equation (14). By using a similar idea to that in the proof of Proposition 2 to convert the
expression above using the sepctral measure, one can show that the right-hand side of the equation above can also
be written as (19), and hence,

lim
q↑1

ri,q = lim
q↑1

r̃i,q, for all i ∈N .

The seemingly surprising asymptotic identity above aligns well with our intuition. To see this, note that the
decomposition of the limit measure under MRV into a product measure (see Theorem 6.1(4) of Resnick, 2007) shows
that the radial component S and the polar coordinate component X/S are independent in the tail. Consequently,
for S sufficiently large, the conditional covariance between S and Ri, defined by equation (6), diminishes. This
implies that E(Xi |S > sq) and E(S |S > sq)×E(Ri |S > sq) converge to the same value as q ↑ 1, and hence so do
ri,q and r̃i,q.

3.2 Gumbel case

In this section, we consider the case where the individual risks follow distributions that are in MDA(Λ). We shall
assume the following condition:

11



(C2) For some positive function a(·) with a(t)→∞ and a(t) = o(t) and some nonzero and nondegenerate measure
µ on [−∞,∞)n \{−∞}, the nonnegative risk vector X satisfies that

P((X− t1)/a(t) ∈ ·)
F1(t)

→ µ in M([−∞,∞)n \{−∞}) , (20)

where 1 a vector with all components equal to 1 and the limit measure µ satisfies µ(−∞,∞)> 0.

Condition (C2) implies that the tails of Xi, i ∈ N , are equivalent; specifically, F i(t) ∼ ciF1(t), i ∈ N , with
ci = µ(x : xi > 0). Moreover, we remark that, for the limit measure µ in condition (C2), µ

(
[−∞, ·]c

)
and µ

(
(·,∞]

)
are continuous functions on (−∞,∞). To see this, it suffices to show that, for small δ > 0 and u,v ∈ Rn such
that 0 < vi− ui < δ, i ∈ N , µ((u,v]) can be made arbitrarily close to 0. This is obvious since, by equation (41),
µ((u,v])≤ ∑

n
i=1 (µ(x : xi > ui)−µ(x : xi > vi)) = ∑

n
i=1 ci (e−ui− e−vi) , which goes to 0 as δ→ 0.

The following proposition states that condition (C2) is equivalent to what is essentially needed in Section 2.2 of
Asimit et al. (2011), where their assumption, as described in equation (2.11) of their paper, is formulated in terms
of vague convergence. The equivalence hinges on the fact that the limit measure assigns zero mass to the lines
through∞. The proof is relegated to the online supplemental material.

Proposition 4. The M convergence given in condition (C2) is equivalent to the existence of some positive auxiliary
function a(·) with a(t)→ ∞ and a(t) = o(t) and some nonzero and nondegenerate Radon measure ν on [−∞,∞]n \
{−∞}, such that

P((X− t1)/a(t) ∈ ·)
F1(t)

v→ ν in M+ ([−∞,∞]n \{−∞}) , (21)

where M+ ([−∞,∞]n \{−∞}) denotes the set of all nonnegative Radon measures on [−∞,∞]n \{−∞}.

The equivalence verified in Proposition 4 of this current paper and Note 2.2 of Asimit et al. (2011) allow us to
conclude that, under condition (C2),

P(S > nt)∼ µ
(
x :

n

∑
k=1

xk > 0
)

F1(t). (22)

Theorem 5. Suppose that risk portfolio X has joint distribution satisfying condition (C2). Then it holds that

lim
q↑1

r̃i,q =
1
n
, i ∈N .

Remark 6. By Theorem 2.2 and equation (2.15) of Asimit et al. (2011), it is obvious that, under condition (C2),
the CTE-based proportional allocation ri,q→ 1/n as q ↑ 1, i ∈N , meaning that, asymptotically, it agrees with the
GTE-based counterpart.

Proof of Theorem 5. By equation (5), we have, for every i ∈N ,

lim
q↑1

r̃i,q = lim
q↑1

E(Ri |S > sq) = lim
t→∞

E(Ri |S > nt),

12



where t = sq/n. First note that Ri ≥ 0 and consider

E(Ri |S > nt) =
∫ 1

0
P(Ri > z |S > nt)dz

=
∫ 1

0

P(Xi > Sz, S > nt)
P(S > nt)

dz

=

(∫ 1/n

0
+
∫ 1

1/n

)
1

P(S > nt)
P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
(nz−1)t

a(t)
,

S− nt
a(t)

> 0
)

dz

=: I1(t)+ I2(t).

Given any ε > 0 fixed, we have a(t)< εt for t sufficiently large. It follows that

limsup
t→∞

I2(t) = limsup
t→∞

∫ 1

1/n

1
P(S > nt)

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
(nz−1)t

a(t)
,

S− nt
a(t)

> 0
)

dz

≤
∫ 1

1/n
limsup

t→∞

1
P(S > nt)

P
(Xi− t

a(t)
> z

S−nt
a(t)

+
nz−1

ε
,

S− nt
a(t)

> 0
)

dz

≤
∫ 1

1/n
limsup

t→∞

P
(
(Xi− t)/a(t)> (nz−1)/ε

)
/F1(t)

P(S > nt)/F1(t)
dz

=
∫ 1

1/n

µ
(
x : xi > (nz−1)/ε

)
µ
(
x : ∑

n
k=1 xk > 0

) dz

=

∫ 1
1/n cie−(nz−1)/εdz

µ
(
x : ∑

n
k=1 xk > 0

)
≤ ci ε

nµ
(
x : ∑

n
k=1 xk > 0

) ,
where the second step follows from Fatou’s lemma and the fact that the integrand on the left-hand size is not greater
than 1, the fourth step is due to condition (C2) and equation (22), and the fifth step arises from equation (41). By
the arbitrariness of ε, we have I2(t)→ 0.

Now let us consider I1(t). It is obvious that I1(t)≤ 1/n and we now show that liminft→∞ I1(t)≥ 1/n. Note that,
for every z ∈ (0,1],

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
nz−1

ε
,

S− nt
a(t)

> 0
)
= P

(
X− t1

a(t)
∈ Az

)
,

where Az = {x ∈ (−∞,∞) : xi > z ∑
n
k=1 xk +(nz−1)/ε, ∑

n
k=1 xk > 0}. Write Z = {z ∈ (0,1] : µ(∂Az) > 0} and

Zc = (0,1] \Z. Using a similar argument to that in the proof of Theorem 1, we can verify that there are at most
countably many elements in Z. Therefore,

liminf
t→∞

I1(t) = liminf
t→∞

∫
(0,1/n]∩Zc

1
P(S > nt)

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
(nz−1)t

a(t)
,

S− nt
a(t)

> 0
)

dz

≥
∫
(0,1/n]∩Zc

liminf
t→∞

1
P(S > nt)

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
(nz−1)t

a(t)
,

S− nt
a(t)

> 0
)

dz

13



≥
∫
(0,1/n]∩Zc

liminf
t→∞

P((X− t1)/a(t) ∈ Az)/F1(t)
P(S > nt)/F1(t)

dz

=
∫
(0,1/n]∩Zc

µ(Az)

µ(x : ∑
n
k=1 xk > 0)

dz

=
∫ 1/n

0

µ(Az)

µ(x : ∑
n
k=1 xk > 0)

dz

≥ 1
n
−

∫ 1/n
0 µ

(
x : xi ≤ ∑

n
k=1 xk +

nz−1
ε

)
dz

µ
(
x : ∑

n
k=1 xk > 0

) , (23)

where in the first and fifth steps, we used the fact that Z has countably many elements, in the second step we used
Fatou’s lemma, and in the fourth step we used the M convergence in condition (C2), equation (22), and the fact that
µ(∂Az) = 0 for z ∈ Zc. Further note that, by equation (41),

µ
(
x : xi ≤

n

∑
k=1

xk +
nz−1

ε

)
= µ
(
x :

n

∑
k=1,k 6=i

xk ≥−
nz−1

ε

)
≤

n

∑
k=1,k 6=i

µ
(
x : xk ≥−

nz−1
(n−1)ε

)
→ 0

as ε→ 0. It follows from (23) that liminft→∞ I1(t)≥ 1/n, and hence, we can conclude limt→∞ I1(t) = 1/n.
This completes the proof.

4 Asymptotically independent portfolios

4.1 Fréchet case

The first Fréchet case we consider in this section follows a setup similar to that in Section 3.1, except that we
now assume asymptotic independence. Naturally, this leads to a more transparent result regarding the limit of the
GTE-based allocation.

(C3) Suppose that the nonnegative risk vector X satisfies the M convergence in condition (C1) and that the limit
measure µ = µI which only assigns mass to the axes.

Under condition (C3), equation (14) can be rewritten as

lim
t→∞

F i(t)
F1(t)

= µI (R+×·· ·× (1,∞)×R+×·· ·×R+) = µI (x : xi > 1,x j = 0 for all j 6= i) =: ci ∈ [0,∞).

Note that we also have µI
(
x ∈ Rn

+ : xi > z
)
= ciz−α for z > 0.

Theorem 7. Suppose that risk portfolio X satisfies condition (C3). Then it holds that

lim
q↑1

r̃i,q =
ci

∑
n
k=1 ck

, i ∈N . (24)

Proof. Following the proof of Theorem 1, we see that

lim
q↑1

r̃i,q = lim
t→∞

E(Ri |S > t) =
∫ 1

0

µI (Ai,z)

µI (ℵ)
dz,
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where Ai,z =
{
x ∈ Rn

+ : xi > z ∑
n
k=1 xk, ∑

n
k=1 xk > 1

}
and ℵ =

{
x ∈ Rn

+ : ∑
n
k=1 xk > 1

}
. Since µI puts mass on the

axes only, we have

µI (ℵ) =
n

∑
k=1

µI
(
x ∈ Rn

+ : xk > 1
)
=

n

∑
k=1

ck, (25)

and for 0 < z < 1,

µI (Ai,z) = µI(x ∈ Rn
+ : xi > 1) = ci. (26)

Combining (25) and (26) yields (24), which completes the proof.

Remark 8. Theorem 3.1 of Asimit et al. (2011) and equation (9) of Hua and Joe (2011) imply that, if condition
(C3) holds with tail index α > 1, then limq↑ ri,q = limq↑1 r̃i,q.

We now present the result for another structure where the components of X are asymptotically independent
and belong to MDA(Ψ). Note that in this case the tail indices of the risks are not necessarily the same.

(C4) Suppose that the nonnegative risk vector X has marginal distributions Fi with F i ∈ RV−αi , αi > 0. Also sup-
pose that there exist some measurable, bounded regularly varying functions hi(·) : (0,∞)→ (0,∞), such that,
for distinct i, j ∈N , the relation P(X j > t |Xi = x)∼ F j(t)hi(x) holds uniformly for x ∈ [0,∞). In addition,
for n ≥ 3, it is also assumed that for distinct i, j,k ∈ N , P(X j > t,Xk > t |Xi = x) = o

(
F j(t)+Fk(t)

)
hi(x)

holds uniformly for x ∈ [0,∞).

Condition (C4) essentially encapsulates a collection of assumptions made in Assumption 3.2 and Theorem 3.2
of Asimit et al. (2011). It implies asymptotic independence among the risk positions in X . The versatility and
application of the dependence structure outlined in condition (C4) have been discussed extensively in the literature
(Asimit and Badescu, 2010; Li et al., 2010).

Under condition (C4), it can be shown that, for i ∈N ,

P

(
n

∑
k=1,k 6=i

Xk > t

∣∣∣∣∣Xi = x

)
∼ hi(x)

n

∑
k=1,k 6=i

Fk(t) (27)

holds uniformly for x ∈ [0,∞). In addition, we have

P(S > t)∼
n

∑
k=1

Fk(t), (28)

indicating S has a regularly varying tail with index min1≤i≤n αi. See Lemma 3.2 and equation (3.12) in Theorem
3.2 of Asimit et al. (2011).

The following theorem contains our finding on the GTE-based allocation under condition (C4). It’s worth
noting that the result is formulated in terms of the ratio of tail distribution functions to accommodate different
scenarios where tails can be either equivalent or some tails dominate others.
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Theorem 9. Under condition (C4), it holds that

lim
q↑1

r̃i,q = lim
t→∞

F i(t)
∑

n
k=1 Fk(t)

, i ∈N , (29)

provided that the limit on the right-hand side exists.

Remark 10. If the limit on right-hand side of (29) exists, then one may show that it agrees asymptotically with the
corresponding CTE-based allocation when condition (C4) holds with α := min1≤i≤n αi > 1. To see this, suppose
that limt→∞ F i(t)/∑

n
k=1 Fk(t) = r ∈ [0,1), and note that the CTE-based allocation satisfies

lim
q↑1

ri,q = lim
t→∞

E (Xihi (Xi))∑
n
k=1,k 6=i Fk(t)+ tF i(t) αi

αi−1

∑
n
k=1 Fk(t)E(S|S > t)

= lim
t→∞

α−1
α

E (Xihi (Xi))∑
n
k=1,k 6=i Fk(t)+ tF i(t) αi

αi−1

t ∑
n
k=1 Fk(t)

= lim
t→∞

α−1
α

αi

αi−1
F i(t)

∑
n
k=1 Fk(t)

, i ∈N .

Noticing that α = αi for r > 0, we conclude that, for every r ∈ [0,1), the above reduces to r, which is also the limit
of the GTE-based allocation.

Proof of Theorem 9. First note that equations (16) and (17) remain valid. For z ∈ (0,1),

P(Xi > Sz, S > t) = P(Xi > Sz, S > t, Xi > zt)

= P(S > t, Xi > zt)−P(Sz≥ Xi, Xi > zt)

= P(S > t, Xi > t)+P(S > t, zt < Xi ≤ t)−P(Sz≥ Xi, Xi > t)−P(Sz≥ Xi, zt < Xi ≤ t)

= P(Xi > t)+P(S > t, zt < Xi ≤ t)−P(Sz≥ Xi, Xi > t)−P(Sz≥ Xi, zt < Xi ≤ t).

Accordingly, we can write

∫ 1

0
P(Xi > Sz, S > t)dz

= P(Xi > t)+
∫ 1

0
P(S > t, zt < Xi ≤ t)dz−

∫ 1

0
P(Sz≥ Xi, Xi > t)dz−

∫ 1

0
P(Sz≥ Xi, zt < Xi ≤ t)dz

=: I1(t)+ I2(t)− I3(t)− I4(t).

Obviously, I4(t)≤ I2(t), and hence, by (28), it suffices to show

I2(t) = o(1)P(S > t) and I3(t) = o(1)P(S > t).

We deal with I2(t) first. Since equation (27) holds uniformly over x ∈ [0,∞), for any ε > 0 fixed henceforth,
there exists t0 > 0, such that, for all x > 0 and t > t0,

(1− ε)hi(x)
n

∑
k=1,k 6=i

Fk(t) ≤ P(S−Xi > t |Xi = x) ≤ (1+ ε)hi(x)
n

∑
k=1,k 6=i

Fk(t). (30)
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Therefore, we have

I2(t) =
∫ 1

0

∫ t

zt
P(S > t |Xi = x)Fi(dx)dz

=
∫ t

0

x
t

P(S > t |Xi = x)Fi(dx)

=

(∫ t−t0

0
+
∫ t

t−t0

)
x
t

P(S > t |Xi = x)Fi(dx)

=: I21(t)+ I22(t),

where the second step follows from Fubini’s Theorem. Moreover,

I21(t) =
∫ t−t0

0

x
t

P(S−Xi > t− x |Xi = x)Fi(dx)

≤ (1+ ε)
n

∑
k=1,k 6=i

∫ t−t0

0

x
t

hi(x)Fk(t− x)Fi(dx)

= (1+ ε)
n

∑
k=1,k 6=i

∫ 1−t0/t

0

∫ t−t0

zt
hi(x)Fk(t− x)Fi(dx)dz

= (1+ ε)
n

∑
k=1,k 6=i

∫ 1−t0/t

0

∫ t−t0

zt
Fk(t− x)F∗i (dx)dz, (31)

where in the third step we used Fubini’s Theorem, and the distribution function F∗i introduced in the last step
satisfies F∗i (dx) = hi(x)Fi(dx). Note that F∗i is a proper distribution function because E (hi(Xi)) = 1. Since F i and
hi are regularly varying, F∗i has a regularly varying tail with an index of, say, −α∗i < 0. Moreover, since hi is
bounded, we have

F∗i (t) = O
(
F i(t)

)
. (32)

Let us introduce a nonnegative random variable X∗i ∼ F∗i that is independent of X . It holds for every z ∈ (0,1] that∫ t

zt
Fk(t− x)F∗i (dx) = P(X∗i +Xk > t,zt < X∗i ≤ t)

= P(X∗i +Xk > t)−P(X∗i > t)−P(X∗i +Xk > t,X∗i ≤ zt)

≤ (1+o(1))(F∗i (t)+Fk(t))−F∗i (t)−Fk(t)F∗i (zt)

= o(1)(F∗i (t)+Fk(t)),

where the second last step follows from Lemma 1.3.1 of Embrechts et al. (1997). Therefore,

lim
t→∞

I21(t)
P(S > t)

≤ (1+ ε)
n

∑
k=1,k 6=i

lim
t→∞

∫ 1

0

∫ t
zt Fk(t− x)F∗i (dx)

P(S > t)
dz

≤ (1+ ε)
n

∑
k=1,k 6=i

∫ 1

0
lim
t→∞

∫ t
zt Fk(t− x)F∗i (dx)

P(S > t)
dz

= 0, (33)
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where the first step is due to equation (31) and the second step follows from the Dominated Convergence Theorem,
which applies because, by Lemma 1.3.1 of Embrechts et al. (1997),∫ t

zt Fk(t− x)F∗i (dx)
P(S > t)

≤ P(Xk +X∗i > t)
P(S > t)

∼ Fk(t)+F∗i (t)
P(S > t)

.

Due to relation (32), the term above is bounded and integrable over z ∈ (0,1].
Besides,

I22(t)≤
∫ t

t−t0
P(S > t |Xi = x)Fi(dx)

= P(S > t, t− t0 < Xi ≤ t)

≤ P(t− t0 < Xi ≤ t)

= F i(t− t0)−F i(t)

= o(1)P(S > t).

The above inequality, together with (33), implies I2(t) = o(1)P(S > t).
Next, we turn to I3(t). For any δ ∈ (0,1), we have

I3(t) =
∫ 1

0

∫
∞

t
P
(

S≥ x
z

∣∣∣∣Xi = x
)

Fi(dx)dz

=

(∫ 1−δ

0
+
∫ 1

1−δ

)∫
∞

t
P
(

S−Xi ≥
(

1
z
−1
)

x
∣∣∣∣Xi = x

)
Fi(dx)dz

=: I31(t)+ I32(t).

Let M = sup1≤i≤n|hi|. For t large, we have

I31(t)≤
∫ 1−δ

0

∫
∞

t
P
(

S−Xi ≥
δt

1−δ

∣∣∣∣Xi = x
)

Fi(dx)dz

≤ (1+ ε)
n

∑
k=1,k 6=i

∫ 1−δ

0

∫
∞

t
hi(x)Fk

(
δt

1−δ

)
Fi(dx)dz

≤ (1+ ε)M F i(t)
n

∑
k=1,k 6=i

Fk

(
δ

1−δ
t
)
,

where the second inequality holds due to (30). It is easy to see that I31(t) = o(1)P(S > t). Moreover, for t large,

I32(t) =
∫ 1

1−δ

∫
∞

t
P
(

S−Xi ≥
(

1
z
−1
)

x
∣∣∣∣Xi = x

)
Fi(dx)dz ≤ δF i(t).

Letting δ→ 0, we obtain I3(t) = o(1)P(S > t). This completes the proof.
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4.2 Gumbel case

Finally, in this subsection, we consider the case where the marginal distributions of X are in MDA(Λ) and the
components are asymptotically independent. Specifically, motivated by Assumption 3.3 of Asimit et al. (2011)
(see also Mitra and Resnick, 2009, Section 2.2), we introduce the following condition:1

(C5) Suppose that the nonnegative risk vector X has marginal distribution F1 ∈MDA(Λ) with F i(t)/F1(t)→ ci

for some ci ∈ [0,∞), i ∈ N , and that F1 has auxiliary function a(·). Also suppose that, for every x > 0 and
distinct i, j ∈N , it holds for some Li j > 0 that

P(Xi > t,X j > a(t)x) = o
(
F1(t)

)
and P(Xi > Li j a(t),X j > Li j a(t)) = o

(
F1(t)

)
. (34)

Our main result for this case is given below.

Theorem 11. Under condition (C5), it holds that

lim
q↑1

r̃i,q =
ci

∑
n
k=1 ck

, i ∈N .

Remark 12. With Theorem 11, we can conclude that, by Theorem 3.3 and equation (2.15) of Asimit et al. (2011),
the CTE-based and GTE-based allocations agree asymptotically when the risks in X belong to MDA(Λ) and
satisfy the asymptotic independence condition in (C5).

To prove Theorem 11, let us start by considering a simpler two-dimensional case, which will play an important
auxiliary role in establishing the desired result in higher dimensions.

Lemma 13. Let N = {1,2} in condition (C5). Then

lim
q↑1

r̃i,q =
ci

c1 + c2
, i ∈N .

Proof. We prove for i = 1 only and the result for i = 2 follows immediately. Note that equations (16) and (17) still
hold. Obviously,

E (R1|S > t) =
∫ 1

0

P(X1 > zS,S > t)
P(S > t)

dz

=
∫ 1

0

P(X1 > zX2/(1− z),X1 +X2 > t)
P(S > t)

dz

=
∫

∞

0

1
(1+w)2

P(X1 > wX2,X1 +X2 > t)
P(S > t)

dw, (35)

where the last step follow from a change of variable w = z/(1− z) in the integration.
We claim that the probability P(X1 > wX2,X1 +X2 > t) is asymptotically equivalent to F1(t) for every w ∈

(0,∞) and now prove the claim. For every fixed w > 0, by the proof of Lemma 2.1 of Mitra and Resnick (2009), it

1Equation (3.24) in Asimit et al. (2011) contains a minor typo, making it a weaker condition compared to equation (34) included in
condition (C5) of this current paper. However, the assumption used by Asimit et al. (2011) to obtain the desired asymptotics for the
CTE-based allocation is exactly equation (34).
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holds for some M > max{L12,L12/w} that

1
F1(t)

P
((

X1− t
a(t)

,
X2

a(t)

)
∈ ·
)

ν→ µ1 in M+ ([−M,∞]× [−∞,∞]) , (36)

where M+ ([−M,∞]× [−∞,∞]) is the set of all nonnegative Randon measures on [−M,∞]× [−∞,∞] and the Radon
measure µ1 is defined as µ1 (dx1,dx2) = e−x1dx1ε0 (dx2), where ε0 denotes the Dirac measure. Now, for fixed w > 0
and M > 0 given above, split the probability in the numerator of equation (35) as follows:

P(X1 > wX2,X1 +X2 > t)

= P(X1 > wX2,X1 +X2 > t,X1 > t−Ma(t))+P(X1 > wX2,X1 +X2 > t,X1 ≤ t−Ma(t))

=: I1(t)+ I2(t).

Note that

I2(t) = P(X1 > wX2,X1 +X2 > t,X1 ≤ t−Ma(t),X2 > Ma(t))

≤ P(X1 > wX2,X2 > Ma(t))

≤ P(X1 > L12 a(t),X2 > L12 a(t))

= o
(
F1(t)

)
,

where in the second last step, we used the fact that M > max{L12,L12/w}. For I1(t), write

I1(t) = P(X1 > wX2,X1 +X2 > t,X1 > t−Ma(t),X2 ≤Ma(t))

+P(X1 > wX2,X1 +X2 > t,X1 > t−Ma(t),X2 > Ma(t))

= I11(t)+ I12(t).

Obviously, we have I12(t) ≤ P(X1 > wMa(t),X2 > Ma(t)) = o
(
F1(t)

)
. Moreover, with A = {(x1,x2) ∈ R2 : x1 +

x2 > 0,x1 >−M,x2 ≤M},

lim
t→∞

I11(t)
F1(t)

= lim
t→∞

1
F1(t)

P(X1 > wX2,X1 +X2 > t,X1 > t−Ma(t),X2 ≤Ma(t))

= lim
t→∞

1
F1(t)

P(X1 +X2 > t,X1 > t−Ma(t),X2 ≤Ma(t))

= lim
t→∞

1
F1(t)

P
((

X1− t
a(t)

,
X2

a(t)

)
∈ A
)

= µ1(A)

=
∫

∞

0
e−x1dx1

= 1,

where in the second step, we used the fact that t−Ma(t)≥ wMa(t) for t large enough; in the fourth step, we used
the vague convergence in equation (36); and in the second last step, we used the fact that µ1 concentrates on the
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x-axis only.
In summary, we have established the claim regarding the asymptotic equivalence between P(X1 > wX2,X1 +X2 > t)

and F1(t) for every w ∈ (0,∞). By equation (35), we have

lim
q↑1

r̃1,q = lim
t→∞

E (R1|S > t)

= lim
t→∞

∫
∞

0

1
(1+w)2

P(X1 > wX2,X1 +X2 > t)
P(S > t)

dw

=
∫

∞

0

1
(1+w)2 lim

t→∞

P(X1 > wX2,X1 +X2 > t)
P(S > t)

dw

=
c1

c1 + c2

∫
∞

0

1
(1+w)2 lim

t→∞

P(X1 > wX2,X1 +X2 > t)
F1(t)

dw

=
c1

c1 + c2

∫
∞

0

1
(1+w)2 dw

=
c1

c1 + c2
,

where we used the Dominated Convergence Theorem in the second step. The proof is now completed.

With the asymptotic result established in the two-dimensional case, we are now in a position to prove the
n-dimensional case stated in Theorem 11.

Proof of Theorem 11. Suppose n > 2, and write S−i = S−Xi. We prove the assertion by showing that S−i and Xi,
regarded as two risks, satisfy the conditions for X1 and X2 in Lemma 13, respectively.

First, by Corollary 2.2 of Mitra and Resnick (2009),

P(S−i > t)∼
n

∑
k=1,k 6=i

P(Xk > t)∼
n

∑
k=1,k 6=i

ckF1(t),

where ∑
n
k=1,k 6=i ck ≥ c1 = 1. Hence, because of the closure of MDA(Λ) under tail equivalence, S−i is also in

MDA(Λ). This implies the distribution of S−i has an auxiliary function, say, ã(t), that is asymptotically equivalent
to a(t). Moreover, we obviously have P(Xi > t)/P(S−i > t)→ ci/∑

n
k=1,k 6=i ck ≥ 0.

Second, we show that, for every x > 0,

P(Xi > xã(t),S−i > t) = o(1)P(S−i > t) and P(Xi > t,S−i > xã(t)) = o(1)P(S−i > t) .

The first equation above is a consequence of Lemma 3.4 of Asimit et al. (2011), the asymptotic equivalence between
ã(t) and a(t), and the tail equivalence between X1 and S−i. The other equation holds because

P(Xi > t,S−i > xã(t))
F1(t)

≤ 1
F1(t)

P

(
Xi > t,

n⋃
k=1,k 6=i

{
Xk >

xã(t)
n−1

})

≤
n

∑
k=1,k 6=i

1
F1(t)

P
(

Xi > t,Xk >
xã(t)
n−1

)
→ 0,

21



where the first step is due to the nonnegativity of the risks, and the last step follows from the asymptotic equivalence
between ã(t) and a(t).

Third, we shall prove that there exists Li > 0, such that

P(Xi > Li ã(t),S−i > Li ã(t)) = o(1)P(S−i > t) . (37)

Let Li = (n−1)max j,k∈N , j 6=k L jk. We have

P(Xi > Li ã(t),S−i > Li ã(t))
F1(t)

≤
P
(
Xi > Li ã(t),

⋃n
k=1,k 6=i

(
Xk > max j,k∈N , j 6=k L jk ã(t)

))
F1(t)

≤
n

∑
k=1,k 6=i

P
(
Xi > Li ã(t),Xk > max j,k∈N , j 6=k L jk ã(t)

)
F1(t)

→ 0,

where the first step is due to the nonnegativity of X , and the last step is due to condition (C5) and the asymptotic
equivalence between ã(t) and a(t). Equation (37) holds since X1 and S−i are tail equivalent.

Collectively, we have shown that S−i and Xi satisfy all the assumptions in the two-risk case as described in
Lemma 13, and thus we readily obtain

lim
q↑1

r̃i,q =
ci/∑

n
k=1,k 6=i ck

1+ ci/∑
n
k=1,k 6=i ck

=
ci

∑
n
k=1 ck

.

This completes the proof.

5 Numerical illustrations

The numerical study in this section carries two main purposes. Firstly, it illustrates the desirable similarity between
the CTE-based allocation and GTE-based allocation when the confidence level q is sufficiently close to 1. Secondly,
it demonstrates the smaller variance of the empirical GTE allocation estimator compared to the one associated with
the CTE-based allocation under some data scenarios, advocating for the adoption of the GTE-based allocation from
a statistical robustness perspective.

The set-up in this section is motivated by the simulation in Asimit et al. (2011). Specifically, we consider a
portfolio comprising two dependent risks, denoted as (X1,X2)∈ X 2. The marginal distributions of X1 and X2 follow
the Pareto distribution of the second kind (a.k.a., Lomax distribution), with distribution functions:

F i(x) = (1+ x/λi)
−α for x > 0 and i = 1,2, (38)

where λi > 0 and α > 1 denote the scale and shape parameters, respectively. The distribution function in (38)
belongs to the MDA of the Fréchet distribution. The distribution function F i is regularly varying with a tail index
α. The smaller the value of α, the heavier the tails of X1 and X2.
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Further, the dependence between X1 and X2 is assumed to be governed by the Gumbel copula:

C(u1,u2) = exp
{
−
(
(− logu1)

β +(− logu2)
β
)1/β

}
, (u1,u2) ∈ [0,1]2, β≥ 1. (39)

Figure 1 illustrates the contour plot of the density of the Gumbel copula specified in (39). As depicted, the Gum-
bel copula exhibits a positive dependence relationship in the upper tail region, with the strength of dependence
increasing as β increases. The copula in (39), combined with the marginal distributions in (38), implies that the
joint distribution of (X1,X2) satisfies condition (C1).
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Figure 1: Contour plots of the density function of the Gumbel copula with standard normal margins for β = 2 in
the left panel, β = 3 in the middle panel, and β = 5 in the right panel.

With (38) and (39), the limit measure µ in condition (C1) as well as Theorem 1 can be evaluated via (Asimit
et al., 2011; Tang and Yuan, 2013):

µ(x,∞) = x−α

1 +bx−α

2 −
(

x−αβ

1 +bβ x−αβ

2

)1/β

,

where b = (λ2/λ1)
α and x ∈ R2

+. To demonstrate the calculation of the limit in (15), we focus on the limit of r̃1,q

as q ↑ 1, and the limit of r̃2,q can be obtained via limq↑1 r̃2,q = 1− limq↑1 r̃1,q. Let us rewrite the limit in (15) as

∫ 1

0

µ(x ∈ [0,∞) : x1 > x2 z/(1− z), x1 + x2 > 1)
µ(x ∈ [0,∞) : x1 + x2 > 1)

dz

= 1−
∫ 1

0

µ(x ∈ [0,∞) : x2 > x1 (1− z)/z, x1 + x2 > 1)
µ(x ∈ [0,∞) : x1 + x2 > 1)

dz. (40)

For x ∈ R2
+, define

µ1(x) =−
∂

∂x1
µ(x,∞) = αx−α−1

1

[
1−
(
x−αβ

1 +bβx−αβ

2

)1/β−1 xα(1−β)
1

]
.

To compute the denominator in the integration in (40), we have

µ(x ∈ [0,∞) : x1 + x2 > 1) = µ
(
x ∈ [0,∞) : x1 > 1

)
+µ
(
x ∈ [0,∞) : x1 ∈ [0,1],x1 + x2 > 1

)
= 1+

∫ 1

0
µ1(s,1− s)ds,
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where the second term is calculated numerically. Now consider the numerator in (40). For z ∈ (0,1), we have

µ(x ∈ [0,∞) : x2 > x1 (1− z)/z, x1 + x2 > 1)

= µ
(
x ∈ [0,∞) : x1 > 1

)
+µ
(
x ∈ [0,∞) : x1 ∈ [0,z), x2 > x1 (1− z)/z

)
+µ
(
x ∈ [0,∞) : x1 ∈ [z,1], x2 > 1− x1

)
= 1+

∫ z

0
µ1(s, s(1− z)/z)ds+

∫ 1

z
µ1(s, 1− s)ds,

where the last two terms can be computed using numerical integration.
It is noteworthy the dependence structure between X1 and X2, described by (39), is exchangeable. Namely,

C(F1(x1),F2(x2)) = C(F2(x2),F1(x1)), for all x1,x2 > 0. Thereby, if the scale parameters λ1 = λ2, then the joint
distribution of (X1,X2) is exchangeable. In this case, the CTE-based allocation and GTE-based allocations are
always identical for any confidence level q ∈ [0,1), both equal to one half. For this reason, we generally assume
λ1 6= λ2 in order to highlight the asymptotic identify established in this current paper.

Inspired by the simulation setup in Asimit et al. (2011), we assume the following parameter values in the
baseline scenario:

• The tail index of the marginal distributions: α = 2;

• The scale parameters of the marginal distributions: λ1 = 100000 and λ2 = 300000;

• The dependence parameter of the Gumbel copula: β = 3.

For each confidence level q ∈ {0.1, 0.5, 0.8, 0.95}, we simulate 10000 pairs of X1 and X2 according to the joint
distribution determined by (38) and (39). The empirical tail conditional expectation estimator proposed in Gribkova
et al. (2022b) is used to estimate the corresponding CTE-based allocation ri,q and GTE-based allocation r̃i,q, i= 1,2.
This simulation exercise is repeated 500 times to construct the box plots of the allocation estimates, which are
displayed in Figure 2. Note that the adopted tail conditional expectation estimator is already known to be consistent
(Gribkova et al., 2022b), so the middle lines in the boxes can be viewed as numeric proxies for the true value of the
allocation ratios, while the width of the boxes can be used to assess the robustness of the estimators.

As can be observed, when the confidence level is low (e.g., q = 0.1 and q = 0.5), the CTE-based and GTE-
based allocations differ significantly. At the low confidence level of q = 0.1, the black dots are on the boundary or
outside the whiskers of the ri,q and r̃i,q estimates, indicating that the limit provides a poor approximation of the true
values of the two allocation ratios. As the confidence level increases to 0.5, the intervals associated with the two
allocation methods move closer to the black dots. However, the allocation limit remains outside the whiskers of the
GTE-based allocation r̃i,q estimates. As the confidence level q approaches 1, the medians of the CTE-based and
GTE-based allocation estimates converge. At higher confidence levels (i.e., q = 0.8 and q = 0.95), the allocation
limit dots fall within the middle region of the boxes, with the medians approximately matching the allocation ratio
limit. Moreover, the intervals associated with the GTE-based allocation estimates are significantly narrower than
those of the CTE-based allocation, suggesting that the GTE-based allocation is a statistically robust alternative to
the CTE-based allocation when the confidence level is reasonably high.

Next, we proceed by varying the tail parameter α and the copula dependence parameter β to study their impacts
on our numerical findings. Since the allocation ratio for the second BU is one minus that for the first BU, we only
consider the allocation ratio for the first BU for ease of presentation. Table 1 presents the differences between the
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Figure 2: Box plots of the CTE-based allocation estimates (filled boxes) and GTE-based allocation estimates (blank
boxes) at varying confidence levels. The black dots represent the limits of the two allocation methods, which are
identical.

limits of the CTE-based or GTE-based allocation and the means of the allocation estimates for different values of
tail parameter α ∈ {0.8, 2, 3}. As mentioned earlier, the empirical estimator used is consistent (Gribkova et al.,
2022a,b), so the means can be viewed as reasonable proxies for the true values of the corresponding CTE-based and
GTE-based allocations. We observe the followings. Firstly, when α = 0.8, the limit of the CTE-based allocation
r1,q as q ↑ 1 does not exist, whereas the limit for the GTE-based allocation exists for all α > 0. For all values of
α considered, the differences between the limits and the (mean approximated) true values become smaller as the
confidence level q increases to 1. Secondly, focusing on the high confidence level case (i.e., q = 0.9), we find that
the difference with the asymptotic approximation for α= 0.8 and α= 2 is smaller when α= 2. This occurs because
the magnitudes of the allocation ratios are larger when α = 0.8. However, this pattern should not be interpreted
as an indication that the asymptotic approximation performs better for risk portfolios with lighter tails. In fact,
if we compare the asymptotic approximation difference between α = 2 and α = 3, where the magnitudes of the
allocation ratios are close, we observe the opposite.

α = 0.8
α = 2

(Baseline)
α = 3

CTE method GTE method CTE method GTE method CTE method GTE method

Limit NA 25.60 24.43 24.49
q = 0.1 NA 2.14 0.54 2.24 0.47 1.99
q = 0.5 NA 0.84 0.25 0.68 0.12 0.42
q = 0.8 NA 0.30 0.04 0.12 0.10 0.06
q = 0.9 NA 0.11 0.03 0.02 0.12 0.09

Table 1: Summary of the asymptotic approximation error, defined as the difference between the limit of the CTE-
based or GTE-based allocation and the mean of the allocation estimates, for varying values of the tail parameter
α ∈ {0.8, 2, 3}. All values are reported in the unit of percentage.
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Table 2 presents the coefficient of variation for the CTE-based and GTE-based allocation estimates under
the same sensitivity analysis settings. As shown, across all tail parameter scenarios considered, the coefficient
of variation increases as the confidence level q grows, which is expected as fewer effective samples are used
to estimate the allocation ratios. When comparing the CTE and GTE methods, the coefficient of variation is
consistently smaller for the empirical GTE-based allocation, except for the case of q = 1 and α = 3, where they
are comparable. In high confidence level and heavy-tailed scenarios (e.g., q = 0.9 and α = 0.8 or 2), which are
statistically challenging yet often encountered in practice, the coefficient of variation associated with the GTE-
based allocation estimator is significantly smaller than that of the CTE-based allocation. As a side note, it is worth
mentioning that the conditional second moment of Xi given S > sq is not finite for α ∈ (0,2]. This explains the
excessive volatilities associated with the empirical CTE-based allocation when α is low. The above discussion
highlights the advantage of adopting the GTE-based allocation from a statistical robustness perspective.

α = 0.8
α = 2

(Baseline)
α = 3

CTE method GTE method CTE method GTE method CTE method GTE method

Limit NA 25.60 24.43 24.49
q = 0.1 28.74 0.64 0.97 0.54 0.50 0.52
q = 0.5 28.84 0.83 1.07 0.59 0.55 0.54
q = 0.8 29.13 1.32 1.37 0.78 0.72 0.68
q = 0.9 29.88 2.73 2.23 1.37 1.19 1.08

Table 2: Summary of the coefficients of variation for the CTE-based and GTE-based allocation estimates for the
first BU, with varying tail parameters α ∈ {0.8, 2, 3}. All values are reported in the unit of percentage.

A similar sensitivity analysis is conducted for the Gumbel copula’s dependence parameter β. According to
the limit of allocation ratio shown in Table 3, a smaller value of β, or equivalently, corresponding to a weaker tail
dependence, decreases the asymptotic risk allocation to the first BU. Comparing the cases of β = 2 and β = 3,
the asymptotic approximation error is consistently larger for any considered q when β = 2, despite the higher
corresponding allocation ratio. Although the error is higher when β = 5 compared to β = 3, this pattern is likely
due to a larger allocation ratio to the BU under β = 5. Overall, these discussions suggest that a larger value
of the dependence parameter β, or, a stronger tail dependence, may improve the performance of the asymptotic
approximation.

Table 4 summarizes the changes in the coefficient of variation for allocation estimates in response to varying
values of β. The results indicate that the GTE-based allocation estimator consistently outperforms the CTE-based
one, exhibiting lower variation across all dependence scenarios considered. With a fixed confidence level, a larger
value of β, corresponding to stronger dependence in the copula, enhances the robustness of both the CTE-based
and GTE-based allocation estimators.

Collectively, we observe that in this particular simulation example, the empirical GTE-based allocation may
outperform the empirical CTE-based allocation in terms of smaller variance in the presence of heavy tails and
strong tail dependence. An intuition for this observation is that this distributional scenario implies more frequently
occurring extreme values in Xi and S, which tend to occur simultaneously due to strong tail dependence. By
taking the conditional mean of the ratio as in the GTE-based allocation, the presence of extremes in Xi and S is
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β = 2
β = 3

(Baseline)
β = 5

CTE method GTE method CTE method GTE method CTE method GTE method

Limit 23.48 24.43 24.82
q = 0.1 6.24 20.19 0.54 2.24 0.67 3.38
q = 0.5 3.68 8.52 0.25 0.68 0.26 0.78
q = 0.8 1.12 2.43 0.04 0.12 0.02 0.14
q = 0.9 0.10 0.22 0.03 0.02 0.04 0.16

Table 3: Summary of the asymptotic approximation error, defined as the difference between the limit of the CTE-
based or GTE-based allocation and the mean of the allocation estimates, for varying values of the Gumbel copula’s
dependence parameter β ∈ {2, 3, 5}. All values are reported in the unit of percentage.

β = 2
β = 3

(Baseline)
β = 4

CTE method GTE method CTE method GTE method CTE method GTE method

Limit 23.48 24.43 24.82
q = 0.1 1.54 0.72 0.97 0.54 0.57 0.35
q = 0.5 1.72 0.88 1.07 0.59 0.62 0.35
q = 0.8 2.27 1.27 1.37 0.78 0.79 0.45
q = 0.9 3.76 2.30 2.23 1.37 1.27 0.77

Table 4: Summary of the coefficients of variation for the CTE-based and GTE-based allocation estimates for the
first BU, with varying tail parameters β ∈ {2, 3, 5}. All values are reported in the unit of percentage.

directly captured and balanced out, stabilizing the individual ratios and reducing the variance of the estimator. In
contrast, the ratio of conditional means, as in the CTE-based allocation, first averages Xi and S separately. These
averages tend to smooth out the extreme values to some extent, but the corresponding balancing effect is less
efficient compared to directly taking the ratio at the individual level. We openly admit that this observation about
the smaller variance associated with the empirical GTE-based allocation is based on a single simulation example.
Future research should formalize this observation and investigate the theoretical foundations underlying it.

6 Conclusions

The GTE risk measure is a newly developing, relative, and robust alternative to the widely advocated CTE risk
measure. This paper examine the asymptotic behavior of a proportional allocation scheme induced by the GTE risk
measure. We consider a variety of asymptotic scenarios, encompassing both tail dependence and tail independence,
while accommodating marginal distributions that exhibit either heavy or light tails. We derive the limit of the GTE-
based allocation and find that, although for fixed q ∈ (0,1) it differs from the CTE-based allocation, for q close to
1, they are the same asymptotically under all scenarios considered in this paper. In fact, whether they can differ for
q ↑ 1 and under what scenarios they may differ remain some highly nontrivial open questions.

Here are the practical implications of the asymptotic equivalence we have established between the CTE-based
and GTE-based allocations. On one hand, if a risk analyst prefers to use the CTE-based allocation, the asymptotic
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equivalence provides another meaningful perspective for the CTE-based allocation from a profit-maximization
standpoint, which motivates the development of the GTE-based allocation (Bauer and Zanjani, 2016). On the other
hand, if a risk analyst is open to choosing between the CTE-based and GTE-based allocations, the asymptotic
equivalence suggests a favorable consideration for the GTE-based allocation for at least two reasons. Firstly,
the CTE-based allocation does not exist for excessively heavy-tailed risks, which are not uncommon in practice,
whereas the GTE-based allocation always exists. Secondly, compared to the CTE-based method, the empirical
GTE-based estimator may be more robust, exhibiting lower variation particularly when the marginal tails are heavy
and tail dependence is strong.
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events. Springer, Heidelberg.

Furman, E., Kye, Y., and Su, J. (2021). A reconciliation of the top-down and bottom-up approaches to risk capital
allocations: Proportional allocations revisited. North American Actuarial Journal, 25(3):395–416.

Furman, E. and Zitikis, R. (2008). Weighted risk capital allocations. Insurance: Mathematics and Economics,
43(2):263–269.

Gribkova, N., Su, J., and Zitikis, R. (2022a). Empirical tail conditional allocation and its consistency under minimal
assumptions. Annals of the Institute of Statistical Mathematics, 74:713–735.

Gribkova, N., Su, J., and Zitikis, R. (2022b). Inference for the tail conditional allocation: Large sample properties,
insurance risk assessment, and compound sums of concomitants. Insurance: Mathematics and Economics,
107:199–222.

Guo, Q., Bauer, D., and Zanjani, G. (2021). Capital allocation techniques: Review and comparison. Variance,
14(2):1–32.

Homburg, C. and Scherpereel, P. (2008). How should the cost of joint risk capital be allocated for performance
measurement? European Journal of Operational Research, 187(1):208–227.

29



Hua, L. and Joe, H. (2011). Second order regular variation and conditional tail expectation of multiple risks.
Insurance: Mathematics and Economics, 49(3):537–546.

Kalkbrener, M. (2005). An axiomatic approach to capital allocation. Mathematical Finance, 15(3):425–437.

Laeven, R. J. and Gianin, E. R. (2022). Quasi-logconvex measures of risk. arXiv preprint: 2208.07694.

Laeven, R. J. and Goovaerts, M. J. (2004). An optimization approach to the dynamic allocation of economic capital.
Insurance: Mathematics and Economics, 35(2):299–319.

Li, J., Tang, Q., and Wu, R. (2010). Subexponential tails of discounted aggregate claims in a time-dependent
renewal risk model. Advances in Applied Probability, 42(4):1126–1146.

Lindskog, F., Resnick, S. I., and Roy, J. (2014). Regularly varying measures on metric spaces: Hidden regular
variation and hidden jumps. Probability Surveys, 11(2014):270–314.

Mao, T., Stupfler, G., and Yang, F. (2023). Asymptotic properties of generalized shortfall risk measures for heavy-
tailed risks. Insurance: Mathematics and Economics, 111:173–192.

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and
Tools. Princeton University Press: Princeton.

Mitra, A. and Resnick, S. I. (2009). Aggregation of rapidly varying risks and asymptotic independence. Advances
in Applied Probability, 41(3):797–828.

Mohammed, N., Furman, E., and Su, J. (2021). Can a regulatory risk measure induce profit-maximizing risk capital
allocations? The case of conditional tail expectation. Insurance: Mathematics and Economics, 101:425–436.

Qin, X. and Zhou, C. (2021). Systemic risk allocation using the asymptotic marginal expected shortfall. Journal of
Banking and Finance, 126:1–16.

Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer: New York.

Resnick, S. I. (2008). Extreme Values, Regular Variation, and Point Processes. Springer: New York.

Tang, Q., Tang, Z., and Yang, Y. (2019). Sharp asymptotics for large portfolio losses under extreme risks. European
Journal of Operational Research, 276(2):710–722.

Tang, Q., Tong, Z., and Yang, Y. (2021). Large portfolio losses in a turbulent market. European Journal of
Operational Research, 292(2):755–769.

Tang, Q. and Yuan, Z. (2013). Asymptotic analysis of the loss given default in the presence of multivariate regular
variation. North American Actuarial Journal, 17(3):253–271.

Tsanakas, A. and Barnett, C. (2003). Risk capital allocation and cooperative pricing of insurance liabilities. Insur-
ance: Mathematics and Economics, 33:239–254.

Zhu, L. and Li, H. (2012). Asymptotic analysis of multivariate tail conditional expectations. North American
Actuarial Journal, 16(3):350–363.

30



Supplemental material

This supplemental document contains the proof of Proposition 4 in Section 3.2. For completeness, we recall the
proposition before showing its proof.

Proposition 4. The M convergence given in condition (C2) is equivalent to the existence of some positive auxiliary
function a(·) with a(t)→ ∞ and a(t) = o(t) and some nonzero and nondegenerate Radon measure ν on [−∞,∞]n \
{−∞}, such that

P((X− t1)/a(t) ∈ ·)
F1(t)

v→ ν in M+ ([−∞,∞]n \{−∞}) , (21)

where M+ ([−∞,∞]n \{−∞}) denotes the set of all nonnegative Radon measures on [−∞,∞]n \{−∞}.

Proof. The proof is similar to that of Theorem 8.3 of Das et al. (2013) but is adapted for the case with Gumbel
marginals.

Write D= [−∞,∞)n\{−∞} and E= [−∞,∞]n\{−∞}. On the one hand, suppose that the vague convergence
in relation (21) holds with auxiliary function a(·) and limit measure ν. We know that the limit measure ν assigns
no mass to the lines through∞. To see this, note that, for every xi >−∞,

µ([−∞,∞]×·· ·× (xi,∞]×·· ·× [−∞,∞]) = lim
t→∞

P((Xi− t)/a(t)> xi)

F1(t)
= cie−xi , (41)

where ci = µ(x : xi > 0), and hence, the total mass assigned to the lines through∞ is not greater than

lim
x→∞

n

∑
i=1

µ([−∞,∞]×·· ·× (x,∞]×·· ·× [−∞,∞]) = lim
x→∞

n

∑
i=1

cie−x = 0.

Now define a measure χm on D by χm(·) = ν(·). Since ν is nonzero and nondegenerate and assigns zero mass
to E \D, we know χm is also nonzero and nondegenerate. Moreover, for A ⊂ D bounded away from {−∞} with
χm(∂A) = 0, it follows from Proposition 6.1 of Resnick (2007) that A is relatively compact in E with ν(∂A) = 0.
Therefore, relation (21) implies that

P((X− t1)/a(t) ∈ A)/F1(t)→ ν(A) = χm(A),

and hence, by Theorem 2.1 of Lindskog et al. (2014), the M convergence in (20) holds with limit measure µ = χm

and the same auxiliary function a(·).
On the other hand, suppose that the M convergence in (20) holds with auxiliary function a(·) and limit measure

µ. Define a measure χv on E such that χv(·) = µ(· ∩D). Since µ is nonzero and nondegenerate, so is χv. Now
consider an arbitrary set A ⊂ E with χv(∂A) = 0 that is relatively compact in E. By Proposition 6.1 of Resnick
(2007), A is bounded away from {−∞}. Moreover, we have µ(∂(A∩D)) = µ(∂A∩D) = χv(∂A) = 0. Hence,
relation (21) implies that

P((X− t1)/a(t) ∈ A)
F1(t)

=
P((X− t1)/a(t) ∈ A∩D)

F1(t)
→ ν(A∩D) = χv(A).

1



This means that the vague convergence given by (21) holds with limit measure ν = χv and the same auxiliary
function a(·).

The proof is now complete.
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