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Abstract

Risk measure and capital allocation are arguably two of the most important notions in quantitative risk man-

agement. They are closely related, as the former often shapes how the latter is implemented. In this paper,

we conduct an asymptotic analysis of a proportional risk allocation derived using the geometric tail expectation

(GTE) risk measure. As a relative and robust variant of the widely adopted conditional tail expectation (CTE)

risk measure, the GTE risk measure has garnered increasing attention in recent literature. It induces a propor-

tional allocation that can be regarded as a stochastic counterpart of the deterministic composition that underlies

the CTE-induced proportional allocation. Our asymptotic analysis reveals that, across various tail scenarios,

the CTE-based and GTE-based allocation methods essentially converge when the confidence level is sufficiently

high. This is a welcome finding, since it reconciles discrepancies among risk analysts regarding the selection be-

tween the absolute-term CTE risk measure and the relative-term GTE risk measure for risk allocation purposes.

Moreover, the asymptotic equivalence supports advocating for the use of GTE-based allocation as a more ver-

satile alternative to the CTE-based allocation, in the sense that the GTE-based allocation is always well-defined

while the CTE-based allocation is not. Our simulation example also indicates that, under scenarios with heavy-

tailed distributions and strong dependence structures, the empirical estimator of the GTE-based allocation may

exhibit significantly smaller variance compared with that of the CTE-based allocation.
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1 Introduction

Within the encompassing framework of quantitative risk management in insurance, two foundational objectives

involve the determination of economic capital and its subsequent allocation. Holding adequate economic capital is

important for insurance companies to absorb excessive losses caused by shock events. Determining the required

economic capital typically entails assessing the level of aggregate risk across all key risk factors to which a company

is exposed. While closely related, this paper focuses on the latter notion—capital allocation—which involves

developing a meaningful scheme for apportioning the total economic capital back to the constituent business units

(BUs). Effective capital allocation serves multiple business purposes, including risk-based pricing, profitability

analysis, risk sharing, and risk budgeting (see a comprehensive discussion in Guo et al., 2021).

A wide variety of capital allocation principles have been proposed and studied in the literature, yet many

ultimately fall under the umbrella of Euler’s allocation framework (Kalkbrener, 2005). In particular, what arguably

stands out as one of the most popular choices among practitioners is the Euler allocation induced by the conditional

tail expectation (CTE)—a risk measure that has been included into the recent regulatory accords. Consequently,

the study of the CTE-based allocation has attracted considerable scholarly attention. Beyond its roots in Euler’s

allocation, the CTE-based allocation can also be constructed through the Aumann-Shapley allocation (Denault,

2001), distorted allocation (Tsanakas and Barnett, 2003), and weighted allocation (Furman and Zitikis, 2008).

Moreover, it has been shown to be optimal under specific mathematical criteria, as demonstrated by Laeven and

Goovaerts (2004) and Dhaene et al. (2012).

Related to the literature on the CTE-based allocation, this paper investigates a newly developed capital alloca-

tion method, which is formulated as the conditional expectation of the stochastic risk contribution of an individual

BU to the aggregate risk, given that the risk portfolio is stressed under a tail scenario (Bauer and Zanjani, 2016;

Furman et al., 2021). We refer to this method as the geometric tail expectation (GTE) based allocation, because it

is derived as the Euler allocation induced by the GTE risk measure (Mohammed et al., 2021). The GTE belongs to

the class of return risk measures which provide relative assessments of risk, in contrast to monetary risk measures,

which offer absolute assessments of risk (Bellini et al., 2018; Laeven et al., 2024; Laeven and Rosazza Gianin,

2022). More specifically, according to the correspondence proposed by Bellini et al. (2018), the GTE is the rela-

tive, return risk measure counterpart of the CTE, which is a monetary risk measure.

Furthermore, the use of the GTE risk measure for capital allocation can be also motivated by the risk measure

reverse-engineered by Bauer and Zanjani (2016). Specifically, for a profit-maximizing insurer operating in an

incomplete market with risk-averse counterparties, they derived a risk measure desirable for the capital allocation

purpose. The risk measure they obtained closely resembles the GTE. Thus, another compelling motivation for
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studying GTE-based capital allocation arises from the contrast between the preferences of profit-oriented insurers,

who may favor the GTE for its alignment with economic fundamentals, and the regulator’s endorsement of CTE,

which is grounded in the notion of prudence.

In this paper, we aim to study the asymptotic behavior of the GTE-based allocation as the associated confidence

level parameter q approaches one. The insurance industry’s best practice that emphasizes prudent risk assessment

motivates our asymptotic approach. For instance, in both regulatory and internal risk management applications,

in order to account for extreme but plausible loss scenarios, the confidence level q used in risk metrics such as

Value-at-Risk (VaR) and CTE is usually set close to 1. Consequently, a large body of literature has been devoted

to the asymptotic estimates of tail-based risk measures (Cui et al., 2024; Hua and Joe, 2012; Mao et al., 2023;

Zhu and Li, 2012b), as well as the capital allocation rules they induce (Asimit and Badescu, 2010; Chen and Liu,

2022, 2024; Qin and Zhou, 2021; Zhu and Li, 2012a). We contribute to the aforementioned literature through an

asymptotic analysis of the GTE-based allocation, which has not yet been explored.

Here is a preview of our research. We carry out an asymptotic analysis of the GTE-based allocation under a

comprehensive set of tail risk scenarios that account for both heavy-tailed and light-tailed risks, as well as both

tail-dependent and tail-independent structures. We derive the limit of the GTE-based allocation as the confidence

level parameter q ↑ 1, and compare it to the asymptotic behavior of the CTE-based allocation, which is now widely

adopted in practice. Remarkably, across all the tail risk scenarios considered, we find that the two allocation

methods are asymptotically equivalent. It is noteworthy that even though our results are derived through asymptotic

analysis, we show through extensive numerical examples that, under various scenarios, the findings largely hold

when q reaches 95%.

This theoretical finding carries notable practical implications. To be specific, the difference between the CTE-

based and GTE-based allocation methods arises from the use of the two different risk measures in deriving the

respective Euler allocation rules. Whether one argues from mathematical principles (Laeven and Rosazza Gianin,

2022) or business fundamentals (Bauer and Zanjani, 2016; Mohammed et al., 2021), the choice of risk measure

for the allocation rule remains subjective. The asymptotic equivalence elucidated in this study serves to reconcile

the discrepancies among risk analysts’ divergent perspectives regarding the selection between the regulatory CTE

risk measure and its relative counterpart, the profit-maximizion motivated GTE risk measure, for capital allocation

purposes. A similar problem was also studied by Mohammed et al. (2021), who characterized the class of risk

portfolios for which the parity between the CTE-based and GTE-based allocations holds across the entire range of

confidence level q ∈ [0,1). Our study shows that by relaxing this requirement to a more practically relevant setting

where only confidence levels close to 1 are considered, this desirable equivalence holds for a substantially broader

class of risk portfolios.
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Further, the asymptotic parity developed provides a strong support for adapting the newly developed GTE-

based allocation as a more versatile alternative to the currently widely adopted CTE-based allocation. Firstly,

when empirical estimators (e.g., Gribkova et al., 2022b) are employed to calculate these allocations from data, our

numerical study shows that when the tails of marginal distributions are heavy and tail dependencies are strong,

the estimator of the GTE-based allocation demonstrates greater statistical robustness in terms of lower estimation

variance, in comparison to that of the CTE-based allocation.

Additionally, the CTE risk measure only exists for loss random variables (RVs) with finite mean. For this

reason, the literature on the CTE-based allocation for heavy-tailed risks has to restrict to the cases where the

tail indices are greater than one, whereas the GTE-based allocation is always well defined and not subject to the

restriction. Note that the presence of infinite means that preclude the use of the CTE-based allocation reflects

a non-trivial phenomenon and has drawn substantial interest in both applied and theoretical research. Among

some notable contributions, Moscadelli (2004) and Chavez-Demoulin et al. (2016) found that the operational risk

losses in their datasets exhibit infinite means; Malavasi et al. (2022), in accordance with other studies in cyber loss

modeling, found that cyber related loss distributions are of infinite mean across business sectors and risk categories;

Chen et al. (2025) investigated stochastic dominance and the implications for risk diversification under infinite-

mean models. See also Chen and Wang (2025) for a comprehensive review of recent advances in infinite-mean

models in risk management. Admittedly, some studies favoring infinite-mean models obtain tail index estimates

near the boundary between the finite-mean and infinite-mean regimes, inevitably leaving the conclusions open to

debate. Nonetheless, our point is that, since determining whether the “true” model has a finite or infinite mean can

be challenging, it is desirable to have a method capable of handling both the finite-mean and infinite-mean cases.

Taken together, this paper conveys the following practical messages. On the one hand, for risk analysts who

favor the CTE-based allocation, its asymptotic equivalence with the GTE-based allocation not only bridges the

conceptual divide between absolute risk assessments via monetary risk measures such as the CTE and relative

risk assessments via return risk measures such as the GTE, but also reconciles regulatory prudence with economic

desirability in the context of capital allocation. Specifically, the asymptotic equivalence offers an alternative, eco-

nomically grounded justification for the CTE-based method, framed through the lens of profit maximization, which

originally motivated the development of the GTE-based allocation (Bauer and Zanjani, 2016; also see discussions

in Mohammed et al., 2021). On the other hand, for those open to selecting between the CTE-based and GTE-based

approaches, the asymptotic equivalence between the two methods, together with the statistical considerations dis-

cussed earlier, provides a compelling case for favoring the GTE-based allocation.

The connection as well as the sharp contrast between the CTE and GTE risk measures motivate the undergoing

of our paper are illustrated in Figure 1. The figure highlights how the derived asymptotic equivalence between
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the two allocation methods serves to reconcile these seemingly divergent perspectives: absolute versus relative

assessments of risk, and regulatory conservatism versus profit-oriented motive. The mathematical expressions

shown in Figure 1 will be further elaborated in the subsequent section.

 

Figure 1: Summary of the connection as well as the sharp contrast between the CTE and GTE risk measures
(abbreviated as “RM” in the figure) and the asymptotic equivalence result that reconciles the two.

The rest of the paper is organized as follows. Section 2 formally defines capital allocation as well as the GTE-

based method, whose asymptotic analysis forms the main focus of this paper. Section 3 introduces some standard

notation and terminologies relevant to asymptotic analysis. Sections 4 and 5 examine the asymptotic behavior of the

GTE-based allocation under the assumptions of asymptotic dependence and asymptotic independence, respectively.

Sections 6 and 7 illustrate our findings using, respectively, simulated data and real-world data. Finally, Section 8

concludes the paper.

2 Capital allocation and the proportional scheme induced by the geometric tail

expectation risk measure

Throughout this paper, we work with an atomless and rich probability space (Ω,F ,P). We confine ourselves

to a setting where risk RVs are assumed to be non-negative. Such a setting is rather typical in insurance risk

management, although we acknowledge that in broader financial contexts, capital allocation may be defined more

generally over real-valued RVs. To this end, we define X := {X : Ω→ [0,∞) |X is F -measurable} as the collection

of non-negative risk RVs relevant to the study in this paper. Consider a risk portfolio consisting of n ∈ N BUs, and

let the i-th component of X = (X1, . . . ,Xn) ∈ X n represent the risk associated with the i-th BU, i ∈N = {1, . . . ,n}.
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Motivated by the setup in Dhaene et al. (2012); Fiori and Rosazza Gianin (2025); Furman et al. (2021), we

assume that the total capital is predetermined and fixed prior to allocation. Accordingly, the capital allocation

exercise is formulated via a proportional allocation scheme:

{
ri ∈ [0,1]

}
i=1,...,n such that ∑

n
i=1 ri = 1, (1)

where ri denotes the proportion of risk capital allocated to BU i, and the latter condition ensures that the total capital

is fully allocated. Such a two-step approach to determining allocated capital aligns with regulatory considerations,

e.g., the NAIC risk-based capital framework (NAIC, 2012) or the Own Risk and Solvency Assessment (OSFI,

2017), where the total risk capital is first assessed based on key risk factors (e.g., market, insurance, and credit

risks), and then subsequently allocated to individual BUs.

To introduce the capital allocation methods relevant to the discussions in this current paper, let us begin by

recalling the CTE-based allocation. Let S = X1 + · · ·+Xn denote the aggregate risk RV associated with the risk

portfolio X . Then the CTE-based allocation is formulated as

CTEq(Xi,S) := E(Xi |S > sq), i ∈N , q ∈ [0,1), (2)

where sq = inf
{

s > 0 : P(S≤ s)> q
}

represents the VaR of the aggregate risk S. Correspondingly, the CTE-based

proportional allocation is given by

ri,q :=
CTEq(Xi,S)

∑
n
i=1 CTEq(Xi,S)

=
CTEq(Xi,S)

CTEq(S)
, i ∈N , q ∈ [0,1), (3)

where CTEq(X) := CTEq(X ,X), X ∈ X , denotes the CTE risk measure.

Note that the allocation problem described in equation (1) indicates an inherent connection with the notion of

risk composition/contribution (Belles-Sampera et al., 2016; Boonen et al., 2019; Furman et al., 2021). Specifically,

let x= (x1, . . . ,xn), s = x1 + · · ·+xn, and denote by Ci(x) = xi/s the composition function, i ∈N . The CTE-based

proportional allocation (3) can be regarded as

ri,q =Ci
(
CTEq(X1,S), . . . ,CTEq(Xn,S)

)
i ∈N , q ∈ [0,1). (4)

The CTE-based proportional allocation in (4) should be viewed as a deterministic composition approach for

evaluating risk contribution. A stochastic composition alternative to (4), which is perhaps more natural to interpret
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from a probabilistic standpoint, can be given by

r̃i,q := E(Ri |S > sq), i ∈N , q ∈ [0,1), (5)

where

Ri =Ci(X) =
Xi

S
, i ∈N , (6)

denotes the relative, stochastic contribution of the risk attributed to the i-th BU (Bauer and Zanjani, 2016; Furman

et al., 2021). Akin to the CTE-based allocation, r̃i,q defined in (5) can also be constructed as an Euler proportional

allocation, but it is induced by the GTE risk measure (Bauer and Zanjani, 2016; Mohammed et al., 2021):

GTEq(X) := exp
{

E
(

logX |X > xq
)}

, X ∈ X , q ∈ [0,1), (7)

which is a relative, return-based counterpart of the CTE risk measure (Bellini et al., 2018; Laeven and Rosazza Gi-

anin, 2022). This justifies referring to r̃i,q in (5) as the GTE-based allocation.

In contrast to the extensive literature on the CTE risk measure and its associated allocation methods, relatively

few results have been established for the aforementioned newly developed GTE-based allocation rule described

in equation (5), which serves as the primary focus of this paper. To be specific, we will conduct an asymptotic

analysis of the GTE-based allocation r̃i,q as q ↑ 1 under tail assumptions that are inspired by Asimit et al. (2011),

who carried out a similar analysis for the CTE-based allocation.

It is noteworthy that the CTE-based allocation (3) and the GTE-based allocation (5) are mathematically similar.

While the former entails the composition of conditional expectations, the latter relies on the conditional expectation

of stochastic risk composition. At first glance, one might expect that changing the order of composition and

conditional expectation would generally lead to different allocation outcomes. Rather surprisingly, as we establish

the limiting behavior of r̃i,q in the remainder of this article, we find that the two allocation methods (3) and (5) are

asymptotically equivalent when the confidence level q is sufficiently close to one.

3 Technical preliminaries

This section contains some preliminaries on extreme value theory (EVT) and tail analysis. We start by listing our

notational convention.
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3.1 Notational convention

Throughout this paper, we denote the distribution functions of Xi by Fi and its survival function by F i, i∈N . When

no confusion could arise, for a positive integer n, we denote [0,∞)n by [0,∞) or Rn
+ and [−∞,∞)n by [−∞,∞) or

Rn, and likewise, shorthand (x1,∞)× . . .× (xn,∞) by (x,∞), where x= (x1, . . . ,xn) ∈Rn. Vector operations such

as x+y, cx, and x> y for x,y ∈ Rn and c ∈ R are to be understood component wise.

Denote by C a cone in Rn, which, by definition, is closed under positive scale multiplication, and by C0 a closed

cone in C. Denote by M(C\C0) the set of all Borel measures on C\C0 that assign finite measure to Borel subsets

bounded away from C0. For a measure µ ∈M(C\C0) and a measurable set A⊂ C\C0, we may write µ(A) as µA

when there is no confusion.

All limits are taken as t tending to ∞ unless otherwise stated.

3.2 EVT, regular variation, M convergence, and tail dependence

Let us first recollect a fundamental result in EVT, the Fisher-Tippett-Gnedenko theorem. It states that if a distribu-

tion F is in the maximum domain of attraction (MDA) of some non-degenerate distribution G, namely, there exist

some am > 0 and bm ∈ R, m = 1,2, . . ., such that limm→∞ Fm(amx+bm) = G(x), x ∈ R, then G must be a Fréchet

distribution, a Weibull distribution, or a Gumbel distribution. While distributions in the Weibull case have finite

upper end points, those in the MDA of the Fréchet and Gumbel distributions often have unbounded right tails. In

the context of quantitative risk management, the calculations of economic capital and its allocation primarily rely

on the joint behavior of BUs in their right tails, often assumed to be unbounded, particularly for tail risk analysis.

Thus, in our paper we are going to focus on the Fréchet and Gumbel cases.

A distribution function F in the MDA of the Fréchet distribution, written as F ∈MDA(Φ), is known to have a

regularly varying tail, in the sense that

lim
t→∞

F(xt)
F(t)

= x−α, x > 0, (8)

for some α > 0. In this case, the tail of the distribution is known to decay at a power rate. We write F ∈ RV−α. If

equation (8) holds with α = ∞, then we write F ∈ RV−∞.

A distribution function F with right endpoint tF := sup{x ∈ R : F(x) > 0} is said to be in the MDA of the

Gumbel distribution, written as F ∈MDA(Λ), if and only if there exists a positive function a(·) such that a(t) = o(t)

and

lim
t↑tF

F(t + xa(t))
F(t)

= e−x, x ∈ R. (9)
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In tail risk analysis, we are less concerned with bounded risks and hence in this paper we only focus on the case

with tF = ∞ and assume that is the case for every individual risk in portfolio X . Note that, the auxiliary function

a(t) is self-neglecting, with limt→∞ a(t +a(t)x)/a(t) = 1 holding locally uniformly.

To define regular variation for a random vector, we introduce the concept of M convergence (or, equivalently,

M∗ convergence). In general, for a sequence of measures µ and {µi}i≥1 in M(C\C0), we say

µn→ µ in M(C\C0) (10)

as n→ ∞ if limn→∞

∫
C f dµn =

∫
C f dµ holds for any f that is a continuous and bounded function on C \C0 with

support bounded away from C0. It is known that the M convergence in (10) is equivalent to the condition that

lim
n→∞

µn(A) = µ(A) (11)

for every Borel subset A bounded away from C0 such that the boundary of A is µ negligible; that is, µ(∂A) = 0.

The closed cone C0 is called a forbidden zone and a region bounded away from C0 is considered as a tail region.

In this paper, we focus on the case with C0 = {0} and C is either Rn
+ or Rn.

Note that there is no standard analogy that characterizes random vectors with marginal distributions in the MDA

of the Gumbel distribution through convergence of measures in a metric space. Nonetheless, the structure given in

Assumption 2.2 of Asimit et al. (2011) provides a resembling characterization and will be our modeling choice for

this paper.

It is well known that tail dependence is a major factor that impacts risk capital allocation. Naturally, we shall

consider both asymptotically dependent risks and asymptotically independent risks. A pair of risks Xi and X j with

cumulative distribution functions Fi and Fj respectively, are said to be asymptotically dependent if

liminf
q↑1

P
(
Fi(Xi)> q |Fj(X j)> q

)
> 0. (12)

We use the terms tail dependence and asymptotic dependence interchangeably. Asymptotic dependence for the

multivariate cases considered later will entail different forms, but are natural extensions of (12).

4 Asymptotically dependent portfolios

We begin by analyzing a portfolio of asymptotically dependent risks, considering two scenarios: one with Fréchet

tails and the other with Gumbel tails.
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4.1 Fréchet case

For the case where the risks have Fréchet tails, we use the multivariate regular variation (MRV) structure to model

the risks. MRV is an integrated structure that models both the marginal distributions with regularly varying tails

and their tail dependence. In this paper, we use the notion of M convergence to define MRV.

(C1) The nonnegative risk vector X possesses MRV; that is, for some nonzero and nondegenerate measure µ, it

holds that
P(X/t ∈ ·)

F1(t)
→ µ in M

(
Rn
+ \{0}

)
. (13)

Moreover, the limit measure µ assigns positive mass to the interior; that is, µ(0,∞)> 0.

Note that the condition µ(0,∞)> 0 ensures that the risks are asymptotically dependent and, because of the homo-

geneity of the limit measure µ, is equivalent to the condition that µ(x,∞)> 0 for some x> 0.

It is noteworthy that, traditionally, MRV is defined through vague convergence of Radon measures (Resnick,

2007). However, a recent trend in the literature is to define MRV through M convergence of measures that are finite

on sets bounded away from a designated forbidden zone, which is simply {0} in relation (13). An advantage of

formulating MRV using M convergence is that compactification of the space—which causes problems with polar

coordinate transformation—is no longer needed. As an example, to define regular variation of a nonnegative n-

dimensional random vector, compactificiation of [0,∞) into [0,∞] used to be needed so that the Radon measures

take finite values on the tail regions; that is, regions bounded away from {0}. Such compactification poses problems

with, for example, establishing equivalence of vague convergences under Cartesian coordinate and polar coordinate,

since polar coordinate transformation such as x : 7→ (‖x‖,x/‖x‖), where ‖x‖ denotes a norm of x, is only defined

on [0,∞)\{0} and not on any lines through ∞. Compactification also makes geometric interpretations involving

lines through ∞ confusing. The new definition through M convergence is given by measures that are finite on sets

bounded away from {0}. The finiteness of the measures on such sets removes the need for compactifying the space.

Another advantage of the M convergence formulation is that MRV as described in (C1) enables the definition of

regular variation on a space with a chosen forbidden zone excluded, thereby facilitating the definition of hidden

regular variation on various types of spaces of interest (Das et al., 2013).

One may equip the space of M
(
Rn
+ \{0}

)
with a metrizable topology similar to the vague topology (Resnick,

2007, Section 3.3.5). For more discussions about the problems with the traditional MRV definition, the advantages

of using M convergence, a choice of topology and metric for M
(
Rn
+ \{0}

)
, etc., see Das et al. (2013), Lindskog

et al. (2014), and Das and Resnick (2017).

In general, to establish M convergence in M(C\C0), an easy way is to show that the sequence {µi}i≥1 is

relatively compact and that convergence holds on a class of convergence-determining sets, usually a π-system.
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This is easier for the case of regular variation with C= Rn
+ or Rn and C0 = {0} since relative compactness of the

sequence of measures is easier to establish. For example, for regular variation on Rn
+ \ {0}, relative compactness

of the sequence is implied when the convergence of the sequence to the limit measure holds on the determining

class of sets that take the form of Ax = [0,x]c, x ∈ Rn
+. This means that M convergence in M

(
Rn
+ \{0}

)
can

be demonstrated by proving convergence on all sets of Ax given above. Therefore, M convergence of {µi}i≥1

in M
(
Rn
+ \{0}

)
is equivalent to vague convergence of {µi}i≥1 in the space of nonnegative Radon measures on

[0,∞]n \ {0}, and hence, at least in the case with C = Rn
+ or Rn and C0 = {0}, the switch from the traditional

definition of MRV to the new one is seamless and many results established under vague convergence are still

applicable. See, for example, Section 3.1 of Das et al. (2013) for related discussions.

A few comments on condition (C1) follow. Essentially, the condition is the same as Assumption 2.1 of Asimit

et al. (2011), which implies asymptotic dependence among the risk RVs in X . It is well known that it also implies

X has equivalent tails that are regularly varying. That is, we have Xi ∈ RV−α for some α > 0 and every i ∈ N .

Moreover,

lim
t→∞

F i(t)
F1(t)

= lim
t→∞

P
(
Xi > t,

⋂
j 6=i (X j ≥ 0)

)
F1(t)

= µ(R+×·· ·× (1,∞)×R+×·· ·×R+) =: ci, (14)

where ci ∈ (0,∞), i ∈N . Using similar reasoning, we can see that the nonnegativity of X j’s is not essential. In fact,

the same conclusion would hold as long as there exists a real-valued lower bound for X j’s, which is not surprising

given that we are modeling the right-tail behavior.

We use a bivariate case to illustrate the MRV assumption specified in (C1) in a more accessible manner.

Remark 4.1. Consider a random pair (X1,X2) that satisfies the MRV assumption in (13) of (C1). Then the tails

of the marginal distributions of both X1 and X2 satisfy the tail equivalence relationship specified in (14). Well-

known univariate distribution models with regularly varying tails include the Pareto, Fréchet, Burr, and Lomax

distributions. It is worth noting that the MRV assumption in (C1) does not require the marginal distributions of X1

and X2 to follow the same distribution family. Instead, it only requires that their marginal tails decay at the same

rate. For instance, it is valid for X1 following a Pareto distribution and X2 following a Burr distribution with the

same tail index.

MRV constitutes a flexible and versatile framework for modeling dependence, as it can accommodate both tail

dependence and tail independence. For many commonly used parametric copula models, as long as the accom-

panying marginal distributions satisfy the regular variation and tail equivalence assumptions described above, the

resulting pair (X1,X2) falls within the MRV framework.

Theorem 4.2. Suppose that the risk vector X satisfies condition (C1). Then the GTE-based proportional allocation
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in equation (5) satisfies

lim
q↑1

r̃i,q =
∫ 1

0

µ(Ai,z)

µ(ℵ)
dz, i ∈N , (15)

where Ai,z =
{
x ∈ Rn

+ : xi > z ∑
n
k=1 xk, ∑

n
k=1 xk > 1

}
and ℵ =

{
x ∈ Rn

+ : ∑
n
k=1 xk > 1

}
.

Proof. See Appendix A.

In practical applications, it may be more convenient to work with an asymptotic result expressed in terms of

the spectral measure rather than the limit measure. Next, we are going to rewrite our result in Theorem 4.2 via a

semi-parametric form using the spectral measure. To this end, write Y =
(
1/F1(X1), . . . ,1/Fn (Xn)

)
. Under the

condition of Theorem 4.2, there exists a measure µ∗, such that, for any x > 0,

t P

(
n⋃

i=1

(Yi > xit)

)
→ µ∗[0,x]c;

see, e.g., Proposition 5.10 of Resnick (2008). For some spectral measure H, which is a probability measure, on

Wn−1 =
{
x ∈ Rn

+ : ∑
n
k=1 xk = 1

}
, the limit measure µ∗ satisfies dµ∗ ◦T−1 = nr−2dr×dH, where T maps x ∈ Rn

+

into (r,w) = (∑n
k=1 xk,x/∑

n
k=1 xk) ∈ (0,∞)×Wn−1, and T−1 denotes its inverse.

Proposition 4.3. The asymptotic expression for the GTE-based proportional allocation in Theorem 4.2 can be

rewritten in terms of a spectral measure H as follows:

lim
q↑1

r̃i,q =

∫
Wn−1

c1/α

i w1/α

i

(
∑

n
k=1 c1/α

k w1/α

k

)α−1
H(dw)∫

Wn−1

(
∑

n
k=1 c1/α

k w1/α

k

)α

H(dw)
. (16)

Proof. See Appendix A.

As the succeeding remark will show, despite the distinct expressions between the asymptotic results for the

GTE-based allocation, given by (15) in this paper, and the CTE-based allocation, given by Theorem 2.1 of Asimit

et al. (2011), a closer examination reveals that they are actually identical. However, an important difference is

that the asymptotic result derived for the GTE-based allocation in this paper is applicable to infinite-mean models,

whereas the CTE-based allocation in the literature is not. As noted earlier, infinite-mean models have attracted

increasing scholarly attention in risk management, particularly in the contexts of climate risk, catastrophe risk,

and operational risk (again, for a comprehensive review of recent research on infinite-mean models, we refer the

reader to Chen and Wang, 2025). This suggests that the GTE-based allocation is a more versatile alternative to the

CTE-based allocation widely studied in the existing literature.
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Remark 4.4. Under condition (C1), Theorem 2.1 of Asimit et al. (2011), together with Proposition 7.3 of Resnick

(2007) and equation (9) of Hua and Joe (2011a), implies that, if α > 1, then

lim
q↑1

ri,q =
α−1

α

1
α−1 µ

(
x ∈ Rn

+ : xi > 1
)
+

∫ 1
0 µ
(
x ∈ Rn

+ : xi > z,∑n
k=1 xk > 1

)
dz

µ(x ∈ Rn
+ : ∑

n
k=1 xk > 1)

=
ci +(α−1)

∫ 1
0 µ
(
x ∈ Rn

+ : xi > z,∑n
k=1 xk > 1

)
dz

αµ(ℵ)
, i ∈N ,

where ci is given by equation (14). By using a similar idea to that in the proof of Proposition 4.3 to convert the

expression above using the sepctral measure, one can show that the right-hand side of the equation above can also

be written as the expression in (16), and hence,

lim
q↑1

ri,q = lim
q↑1

r̃i,q, for all i ∈N .

The seemingly surprising asymptotic identity above aligns well with our intuition. To see this, note that the

decomposition of the limit measure under MRV into a product measure (see Theorem 6.1(4) of Resnick, 2007) shows

that the radial component S and the polar coordinate component X/S are independent in the tail. Consequently,

for S sufficiently large, the conditional covariance between S and Ri, defined by equation (6), diminishes. This

implies that E(S × Ri|S > sq) and E(S |S > sq)×E(Ri |S > sq) converge to the same value as q ↑ 1, and hence so

do ri,q and r̃i,q.

4.2 Gumbel case

In this section, we consider the case where the individual risks follow distributions that are in MDA(Λ). We shall

assume the following condition:

(C2) For some positive function a(·) such that a(t) = o(t) and some nonzero and nondegenerate measure µ on

[−∞,∞)n \{−∞}, the nonnegative risk vector X satisfies that

P((X− t1)/a(t) ∈ ·)
F1(t)

→ µ in M([−∞,∞)n \{−∞}) , (17)

where 1 a vector with all components equal to 1 and the limit measure µ satisfies µ(−∞,∞)> 0.

Condition (C2) implies that the tails of Xi, i ∈ N , are equivalent; specifically, F i(t) ∼ ciF1(t), i ∈ N , with

ci = µ(x : xi > 0). Moreover, we remark that, for the limit measure µ in condition (C2), µ
(
[−∞, ·]c

)
and µ

(
(·,∞]

)
are continuous functions on (−∞,∞). To see this, it suffices to show that, for small δ > 0 and u,v ∈ Rn such

13



that 0 < vi− ui < δ, i ∈ N , µ((u,v]) can be made arbitrarily close to 0. This is obvious since, by equation (31),

µ((u,v])≤ ∑
n
i=1 (µ(x : xi > ui)−µ(x : xi > vi)) = ∑

n
i=1 ci (e−ui− e−vi) , which goes to 0 as δ→ 0.

The following proposition states that condition (C2) is equivalent to what is essentially needed in Section 2.2 of

Asimit et al. (2011), where their assumption, as described in equation (2.11) of their paper, is formulated in terms

of vague convergence. The equivalence hinges on the fact that the limit measure assigns zero mass to the lines

through∞.

Proposition 4.5. The M convergence given in condition (C2) is equivalent to the existence of some positive aux-

iliary function a(·) satisfying a(t) = o(t) and some nonzero and nondegenerate Radon measure ν on [−∞,∞]n \

{−∞}, such that
P((X− t1)/a(t) ∈ ·)

F1(t)
v→ ν in M+ ([−∞,∞]n \{−∞}) , (18)

where M+ ([−∞,∞]n \{−∞}) denotes the set of all nonnegative Radon measures on [−∞,∞]n \{−∞}.

Proof. See Appendix A.

To demonstrate that Condition (C2) is satisfied by commonly used distributions and dependence structures, we

present the following simple illustrative example:

Example 1. Suppose that (U1,U2) is a vector of two uniform RVs on [0,1] distributed by a Gumbel copula

C(u1,u2) = exp
{
−
(
(− logu1)

β +(− logu2)
β
)1/β

}
, (u1,u2) ∈ [0,1]2 (19)

with β > 1. Also suppose that, for some c > 0,

Ũ2 =

(
1− 1−U2

c

)
1(U2>1−c).

Now, let X1 = F−1(U1) and X2 = F−1(Ũ2), where F(x) is the cumulative distribution function of an exponential dis-

tribution with mean θ, and F−1 is its inverse function. It is easy to verify that X1 follows an exponential distribution

and that F2(t)∼ cF1(t).

Moreover, for a(·) = θ and for every (x1,x2) ∈ R2, it holds for t large that

P
(
X− t1

a(t)
∈ [−∞,(x1,x2)]

c
)
= 1−C

(
1− exp

{
−
( t

θ
+ x1

)}
,1− exp

{
−
( t

θ
+(x2− lnc)

)})
.

With some algebra, it follows that

lim
t→∞

P((X− t1)/a(t) ∈ [−∞,(x1,x2)]
c)

F1(t)
=
(

e−x1β + cβe−x2β

)1/β

.
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By Proposition 4.5, the convergence in equation (17) holds with limit measure µ given by

µ
(
[−∞,x]c

)
=
(

e−x1β + cβe−x2β

)1/β

, x ∈ R2,

which obviously satisfies µ(−∞,∞)> 0. This verifies that the random vector (X1,X2) satisfies condition (C2).

In fact, we can verify condition (C2) for many other choices of copulas besides the Gumbel copula above, such

as the survival Clayton copula and non-independent extreme-value copulas.

The equivalence given by Proposition 4.5 above and Note 2.2 of Asimit et al. (2011) allow us to conclude that,

under condition (C2),

P(S > nt)∼ µ
(
x :

n

∑
k=1

xk > 0
)

F1(t). (20)

Theorem 4.6. Suppose that risk portfolio X has joint distribution satisfying condition (C2). Then it holds that

lim
q↑1

r̃i,q =
1
n
, i ∈N .

Proof. See Appendix A.

Remark 4.7. By Theorem 2.2 and equation (2.15) of Asimit et al. (2011), it is obvious that, under condition (C2),

the CTE-based proportional allocation ri,q→ 1/n as q ↑ 1, i ∈N , meaning that, asymptotically, it agrees with the

GTE-based counterpart.

5 Asymptotically independent portfolios

5.1 Fréchet case

The first Fréchet case we consider in this section follows a setup similar to that in Section 4.1, except that we

now assume asymptotic independence. Naturally, this leads to a more transparent result regarding the limit of the

GTE-based allocation.

(C3) Suppose that the nonnegative risk vector X satisfies the M convergence in condition (C1) and that the limit

measure µ = µI which only assigns mass to the axes.

An illustrative bivariate example of condition (C3), in contrast to its tail dependence counterpart (C1), is pro-

vided below.

Remark 5.1. Suppose that a random pair (X1,X2) satisfies condition (C3), then their marginal distributions possess

the same properties as those described in Remark 4.1; namely, both marginals exhibit regularly varying tails with
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a common tail index. However, in this case, the dependence between X1 and X2 in the joint upper tail region is

weaker in the sense that the probability limit specified in (12) equals zero.

It is noteworthy that under Condition (C3), the extremal co-movement between X1 and X2 may be still stronger

than that under full independence. Specifically, let C : [0,1]2→ [0,1] be the copula function underlying (X1,X2).

Recall that the intermediate upper tail dependence index is defined, when the limiting relationship exists, as (Hua

and Joe, 2011b):

C(u,u)∼ uκ `(u), as u ↓ 0,

where `(·) is a slowly varying function at zero (i.e., `(1/·) is regularly varying at ∞ with index 0), and C(u,v) :=

1− u− v+C(u,v), u,v ∈ [0,1], is the survivor copula function governing the co-movement of X1 and X2 in the

upper joint tail region. Condition (C3) implies that the underlying copula C satisfies κ ≥ 1, whereas under com-

plete independence, κ = 2. In other words, although (X1,X2) is asymptotically independent, their joint upper tail

probabilities may still decay more slowly than those of an independent pair. The Gaussian copula is a well-known

example that exhibits such intermediate upper tail dependence.

Under condition (C3), equation (14) can be rewritten as

lim
t→∞

F i(t)
F1(t)

= µI (R+×·· ·× (1,∞)×R+×·· ·×R+) = µI (x : xi > 1,x j = 0 for all j 6= i) =: ci ∈ [0,∞).

Note that we also have µI
(
x ∈ Rn

+ : xi > z
)
= ciz−α for z > 0.

Theorem 5.2. Suppose that risk portfolio X satisfies condition (C3). Then it holds that

lim
q↑1

r̃i,q =
ci

∑
n
k=1 ck

, i ∈N . (21)

Proof. See Appendix A.

Remark 5.3. Comparing Theorem 5.2 with Theorem 3.1 of Asimit et al. (2011) and equation (9) of Hua and Joe

(2011a), we can conclude that, if condition (C3) holds with tail index α > 1, then limq↑ ri,q = limq↑1 r̃i,q.

We now present the result for another structure where the components of X are asymptotically independent

and belong to MDA(Φ). Note that in this case the tail indices of the risks are not necessarily the same.

(C4) Suppose that the nonnegative risk vector X has marginal distributions Fi with F i ∈ RV−αi , αi > 0. Also sup-

pose that there exist some measurable, bounded regularly varying functions hi(·) : (0,∞)→ (0,∞), such that,

for distinct i, j ∈N , the relation P(X j > t |Xi = x)∼ F j(t)hi(x) holds uniformly for x ∈ [0,∞). In addition,
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for n ≥ 3, it is also assumed that for distinct i, j,k ∈ N , P(X j > t,Xk > t |Xi = x) = o
(
F j(t)+Fk(t)

)
hi(x)

holds uniformly for x ∈ [0,∞).

Condition (C4) essentially encapsulates a collection of assumptions made in Assumption 3.2 and Theorem 3.2

of Asimit et al. (2011). It implies asymptotic independence among the risk positions in X . The versatility and

application of the dependence structure outlined in condition (C4) have been discussed extensively in the literature.

For example, using the results in (Asimit and Badescu, 2010; Li et al., 2010), one may verify that nonnegative

regularly varying RVs with pairwise dependence characterized by the Ali-Mikhail-Haq copula, the Farlie-Gumbel-

Morgenstern, or the Frank copula—except for certain specific choices of parameters—all satisfy condition (C4).

Under condition (C4), it can be shown that, for i ∈N ,

P

(
n

∑
k=1,k 6=i

Xk > t

∣∣∣∣∣Xi = x

)
∼ hi(x)

n

∑
k=1,k 6=i

Fk(t) (22)

holds uniformly for x ∈ [0,∞). In addition, we have

P(S > t)∼
n

∑
k=1

Fk(t), (23)

indicating S has a regularly varying tail with index min1≤i≤n αi. See Lemma 3.2 and equation (3.12) in Theorem

3.2 of Asimit et al. (2011).

The following theorem contains our finding on the GTE-based allocation under condition (C4). It’s worth noting

that the result is formulated in terms of the ratio of tail distribution functions to accommodate various scenarios,

with all tails being equivalent or with some dominating others.

Theorem 5.4. Under condition (C4), it holds that

lim
q↑1

r̃i,q = lim
t→∞

F i(t)
∑

n
k=1 Fk(t)

, i ∈N , (24)

provided that the limit on the right-hand side exists.

Proof. See Appendix A.

Remark 5.5. If the limit on right-hand side of (24) exists, then one may show that it agrees asymptotically with the

corresponding CTE-based allocation when condition (C4) holds with α := min1≤i≤n αi > 1. To see this, suppose

that limt→∞ F i(t)/∑
n
k=1 Fk(t) = r ∈ [0,1), and note that the CTE-based allocation satisfies

lim
q↑1

ri,q = lim
t→∞

E (Xihi (Xi))∑
n
k=1,k 6=i Fk(t)+ tF i(t) αi

αi−1

∑
n
k=1 Fk(t)E(S|S > t)
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= lim
t→∞

α−1
α

E (Xihi (Xi))∑
n
k=1,k 6=i Fk(t)+ tF i(t) αi

αi−1

t ∑
n
k=1 Fk(t)

= lim
t→∞

α−1
α

αi

αi−1
F i(t)

∑
n
k=1 Fk(t)

, i ∈N .

Noticing that α = αi for r > 0, we conclude that, for every r ∈ [0,1), the above reduces to r, which is also the limit

of the GTE-based allocation.

5.2 Gumbel case

Finally, in this subsection, we consider the case where the marginal distributions of X are in MDA(Λ) and the

components are asymptotically independent. Specifically, motivated by Assumption 3.3 of Asimit et al. (2011)

(see also Mitra and Resnick, 2009, Section 2.2), we introduce the following condition:1

(C5) Suppose that the nonnegative risk vector X has marginal distribution F1 ∈MDA(Λ) with F i(t)/F1(t)→ ci

for some ci ∈ [0,∞), i ∈ N , and that F1 has auxiliary function a(·). Also suppose that, for every x > 0 and

distinct i, j ∈N , it holds for some Li j > 0 that

P(Xi > t,X j > a(t)x) = o
(
F1(t)

)
and P(Xi > Li j a(t),X j > Li j a(t)) = o

(
F1(t)

)
. (25)

Many practically useful distributions with asymptotic independence and marginal distributions in MDA(Λ)

satisfy this condition. Examples of such distributions are provided and extensively discussed by (Mitra and Resnick,

2009, Section 3).

Theorem 5.6. Under condition (C5), it holds that

lim
q↑1

r̃i,q =
ci

∑
n
k=1 ck

, i ∈N .

Proof. See Appendix A.

Remark 5.7. With Theorem 5.6, we can conclude that, by Theorem 3.3 and equation (2.15) of Asimit et al. (2011),

the CTE-based and GTE-based allocations agree asymptotically when the risks in X belong to MDA(Λ) and

satisfy the asymptotic independence condition in (C5).
1Equation (3.24) in Asimit et al. (2011) contains a minor typo, making it a weaker condition compared to equation (25) included in

condition (C5) of this current paper. However, the assumption used by Asimit et al. (2011) to obtain the desired asymptotics for the
CTE-based allocation is exactly equation (25).
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6 Numerical experiments

The numerical study in this section carries two main purposes. Firstly, it illustrates the desirable similarity between

the CTE-based allocation and GTE-based allocation when the confidence level q is sufficiently close to 1. Secondly,

it demonstrates the smaller variance of the empirical GTE allocation estimator compared to the one associated with

the CTE-based allocation under some data scenarios, advocating for the adoption of the GTE-based allocation from

a statistical robustness perspective.

6.1 An illustrative example

The set-up in this subsection is motivated by the simulation in Asimit et al. (2011). Specifically, we consider

a portfolio comprising two dependent risks, denoted as (X1,X2) ∈ X 2. The marginal distributions of X1 and X2

follow the Pareto distribution of the second kind (a.k.a., Lomax distribution), with survivial functions:

F i(x) = (1+ x/λi)
−α for x > 0 and i = 1,2, (26)

where λi > 0 and α > 0 denote the scale and shape parameters, respectively. The distribution function in (26)

belongs to the MDA of the Fréchet distribution. The distribution function F i is regularly varying with a tail index

α. The smaller the value of α, the heavier the tails of X1 and X2.

Further, the dependence between X1 and X2 is assumed to be governed by the Gumbel copula, specified in equa-

tion (19). Figure 2 illustrates the contour plot of the density of the Gumbel copula. As depicted, the Gumbel copula

exhibits a positive dependence relationship in the upper tail region, with the strength of dependence increasing as

β increases. The Gumbel copula combined with the marginal distributions in (26) implies that the joint distribution

of (X1,X2) satisfies condition (C1).
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Figure 2: Contour plots of the density function of the Gumbel copula with standard normal margins for β = 2 in
the left panel, β = 3 in the middle panel, and β = 5 in the right panel.

It is noteworthy that the dependence structure between X1 and X2, described by (19), is exchangeable. Namely,
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C(F1(x1),F2(x2)) = C(F2(x2),F1(x1)), for all x1,x2 > 0. Thereby, if the scale parameters λ1 = λ2, then the joint

distribution of (X1,X2) is exchangeable. In this case, the CTE-based allocation and GTE-based allocations are

always identical for any confidence level q ∈ [0,1), both equal to one half. For this reason, we generally assume

λ1 6= λ2 in order to highlight the asymptotic identify between the CTE-based and GTE-based allocations established

in this current paper. The calculation of their limits is detailed in Appendix B.

Inspired by the simulation setup in Asimit et al. (2011), we assume the following parameter values in the

baseline scenario:

• The tail index of the marginal distributions: α = 2;

• The scale parameters of the marginal distributions: λ1 = 100000 and λ2 = 300000;

• The dependence parameter of the Gumbel copula: β = 3.

For each confidence level q ∈ {0.1, 0.5, 0.8, 0.95}, we simulate 10000 pairs of X1 and X2 according to the joint

distribution determined by (19) and (26). The empirical tail conditional expectation estimator proposed in Gribkova

et al. (2022b) is used to estimate the corresponding CTE-based allocation ri,q and GTE-based allocation r̃i,q, i= 1,2.

This simulation exercise is repeated 500 times to construct the box plots of the allocation estimates, which are

displayed in Figure 3. Note that the adopted tail conditional expectation estimator is already known to be consistent

(Gribkova et al., 2022b), so the middle lines in the boxes can be viewed as numeric proxies for the true value of the

allocation ratios, while the width of the boxes can be used to assess the robustness of the estimators.

As can be observed, when the confidence level is low (e.g., q = 0.1 and q = 0.5), the CTE-based and GTE-

based allocations differ significantly. At the low confidence level of q = 0.1, the black dots are on the boundary or

outside the whiskers of the ri,q and r̃i,q estimates, indicating that the limit provides a poor approximation of the true

values of the two allocation ratios. As the confidence level increases to 0.5, the intervals associated with the two

allocation methods move closer to the black dots. However, the allocation limit remains outside the whiskers of the

GTE-based allocation r̃i,q estimates. As the confidence level q approaches 1, the medians of the CTE-based and

GTE-based allocation estimates converge. At higher confidence levels (i.e., q = 0.8 and q = 0.95), the allocation

limit dots fall within the middle region of the boxes, with the medians approximately matching the allocation ratio

limit. Moreover, the intervals associated with the GTE-based allocation estimates are significantly narrower than

those of the CTE-based allocation, suggesting that the GTE-based allocation is a statistically robust alternative to

the CTE-based allocation when the confidence level is reasonably high.

It is noteworthy that although our paper focuses on asymptotic analysis, we intentionally include small values

of q into this numerical experiment to illuminate that the differences between the CTE-based and GTE-based

allocations can be substantial when q is small. Nevertheless, the differences diminish rapidly as q increases, and
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the estimates from both allocation rules converge to the established limit rather quickly, particularly for the GTE-

based allocation. This a welcoming finding, as it suggests that the limiting result established in the paper can

provide a satisfactory approximation for both rules even when the confidence level q is moderately high, at least

under the distributional settings given in (19) and (26).

Figure 3: Box plots of the CTE-based allocation estimates (filled boxes) and GTE-based allocation estimates (blank
boxes) at varying confidence levels. The black dots represent the limits of the two allocation methods, which are
identical for the two allocation principles.

Next, we proceed by varying the tail parameter α and the copula dependence parameter β to study their im-

pacts on our numerical findings. Since the allocation ratio for the second BU is one minus that for the first BU,

in the following sensitivity analysis we report the results for the first BU only. Let us define the asymptotic ap-

proximation error as the difference between the limit of the CTE-based or GTE-based allocation and the mean of

the corresponding allocation estimates. More formally, suppose that for a given sample size, the same simulation

exercise is repeated m times. Then, the asymptotic approximation error is computed as

∣∣∣ lim
q↑1

�q−
1
m

m

∑
l=1

�̂q,l

∣∣∣, (27)

where “�” refers to either the CTE-based allocation r and the GTE-based allocation r̃, and “�q,l” denotes the

corresponding estimate obtained by applying the empirical estimator from Gribkova et al. (2022b) to the data

generated in the l-th simulation trial, for l = 1, . . . ,m. We set m = 500. Table 1 presents the aforementioned

asymptotic approximation error for different values of tail parameter α ∈ {0.8, 2, 3}. As mentioned earlier, the

empirical estimator used is consistent (Gribkova et al., 2022a,b), so the means can be viewed as reasonable proxies

for the true values of the corresponding CTE-based and GTE-based allocations.

We observe the following. Firstly, when α = 0.8, the CTE-based allocation does not exist, let alone its limit. In

contrast, the GTE-based allocation is always well-defined, and its limit exists. For all values of α considered, the
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differences between the limits and the (mean approximated) true values become smaller as the confidence level q

increases to 1. Secondly, focusing on the high confidence level case (i.e., q = 0.95), we find that the difference with

the asymptotic approximation for α = 0.8 and α = 2 is smaller when α = 2. This occurs because the magnitudes

of the allocation ratios are larger when α = 0.8. However, this pattern should not be interpreted as an indication

that the asymptotic approximation performs better for risk portfolios with lighter tails. In fact, if we compare the

asymptotic approximation difference between α = 2 and α = 3, where the magnitudes of the allocation ratios are

close, we observe the opposite.

α = 0.8
α = 2

(Baseline)
α = 3

CTE method GTE method CTE method GTE method CTE method GTE method

Limit NA 25.60% 24.43% 24.49%
q = 0.1 NA 2.14% 0.54% 2.24% 0.47% 1.99%
q = 0.5 NA 0.84% 0.25% 0.68% 0.12% 0.42%
q = 0.8 NA 0.30% 0.04% 0.12% 0.10% 0.06%
q = 0.95 NA 0.11% 0.03% 0.02% 0.12% 0.09%

Table 1: Summary of the asymptotic approximation errors, defined as the difference between the limit of the CTE-
based or GTE-based allocation and the mean of the corresponding allocation estimates, for varying values of the tail
parameter α ∈ {0.8, 2, 3}. The row entiled “Limit” reports the limiting values of the CTE-based and GTE-based
allocations, computed based on Theorem 4.2.

Table 2 presents the coefficients of variation (CVs) for the CTE-based and GTE-based allocation estimates

under the same sensitivity analysis settings. Within the context of this numerical section, the CV of an allocation

estimator is calculated as
(m−1)−1/2

√
∑

m
l=1
(
�̂q,l−∑

m
l=1 �̂q,l/m

)2

∑
m
l=1 �̂q,l/m

,

where “�q,l”, l = 1, . . . ,m, are defined in the same way as in equation (27). As shown, across all tail parameter

scenarios considered, the CV increases as the confidence level q grows, which is expected as fewer effective sam-

ples are used to estimate the allocation ratios. When comparing the CTE and GTE methods, the CV is consistently

smaller for the empirical GTE-based allocation, except for the case of q = 0.1 and α = 3, where they are compa-

rable. In high confidence level and heavy-tailed scenarios (e.g., q = 0.95 and α = 0.8 or 2), which are statistically

challenging yet often encountered in practice, the CV associated with the GTE-based allocation estimator is sig-

nificantly smaller than that of the CTE-based allocation. As a side note, it is worth mentioning that the conditional

second moment of Xi given S > sq is not finite for α ∈ (0,2]. This explains the excessive volatilities associated with

the empirical CTE-based allocation when α is low. The above discussion highlights the advantage of adopting the

GTE-based allocation from a statistical robustness perspective.
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α = 0.8
α = 2

(Baseline)
α = 3

CTE method GTE method CTE method GTE method CTE method GTE method

Limit NA 25.60% 24.43% 24.49%
q = 0.1 28.74% 0.64% 0.97% 0.54% 0.50% 0.52%
q = 0.5 28.84% 0.83% 1.07% 0.59% 0.55% 0.54%
q = 0.8 29.13% 1.32% 1.37% 0.78% 0.72% 0.68%
q = 0.95 29.88% 2.73% 2.23% 1.37% 1.19% 1.08%

Table 2: Summary of the CVs for the CTE-based and GTE-based allocation estimators for the first BU, with
varying tail parameters α ∈ {0.8, 2, 3}. The row entiled “Limit” reports the limiting values of the CTE-based and
GTE-based allocations, computed based on Theorem 4.2.

A similar sensitivity analysis is conducted for the Gumbel copula’s dependence parameter β. According to

the limit of allocation ratio shown in Table 3, a smaller value of β, or equivalently, corresponding to a weaker tail

dependence, decreases the asymptotic risk allocation to the first BU. Comparing the cases of β = 2 and β = 3,

the asymptotic approximation error is consistently larger for any considered q when β = 2, despite the higher

corresponding allocation ratio. Although the error is higher when β = 5 compared to β = 3, this pattern is likely

due to a larger allocation ratio to the BU under β = 5. Overall, these discussions suggest that a larger value

of the dependence parameter β, or, a stronger tail dependence, may improve the performance of the asymptotic

approximation.

β = 2
β = 3

(Baseline)
β = 5

CTE method GTE method CTE method GTE method CTE method GTE method

Limit 23.48% 24.43% 24.82%
q = 0.1 6.24% 20.19% 0.54% 2.24% 0.67% 3.38%
q = 0.5 3.68% 8.52% 0.25% 0.68% 0.26% 0.78%
q = 0.8 1.12% 2.43% 0.04% 0.12% 0.02% 0.14%
q = 0.95 0.10% 0.22% 0.03% 0.02% 0.04% 0.16%

Table 3: Summary of the asymptotic approximation errors, defined as the difference between the limit of the CTE-
based or GTE-based allocation and the mean of the allocation estimates, for varying values of the Gumbel copula’s
dependence parameter β ∈ {2, 3, 5}. The row entiled “Limit” reports the limiting values of the CTE-based and
GTE-based allocations, computed based on Theorem 4.2.

Table 4 summarizes the changes in the CV for allocation estimates in response to varying values of β. The

results indicate that the GTE-based allocation estimator consistently outperforms the CTE-based one, exhibiting

lower variation across all dependence scenarios considered. With a fixed confidence level, a larger value of β,

corresponding to stronger dependence in the copula, enhances the robustness of both the CTE-based and GTE-
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based allocation estimators.

β = 2
β = 3

(Baseline)
β = 4

CTE method GTE method CTE method GTE method CTE method GTE method

Limit 23.48% 24.43% 24.82%
q = 0.1 1.54% 0.72% 0.97% 0.54% 0.57% 0.35%
q = 0.5 1.72% 0.88% 1.07% 0.59% 0.62% 0.35%
q = 0.8 2.27% 1.27% 1.37% 0.78% 0.79% 0.45%
q = 0.95 3.76% 2.30% 2.23% 1.37% 1.27% 0.77%

Table 4: Summary of the CVs for the CTE-based and GTE-based allocation estimators for the first BU, with varying
tail parameters β ∈ {2, 3, 5}. All values are reported in the unit of percentage. The row entiled “Limit” reports the
limiting values of the CTE-based and GTE-based allocations, computed based on Theorem 4.2.

Collectively, we observe that in this particular simulation example, the empirical GTE-based allocation may

outperform the empirical CTE-based allocation in terms of smaller variance in the presence of heavy tails and

strong tail dependence. An intuition for this observation is that this distributional scenario implies more frequently

occurring extreme values in Xi and S, which tend to occur simultaneously due to strong tail dependence. By

taking the conditional mean of the ratio as in the GTE-based allocation, the presence of extremes in Xi and S is

directly captured and balanced out, stabilizing the individual ratios and reducing the variance of the estimator. In

contrast, the ratio of conditional means, as in the CTE-based allocation, first averages Xi and S separately. These

averages tend to smooth out the extreme values to some extent, but the corresponding balancing effect is less

efficient compared to directly taking the ratio at the individual level. We openly admit that this observation about

the smaller variance associated with the empirical GTE-based allocation is based on a single simulation example.

In the following subsection, we will conduct a robustness check of the aforementioned numerical observation by

varying the marginal distributions and the underlying copula of (X1,X2).

6.2 Robustness check

Since the asymptotic equivalence between the CTE-based and GTE-based allocations has already been established

theoretically, this subsection focuses on the numerical comparison of the statistical robustness of the empirical

estimators associated with these two allocation rules across a broader set of distributional settings.

We first vary the marginal distributions by considering the following set of models:

• Fréchet distribution: F i(x) = 1− exp{−(x/λi)
−α}, x > 0 ;

• Paralogistic distribution: F i(x) = (1+(x/λi)
√

α)−
√

α, x > 0 ;

• Inverse-Gamma distribution: λi/Xi ∼ Gamma(α,1), i = 1,2.
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For the sake of consistency across all alternative models, we set α = 2, λ1 = 100000, λ2 = 300000, which ensures

that their tail indices and tail ratios match those of the baseline case considered in Section 6.1. The copula function

governing the dependence of (X1,X2) remains the same as in the setup of Section 6.1, namely the Gumbel copula

with dependence parameter β = 3.

The CVs of the empirical estimator for the CTE-based allocation and the GTE-based allocation under varying

marginal distributions are summarized in Table 5. As observed, the GTE-based method consistently yields lower

CVs across all marginal distribution choices, which indicate a clear advantage in statistical robustness over the

CTE-based method. This advantage is especially pronounced under Fréchet and Paralogistic marginals, but remains

noticeably present in the Inverse-Gamma case.

Fréchet Paralogistic Inverse-Gamma

CTE method GTE method CTE method GTE method CTE method GTE method

q = 0.1 0.60% 0.24% 0.74% 0.43% 0.59% 0.29%
q = 0.5 0.76% 0.34% 0.84% 0.49% 0.72% 0.41%
q = 0.8 1.14% 0.59% 1.15% 0.66% 1.02% 0.64%
q = 0.95 2.06% 1.17% 2.02% 1.25% 1.78% 1.22%

Table 5: Summary of the CVs for the CTE-based and GTE-based allocation estimators for the first BU, under
Fréchet, Paralogistic, and Inverse-Gamma marginals.

Next, we keep the marginal distributions as the Lomax distribution specified in (26), but vary the dependence

structure of (X1,X2). Specifically, we consider a set of alternative copula models that, like the Gumbel copula

examined in the previous subsection, exhibit upper tail dependence. These models include, for (u1,u2) ∈ [0,1]2,

• Survival Clayton copula: C(u1,u2) = u1 +u2−1+[(1−u1)
−θ +(1−u2)

−θ−1]−1/θ, θ > 0;

• Joe copula: C(u1,u2) = 1−
[
(1−u1)

θ +(1−u2)
θ− (1−u1)

θ(1−u2)
θ
]1/θ, θ > 1;

• Student’s t copula: C(u1,u2) = Tν,ρ

(
T−1

ν (u1),T−1
ν (u2)

)
, where Tν,ρ(·, ·) denotes the bivariate t distribution

function with degree of freedom ν > 0 and correlation parameter ρ ∈ (−1,1), and Tν(·) is the univaraite t

distribution function.

To facilitate a meaningful comparison, in the succeeding numerical experiment, we calibrate the parameters of

the aforementioned alternative copula models to match the dependence structure of the Gumbel copula considered

earlier. Specifically, for the one-parameter copula models, we choose their parameters so that the corresponding up-

per tail dependence coefficient: λ := limu↑1 [1−2u+C(u,u)]/(1−u), matches that implied by the Gumbel copula

considered in Section 6.1 with baseline dependence parameter β = 3. For the Student’s t copula, which involves

two parameters, we additionally match its Kendall’s tau to that of the Gumbel copula to determine a consistent

parameter choice. The values of parameters specified to the alternative copula models are summarized in Table 6.
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Copula model Parameter choice

Survival Clayton copula θ = 2.303
Joe copula θ = 3

Student’s t copula
ν = 1.014
ρ = 0.866

Table 6: Summary of the parameter values chosen for the alternative copula models used in the robustness check.

The CVs for the CTE-based and GTE-based allocation estimators under the three alternative copula models

outlined above are summarized in Table 7. As observed, across all confidence levels and copula models considered,

the GTE-based allocation estimator consistently demonstrates greater statistical robustness in terms of lower CV

values compared to the CTE-based estimator. Collectively, these results support the favorable use of the GTE-based

method as a robust alternative to the CTE-based approach in the presence of heavy-tailed margins and strong tail

dependence.

Survival Clayton Joe Student’s t

CTE method GTE method CTE method GTE method CTE method GTE method

q = 0.1 0.95% 0.66% 0.94% 0.69% 1.18% 0.55%
q = 0.5 1.06% 0.72% 1.04% 0.77% 1.31% 0.75%
q = 0.8 1.36% 0.89% 1.32% 0.84% 1.74% 1.11%
q = 0.95 2.18% 1.48% 2.14% 1.36% 2.88% 1.96%

Table 7: Summary of the CVs for the CTE-based and GTE-based allocation estimators for the first BU, under
Survival Clayton, Joe, and Student’s t copulas.

7 Real-data demonstration

In this section, we demonstrate that the desirable asymptotic parity between the CTE-based and GTE-based allo-

cations, as well as the greater statistical robustness the GTE-based method, continue to hold in real data, which is

noisier and where the tail assumptions may be less perfectly satisfied than in the idealized simulation setting.

Our real-data illustration is based on the Danish fire losses dataset (McNeil, 1997). The data contains 2 156

entries of large fire claims in Denmark, spanning from January 1980 to December 1990. Each entry has three

dimensions, representing inflation-adjusted losses attributed to building, content, and profit coverages, denoted by

X1, X2, and X3, respectively. We aim to assess the risk contribution of each individual coverage to the total loss

using both the CTE-based and GTE-based allocation methods.

The literature has reported that both the marginal distributions and the aggregate distribution of the losses in

the Danish fire losses dataset exhibit heavy-tailed behavior (Lehtomaa and Resnick, 2020; McNeil, 1997; Resnick,
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1997). Inspection of the Hill plots for each marginal distribution reveals that the estimated tail indices fluctuate be-

tween 1 and 2, which is broadly consistent with the related results reported in the literature (Lehtomaa and Resnick,

2020; McNeil, 1997; Resnick, 1997). Recall that MRV, as specified in condition (C1), makes up a comprehensive

framework for capturing a broad range of extremal dependence, as long as the marginal distributions satisfy the

regular variation and tail equivalence assumptions. Given the similarity in tail index estimates across the marginal

distributions of X = (X1,X2,X3), we argue that it is reasonable to model X using MRV.

We are well aware of the sensitivity of Hill’s estimator to the choice of tuning parameter which determines the

number of upper order statistics included in the estimation process. This sensitivity, compounded by the typically

wide confidence intervals of the tail indices, especially when a high threshold is chosen, makes it challenging

to conclusively determine whether the margins are truly tail equivalent. To further assess the reasonableness of

modeling X under the MRV framework, we applied the hypothesis testing procedure proposed by Einmahl et al.

(2021). Their proposed test statistic is given by

Tn =
k
m

m1

∑
j=1

m2

∑
l=1

(
γ̂ j,l

γ̂all
−1
)2

,

where k ∈ N is a tuning parameter that determines the number of largest radii from the polar transformation of

X , to be included in the estimation. The parameters m1,m2 ∈ N specify how the joint region, formed by the radii

and one angular component of the polar-transformed data, is partitioned into m = m1×m2 blocks. Following the

recommendation in Einmahl et al. (2021), we set m1 = m2 = 2 in our analysis. Within each block, the Hill estimate

of the tail index of the radii is denoted by γ̂ j,l for j = 1, . . . ,m1 and l = 1, . . . ,m2. The overall Hill estimate based

on all radii exceeding the k-th order statistic is denoted by γ̂all. Under certain regularity conditions, the asymptotic

distribution of Tn follows a chi-square distribution with (m−1) degrees of freedom.

In a similar vein to many tail-related statistical methods, the aforementioned testing procedure for MRV requires

the specification of tail regions, which raises a certain degree of subjectivity. Admittedly, the test results can be

quite sensitive to the choice of the threshold parameter k. To mitigate this subjectivity, it is commonly advised

to perform the test under multiple values of k. Figure 4 reports the p-values of the MRV test across a range of

threshold values. As shown, the p-values fluctuate noticeably depending on the choice of k. For most sufficiently

small values of k considered, the null hypothesis that X follows an MRV structure cannot be rejected at the 10%

significance level or lower. Moreover, the p-values exhibit a generally increasing trend as the threshold parameter k

decreases, suggesting that as the testing shifts deeper into the tail region, it becomes increasingly difficult to reject

the MRV assumption. Thereby, we conclude that modeling the tail of X under the MRV framework is reasonable.

Nevertheless, we openly acknowledge that no statistical assumption can be expected to hold perfectly for real-
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Figure 4: Summary of the p-value of the MRV test calculated under varying values of threshold parameter k.

world data, and the MRV framework is no exception. In what follows, we illustrate that despite potential model

misspecification, the allocation limit derived in Theorem 4.2 correctly captures the trend toward which the empirical

estimates converge as the confidence level q increases to 1. To compute the limit in (15), we resort to its spectral

measure representation reported in Proposition 4.3, and apply the empirical method considered in Qin and Zhou

(2021) to estimate it.

Recall that the Hill estimates of the tail indices across different margins range between 1 and 2. Accordingly,

we assume that the common tail index α in the MRV framework falls within this range. For a given estimate of the

common tail index α̂ ∈ (1,2), we estimate the tail equivalence ratios by first determining the threshold for upper

order statistics along each margin, denoted by k̂i, i= 1,2,3, such that the implied Hill estimate matches the common

tail index assumed. The tail equivalence ratio is then estimated via ĉi = âi/â1, with âi =
[(

Xi,(N−k̂i)

)α̂ k̂i
]
/N, where

N is the total sample size, and Xi,(1) ≤ Xi,(2) ≤ ·· · ≤ Xi,(N) denote the order statistics of Xi,1, . . . ,Xi,N , which are

independent samples of Xi, i = 1,2,3.

Next, we turn to estimating the spectral measure H on Wn−1, where in this example, the dimension n = 3.

For a fixed i ∈ {1,2,3}, rank(Xi, j) represents the rank of the j-th sample of Xi, ordered from smallest to largest.

Moreover, define

z j =
3

∑
i=1

N +1
N +1− rank(Xi, j)

, j = 1, . . . ,N.

Let S = { j : rank(z j) ≥ N + 1− b} collect the indices of samples considered as tail observations, as defined by

a properly chosen parameter b ∈ N. In this analysis, we set b = 40, corresponding to approximately the top

(b/N×100)%≈ 2% of the data. For each j ∈ S , the point

(N +1− rank(X1, j)

z j
,
N +1− rank(X2, j)

z j
,
N +1− rank(X3, j)

z j

)
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represents the intersection between the plane W2 and the straight line:

{
t
(
N +1− rank(X1, j),N +1− rank(X2, j),N +1− rank(X3, j)

)
: t ∈ R

}
.

Assigning equal weights to these intersection points yields an empirical estimate of the spectral measure H on W2.

To examine the reasonableness of the derived limits as approximations of the CTE-based and GTE-based al-

locations when the confidence level q is close to one, Tables 8–10 report the absolute differences between the

allocation limits and the empirical estimates obtained using the method proposed in Gribkova et al. (2022b), un-

der varying assumed values of the common tail index α. We observe that across all dimensions, the differences

between the allocation limits based on Theorem 4.2 and those based on the empirical estimator decrease as the

confidence level q increases. This suggests that the derived limits appropriately capture the convergence trend of

the CTE-based and GTE-based allocations as q approaches one.

Admittedly, the results presented in Tables 8–10 serve primarily to illustrate the trend of convergence. They may

not be sufficient to demonstrate that the allocation limits perfectly match the empirical estimates as the confidence

level q approaches one. Such precise validation is typically difficult in real data applications due to finite sample

sizes, data noise, and imperfect adherence to the tail assumptions underlying the theoretical framework. However,

we observe that when q= 0.95, the differences between the allocation limits and the empirical estimates are already

quite small.

Assumed common tail index α̂ 1.2 1.4 1.6 1.8 1.9

Allocation limit 32.60% 36.93% 36.32% 37.05% 35.02%

Difference with empirical estimate of
the CTE-based allocation

q = 0.1 0.2071 0.1638 0.1698 0.1626 0.1829
q = 0.5 0.1679 0.1245 0.1306 0.1234 0.1436
q = 0.8 0.1085 0.0652 0.0712 0.0640 0.0843
q = 0.95 0.0415 0.0019 0.0042 0.0031 0.0172

Difference with empirical estimate of
the GTE-based allocation

q = 0.1 0.3288 0.2854 0.2915 0.2843 0.3046
q = 0.5 0.2740 0.2306 0.2367 0.2295 0.2497
q = 0.8 0.1744 0.1311 0.1371 0.1299 0.1502
q = 0.95 0.0400 0.0034 0.0027 0.0045 0.0157

Table 8: Summary of the absolute differences between the allocation limit computed via Theorem 4.2 and the
empirical estimates of the CTE-based and GTE-based allocations for the building coverage with claim variable X1.
For each confidence level q, the smallest absolute difference across different values of α is highlighted in bold.

Moreover, among the different values of the common tail index assumed in the MRV framework, we observe

that α̂ = 1.6 or α̂ = 1.8 typically yield the smallest absolute differences between the allocation limit and the

empirical estimates. We argue that these values represent the “optimal” choice in the sense that they provide the
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Assumed common tail index α̂ 1.2 1.4 1.6 1.8 1.9

Allocation limit 50.49% 49.48% 50.43% 48.86% 51.52%

Difference with empirical estimate of
the CTE-based allocation

q = 0.1 0.1111 0.1010 0.1106 0.0948 0.1214
q = 0.5 0.0810 0.0710 0.0805 0.0647 0.0914
q = 0.8 0.0345 0.0244 0.0340 0.0182 0.0448
q = 0.95 0.0165 0.0265 0.0170 0.0328 0.0061

Difference with empirical estimate of
the GTE-based allocation

q = 0.1 0.2039 0.1939 0.2034 0.1876 0.2143
q = 0.5 0.1619 0.1518 0.1614 0.1456 0.1722
q = 0.8 0.0814 0.0713 0.0809 0.0651 0.0917
q = 0.95 0.0311 0.0412 0.0317 0.0474 0.0208

Table 9: Summary of the absolute differences between the allocation limit computed via Theorem 4.2 and the
empirical estimates of the CTE-based and GTE-based allocations for the content coverage with claim variable X2.
For each confidence level q, the smallest absolute difference across different values of α is highlighted in bold.

Assumed common tail index α̂ 1.2 1.4 1.6 1.8 1.9

Allocation limit 16.92% 13.59% 13.24% 14.10% 13.46%

Difference with empirical estimate of
the CTE-based allocation

q = 0.1 0.0960 0.0627 0.0593 0.0678 0.0615
q = 0.5 0.0868 0.0535 0.0501 0.0586 0.0523
q = 0.8 0.0740 0.0407 0.0373 0.0458 0.0385
q = 0.95 0.0579 0.0246 0.0212 0.0297 0.0234

Difference with empirical estimate of
the GTE-based allocation

q = 0.1 0.1245 0.0912 0.0877 0.0963 0.0899
q = 0.5 0.1116 0.0783 0.0749 0.0834 0.0771
q = 0.8 0.0916 0.0583 0.0549 0.0634 0.0571
q = 0.95 0.0651 0.0318 0.0283 0.0369 0.0305

Table 10: Summary of the absolute differences between the allocation limit computed via Theorem 4.2 and the
empirical estimates of the CTE-based and GTE-based allocations for the profit coverage with claim variable X3.
For each confidence level q, the smallest absolute difference across different values of α is highlighted in bold.

best asymptotic approximation, assuming the data distribution indeed follows an MRV structure.

Recall that, due to the asymptotic equivalence between the two allocation methods, in Section 6, we demon-

strated through numerical simulations that the GTE-based allocation serves as a robust alternative to the CTE-based

allocation, as its estimator exhibits lower variance. However, unlike in simulation settings where an arbitrary num-

ber of samples can be generated, real-data applications are constrained to a single observed dataset with a fixed

sample size. To compare the robustness of the empirical estimators for the two allocation methods in this real data

example, we employ the bootstrap method, which is known to be consistent for estimating the coverage probabil-

ities of tail-based allocations (Gribkova et al., 2024). Specifically, we repeatedly sample with replacement from

the original data to generate L = 500 bootstrap datasets, each of size N. The empirical estimator from Gribkova

et al. (2022b) is then applied to each bootstrap sample to compute both the CTE-based and GTE-based allocation
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estimates. These L = 500 pairs of estimates yield confidence intervals for the two methods, which are summarized

in the box plots in Figure 5.

Figure 5: Box plots of the CTE-based allocation estimates (filled boxes) and GTE-based allocation estimates
(blank boxes) for X1 (top-left), X2 (top-right), and X3 (bottom-middle), at varying confidence levels. The black dots
represent the limits of the two allocation methods computed under α̂ = 1.6.

We make the following observations. First, when the confidence level q is low, the CTE-based and GTE-based

allocation estimates differ noticeably, with entirely disjoint confidence intervals. However, as the confidence level

increases, the mean estimates of the two methods align, and their confidence intervals begin to overlap, which is

consistent with the asymptotic parity result established in our theoretical analysis. Second, while the variability

of the two estimators is comparable at lower confidence levels, at higher confidence levels, the variance of the

GTE-based estimator is clearly smaller than that of the CTE-based estimator, underscoring the statistical advantage

of the GTE-based allocation method.

8 Conclusions

The GTE risk measure is a newly developed, relative, and robust alternative to the widely advocated CTE risk

measure. This paper examines the asymptotic behavior of a proportional allocation scheme induced by the GTE risk
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measure. We consider a variety of asymptotic scenarios, encompassing both tail dependence and tail independence,

while accommodating marginal distributions that exhibit either heavy or light tails. We derive the limit of the GTE-

based allocation and find that, although for fixed q ∈ (0,1) it differs from the CTE-based allocation, for q close to

1, they are the same asymptotically under all scenarios considered in this paper. In fact, whether they can differ for

q ↑ 1 and under what scenarios they may differ remain some highly nontrivial open questions.

We illustrate through extensive numerical simulations and real-data analysis that the variance of the empirical

estimator for the GTE-based allocation method is significantly smaller than that of the CTE-based method. Owing

to the asymptotic equivalence between the two allocation approaches, our analysis suggests that the GTE-based

method can serve as a robust alternative to the CTE-based method when a sufficiently high confidence level is con-

sidered. Admittedly, the statistical robustness of the GTE-based method is observed empirically through numerical

analysis. Future research should aim to formalize this observation and investigate its theoretical foundation.
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Appendix A Technical proofs

Proof of Theorem 4.2. By equation (5), we have, for every i ∈N ,

lim
q↑1

r̃i,q = lim
q↑1

E(Ri |S > sq) = lim
t→∞

E(Ri |S > t), (28)

where t = sq. Since Ri given by (6) is nonnegative, we have

E(Ri |S > t) =
∫ 1

0
P(Ri > z |S > t) dz =

∫ 1

0

P(Xi > Sz, S > t)/F1(t)
P(S > t)/F1(t)

dz. (29)

On the one hand, it is well known (Resnick, 2007, Proposition 7.3) that under condition (C1), P(S > t) ∼

µ(ℵ)F1(t), where 0 < µ(ℵ)< ∞ because µ ∈M
(
Rn
+ \{0}

)
.

On the other hand, to examine the numerator in the last term of (29), write Bz = {x∈ [0,∞) : xi = z ∑
n
k=1 xk, ∑

n
k=1 xk >

1} for z∈ [0,1] and Z = {z∈ (0,1] : µ(Bz)> 0}; that is, Z is the collection of points z in (0,1] such that the measure

µ assigns a positive mass to the set Bz. We claim that there are at most countably many elements in Z. To see this,

for n = 1,2, . . ., write Zn = {z ∈ Z : µ(Bz) ≥ 1/n}. If there are uncountably many elements in Z, then, since the

union of countably many sets with finite members is at most countable, there exists a positive integer n0, such that

Zn0 has infinite members, and hence has a countable subset Zc
n0

with infinite members. Since Bz1

⋂
Bz2 = /0 for

any z1 6= z2, this implies µ
(⋃

z∈Zc
n0

Bz
)
= ∑z∈Zc

n0
µ(Bz) = ∞. However, noticing that

⋃
z∈[0,1] Bz = ℵ and that Bz’s

are disjoint, we have µ
(⋃

z∈Zc
n0

Bz
)
≤ µ
(⋃

z∈[0,1] Bz
)
= µ(ℵ)< ∞, which is a contradiction. Hence, the set Z has at

most countably many members.
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For every z ∈ (0,1]\Z, we have

µ(∂Ai,z) = µ

(
Bz

⋃{
x ∈ [0,∞) : xi > z

n

∑
k=1

xk,
n

∑
k=1

xk = 1

})

≤ µ(Bz)+µ

({
x ∈ [0,∞) :

n

∑
k=1

xk = 1

})
= 0. (30)

Hence, it holds for z ∈ (0,1]\Z that

lim
t→∞

P(Xi > Sz, S > t)
F1(t)

= lim
t→∞

P(Xi/t > Sz/t, S/t > 1)
F1(t)

= µ

(
x ∈ [0,∞) : xi > z

n

∑
k=1

xk,
n

∑
k=1

xk > 1

)
= µ(Ai,z) ,

where in the last step, we used equations (11) and (30). Thus,

lim
t→∞

E (Ri |S > t) = lim
t→∞

∫
(0,1]\Z

P(Xi > Sz, S > t)/F1(t)
P(S > t)/F1(t)

dz

=
∫
(0,1]\Z

lim
t→∞

P(Xi > Sz, S > t)/F1(t)
P(S > t)/F1(t)

dz

=
∫
(0,1]\Z

µ(Ai,z)

µ(ℵ)
dz

=
∫ 1

0

µ(Ai,z)

µ(ℵ)
dz,

where in the first and last steps we used the fact that Z has at most countable members, and in the second step we

used the Dominated Convergence Theorem. This completes the proof.

Proof of Proposition 4.3. We use the idea of Barbe et al. (2006) to prove the proposition. Write bi(·) =
(
1/F i

)←
(·)

and note that, for any z ∈ (0,1],

P(Xi > zS, S > t) = P

(
bi (Yi)> z

n

∑
k=1

bk (Yk) ,
n

∑
k=1

bk (Yk)> t

)
= P

(
Y
s
∈ A∗z,t

)
,

where s = 1/F1(t) and A∗z,t =
{

a ∈ Rn
+ : bi (ais)> z∑

n
k=1 bk (aks) ,∑n

k=1 bk (aks)> t
}
. Here we used the facts that

bi (Yi) =
(
1/F i

)← (1/F i (Xi)
)
= F←i (Fi (Xi)) and P(F←i (Fi (Xi)) = Xi) = 1 (see McNeil et al., 2015, Proposition
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A.4) and that copulas are invariant under componentwise-monotone increasing transforms. Recall equation (14),

which implies that bk(s)∼ c1/α

k b1(s)∼ c1/α

k t, k ∈ N. It follows that, for any i ∈ N and z ∈ (0,1],

P(Xi > zS,S > t)
F1(t)

= sP
(

Y
s
∈ A∗z,t

)
∼ sP

(
Y
s
∈ A∗z

)
→ µ∗

(
A∗z
)
,

where A∗z =
{

a ∈ Rn
+ : c1/α

i a1/α

i > z∑
n
k=1 c1/α

k a1/α

k ,∑n
k=1 c1/α

k a1/α

k > 1
}
. The proof of Theorem 4.2 shows that the

left-hand size tends to µ(Az), and hence, µ(Az) = µ∗
(
A∗z
)
. Note that

T−1 (A∗z) =

{
(r,w) ∈ (0,∞)×Wn−1 : c1/α

i (rwi)
1/α > z

n

∑
k=1

c1/α

k (rwk)
1/α ,

n

∑
k=1

c1/α

k (rwk)
1/α > 1

}

=

{
(r,w) ∈ (0,∞)×Wn−1 : c1/α

i w1/α

i > z
n

∑
k=1

c1/α

k w1/α

k ,r >

(
n

∑
k=1

c1/α

k w1/α

k

)−α}
.

Therefore,

∫ 1

0
µ(Az)dz =

∫ 1

0
µ∗
(
A∗z
)

dz

= n
∫ 1

0

∫
Wn−1

1(
c1/α

i w1/α

i >z∑
n
k=1 c1/α

k w1/α

k

) ∫ ∞(
∑

n
k=1 c1/α

k w1/α

k

)−α r−2drH(dw)dz

= n
∫ 1

0

∫
Wn−1

1(
c1/α

i w1/α

i >z∑
n
k=1 c1/α

k w1/α

k

)
(

n

∑
k=1

c1/α

k w1/α

k

)α

H(dw)dz

= n
∫

Wn−1

(
n

∑
k=1

c1/α

k w1/α

k

)α ∫ 1

0
1(

c1/α

i w1/α

i >z∑
n
k=1 c1/α

k w1/α

k

)dzH(dw)

= n
∫

Wn−1

(
n

∑
k=1

c1/α

k w1/α

k

)α

c1/α

i w1/α

i

∑
n
k=1 c1/α

k w1/α

k

H(dw)

= n
∫

Wn−1

c1/α

i w1/α

i

(
n

∑
k=1

c1/α

k w1/α

k

)α−1

H(dw).

Similarly, we can show that

µ(ℵ) = n
∫

Wn−1

(
n

∑
k=1

c1/α

k w1/α

k

)α

H(dw).

Together, this leads to an allocation to the ith line of

∫
Wn−1

c1/α

i w1/α

i

(
∑

n
k=1 c1/α

k w1/α

k

)α−1
H(dw)∫

Wn−1

(
∑

n
k=1 c1/α

k w1/α

k

)α

H(dw)
,

which completes the proof.
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Proof of Proposition 4.5. The proof is similar to that of Theorem 8.3 of Das et al. (2013) but is adapted for the case

with Gumbel marginals.

Write D= [−∞,∞)n\{−∞} and E= [−∞,∞]n\{−∞}. On the one hand, suppose that the vague convergence

in relation (18) holds with auxiliary function a(·) and limit measure ν. We know that the limit measure ν assigns

no mass to the lines through∞. To see this, note that, for every xi >−∞,

µ([−∞,∞]×·· ·× (xi,∞]×·· ·× [−∞,∞]) = lim
t→∞

P((Xi− t)/a(t)> xi)

F1(t)
= cie−xi , (31)

where ci = µ(x : xi > 0), and hence, the total mass assigned to the lines through∞ is not greater than

lim
x→∞

n

∑
i=1

µ([−∞,∞]×·· ·× (x,∞]×·· ·× [−∞,∞]) = lim
x→∞

n

∑
i=1

cie−x = 0.

Now define a measure χm on D by χm(·) = ν(·). Since ν is nonzero and nondegenerate and assigns zero mass

to E \D, we know χm is also nonzero and nondegenerate. Moreover, for A ⊂ D bounded away from {−∞} with

χm(∂A) = 0, it follows from Proposition 6.1 of Resnick (2007) that A is relatively compact in E with ν(∂A) = 0.

Therefore, relation (18) implies that

P((X− t1)/a(t) ∈ A)/F1(t)→ ν(A) = χm(A),

and hence, by Theorem 2.1 of Lindskog et al. (2014), the M convergence in (17) holds with limit measure µ = χm

and the same auxiliary function a(·).

On the other hand, suppose that the M convergence in (17) holds with auxiliary function a(·) and limit measure

µ. Define a measure χv on E such that χv(·) = µ(· ∩D). Since µ is nonzero and nondegenerate, so is χv. Now

consider an arbitrary set A ⊂ E with χv(∂A) = 0 that is relatively compact in E. By Proposition 6.1 of Resnick

(2007), A is bounded away from {−∞}. Moreover, we have µ(∂(A∩D)) = µ(∂A∩D) = χv(∂A) = 0. Hence,

relation (18) implies that

P((X− t1)/a(t) ∈ A)
F1(t)

=
P((X− t1)/a(t) ∈ A∩D)

F1(t)
→ ν(A∩D) = χv(A).

This means that the vague convergence given by (18) holds with limit measure ν = χv and the same auxiliary

function a(·).

The proof is now completed.
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Proof of Theorem 4.6. By equation (5), we have, for every i ∈N ,

lim
q↑1

r̃i,q = lim
q↑1

E(Ri |S > sq) = lim
t→∞

E(Ri |S > nt),

where t = sq/n. First note that Ri ≥ 0 and consider

E(Ri |S > nt) =
∫ 1

0
P(Ri > z |S > nt)dz

=
∫ 1

0

P(Xi > Sz, S > nt)
P(S > nt)

dz

=
∫ 1/n

0

1
P(S > nt)

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
(nz−1)t

a(t)
,

S− nt
a(t)

> 0
)

dz

+
∫ 1

1/n

1
P(S > nt)

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
(nz−1)t

a(t)
,

S− nt
a(t)

> 0
)

dz

=: I1(t)+ I2(t).

Given any ε > 0 fixed, we have a(t)< εt for t sufficiently large. It follows that

limsup
t→∞

I2(t) = limsup
t→∞

∫ 1

1/n

1
P(S > nt)

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
(nz−1)t

a(t)
,

S− nt
a(t)

> 0
)

dz

≤
∫ 1

1/n
limsup

t→∞

1
P(S > nt)

P
(Xi− t

a(t)
> z

S−nt
a(t)

+
nz−1

ε
,

S− nt
a(t)

> 0
)

dz

≤
∫ 1

1/n
limsup

t→∞

P
(
(Xi− t)/a(t)> (nz−1)/ε

)
/F1(t)

P(S > nt)/F1(t)
dz

=
∫ 1

1/n

µ
(
x : xi > (nz−1)/ε

)
µ
(
x : ∑

n
k=1 xk > 0

) dz

=

∫ 1
1/n cie−(nz−1)/εdz

µ
(
x : ∑

n
k=1 xk > 0

)
≤ ci ε

nµ
(
x : ∑

n
k=1 xk > 0

) ,
where the second step follows from Fatou’s lemma and the fact that the integrand on the left-hand size is not greater

than 1, the fourth step is due to condition (C2) and equation (20), and the fifth step arises from equation (31). By

the arbitrariness of ε, we have I2(t)→ 0.

Now let us consider I1(t). It is obvious that I1(t)≤ 1/n and we now show that liminft→∞ I1(t)≥ 1/n. Note that,
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for every z ∈ (0,1],

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
nz−1

ε
,

S− nt
a(t)

> 0
)
= P

(
X− t1

a(t)
∈ Az

)
,

where Az = {x ∈ (−∞,∞) : xi > z ∑
n
k=1 xk +(nz−1)/ε, ∑

n
k=1 xk > 0}. Write Z = {z ∈ (0,1] : µ(∂Az) > 0} and

Zc = (0,1]\Z. Using a similar argument to that in the proof of Theorem 4.2, we can verify that there are at most

countably many elements in Z. Therefore,

liminf
t→∞

I1(t) = liminf
t→∞

∫
(0,1/n]∩Zc

1
P(S > nt)

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
(nz−1)t

a(t)
,

S− nt
a(t)

> 0
)

dz

≥
∫
(0,1/n]∩Zc

liminf
t→∞

1
P(S > nt)

P
(

Xi− t
a(t)

> z
S−nt
a(t)

+
(nz−1)t

a(t)
,

S− nt
a(t)

> 0
)

dz

≥
∫
(0,1/n]∩Zc

liminf
t→∞

P((X− t1)/a(t) ∈ Az)/F1(t)
P(S > nt)/F1(t)

dz

=
∫
(0,1/n]∩Zc

µ(Az)

µ(x : ∑
n
k=1 xk > 0)

dz

=
∫ 1/n

0

µ(Az)

µ(x : ∑
n
k=1 xk > 0)

dz

≥ 1
n
−

∫ 1/n
0 µ

(
x : xi ≤ ∑

n
k=1 xk +

nz−1
ε

)
dz

µ
(
x : ∑

n
k=1 xk > 0

) , (32)

where in the first and fifth steps, we used the fact that Z has countably many elements, in the second step we used

Fatou’s lemma, and in the fourth step we used the M convergence in condition (C2), equation (20), and the fact that

µ(∂Az) = 0 for z ∈ Zc. Further note that, by equation (31),

µ
(
x : xi ≤

n

∑
k=1

xk +
nz−1

ε

)
= µ
(
x :

n

∑
k=1,k 6=i

xk ≥−
nz−1

ε

)
≤

n

∑
k=1,k 6=i

µ
(
x : xk ≥−

nz−1
(n−1)ε

)
→ 0

as ε→ 0. It follows from (32) that liminft→∞ I1(t)≥ 1/n, and hence, we can conclude limt→∞ I1(t) = 1/n.

This completes the proof.

Proof of Theorem 5.2. Following the proof of Theorem 4.2, we see that

lim
q↑1

r̃i,q = lim
t→∞

E(Ri |S > t) =
∫ 1

0

µI (Ai,z)

µI (ℵ)
dz,

where Ai,z =
{
x ∈ Rn

+ : xi > z ∑
n
k=1 xk, ∑

n
k=1 xk > 1

}
and ℵ =

{
x ∈ Rn

+ : ∑
n
k=1 xk > 1

}
. Since µI puts mass on the
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axes only, we have

µI (ℵ) =
n

∑
k=1

µI
(
x ∈ Rn

+ : xk > 1
)
=

n

∑
k=1

ck, (33)

and for 0 < z < 1,

µI (Ai,z) = µI(x ∈ Rn
+ : xi > 1) = ci. (34)

Combining (33) and (34) yields (21), which completes the proof.

Proof of Theorem 5.4. First note that equations (28) and (29) remain valid. For z ∈ (0,1),

P(Xi > Sz, S > t) = P(Xi > Sz, S > t, Xi > zt)

= P(S > t, Xi > zt)−P(Sz≥ Xi, Xi > zt)

= P(S > t, Xi > t)+P(S > t, zt < Xi ≤ t)−P(Sz≥ Xi, Xi > t)−P(Sz≥ Xi, zt < Xi ≤ t)

= P(Xi > t)+P(S > t, zt < Xi ≤ t)−P(Sz≥ Xi, Xi > t)−P(Sz≥ Xi, zt < Xi ≤ t).

Accordingly, we can write

∫ 1

0
P(Xi > Sz, S > t)dz

= P(Xi > t)+
∫ 1

0
P(S > t, zt < Xi ≤ t)dz−

∫ 1

0
P(Sz≥ Xi, Xi > t)dz−

∫ 1

0
P(Sz≥ Xi, zt < Xi ≤ t)dz

=: I1(t)+ I2(t)− I3(t)− I4(t).

Obviously, I4(t)≤ I2(t), and hence, by (23), it suffices to show

I2(t) = o(1)P(S > t) and I3(t) = o(1)P(S > t).

We deal with I2(t) first. Since equation (22) holds uniformly over x ∈ [0,∞), for any ε > 0 fixed henceforth,

there exists t0 > 0, such that, for all x > 0 and t > t0,

(1− ε)hi(x)
n

∑
k=1,k 6=i

Fk(t) ≤ P(S−Xi > t |Xi = x) ≤ (1+ ε)hi(x)
n

∑
k=1,k 6=i

Fk(t). (35)
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Therefore, we have

I2(t) =
∫ 1

0

∫ t

zt
P(S > t |Xi = x)Fi(dx)dz

=
∫ t

0

x
t

P(S > t |Xi = x)Fi(dx)

=
∫ t−t0

0

x
t

P(S > t |Xi = x)Fi(dx)+
∫ t

t−t0

x
t

P(S > t |Xi = x)Fi(dx)

=: I21(t)+ I22(t),

where the second step follows from Fubini’s Theorem. Moreover,

I21(t) =
∫ t−t0

0

x
t

P(S−Xi > t− x |Xi = x)Fi(dx)

≤ (1+ ε)
n

∑
k=1,k 6=i

∫ t−t0

0

x
t

hi(x)Fk(t− x)Fi(dx)

= (1+ ε)
n

∑
k=1,k 6=i

∫ 1−t0/t

0

∫ t−t0

zt
hi(x)Fk(t− x)Fi(dx)dz

= (1+ ε)
n

∑
k=1,k 6=i

∫ 1−t0/t

0

∫ t−t0

zt
Fk(t− x)F∗i (dx)dz, (36)

where in the third step we used Fubini’s Theorem, and the distribution function F∗i introduced in the last step

satisfies F∗i (dx) = hi(x)Fi(dx). Note that F∗i is a proper distribution function because E (hi(Xi)) = 1. Since F i and

hi are regularly varying, F∗i has a regularly varying tail with an index of, say, −α∗i < 0. Moreover, since hi is

bounded, we have

F∗i (t) = O
(
F i(t)

)
. (37)

Let us introduce a nonnegative RV X∗i ∼ F∗i that is independent of X . It holds for every z ∈ (0,1] that

∫ t

zt
Fk(t− x)F∗i (dx) = P(X∗i +Xk > t,zt < X∗i ≤ t)

= P(X∗i +Xk > t)−P(X∗i > t)−P(X∗i +Xk > t,X∗i ≤ zt)

≤ (1+o(1))(F∗i (t)+Fk(t))−F∗i (t)−Fk(t)F∗i (zt)

= o(1)(F∗i (t)+Fk(t)),
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where the second last step follows from Lemma 1.3.1 of Embrechts et al. (1997). Therefore,

lim
t→∞

I21(t)
P(S > t)

≤ (1+ ε)
n

∑
k=1,k 6=i

lim
t→∞

∫ 1

0

∫ t
zt Fk(t− x)F∗i (dx)

P(S > t)
dz

≤ (1+ ε)
n

∑
k=1,k 6=i

∫ 1

0
lim
t→∞

∫ t
zt Fk(t− x)F∗i (dx)

P(S > t)
dz

= 0, (38)

where the first step is due to equation (36) and the second step follows from the Dominated Convergence Theorem,

which applies because, by Lemma 1.3.1 of Embrechts et al. (1997),

∫ t
zt Fk(t− x)F∗i (dx)

P(S > t)
≤ P(Xk +X∗i > t)

P(S > t)
∼ Fk(t)+F∗i (t)

P(S > t)
.

Due to relation (37), the term above is bounded and integrable over z ∈ (0,1].

Besides,

I22(t)≤
∫ t

t−t0
P(S > t |Xi = x)Fi(dx)

= P(S > t, t− t0 < Xi ≤ t)

≤ P(t− t0 < Xi ≤ t)

= F i(t− t0)−F i(t)

= o(1)P(S > t).

The above inequality, together with (38), implies I2(t) = o(1)P(S > t).

Next, we turn to I3(t). For any δ ∈ (0,1), we have

I3(t) =
∫ 1

0

∫
∞

t
P
(

S≥ x
z

∣∣∣∣Xi = x
)

Fi(dx)dz

=
∫ 1−δ

0

∫
∞

t
P
(

S−Xi ≥
(

1
z
−1
)

x
∣∣∣∣Xi = x

)
Fi(dx)dz

+
∫ 1

1−δ

∫
∞

t
P
(

S−Xi ≥
(

1
z
−1
)

x
∣∣∣∣Xi = x

)
Fi(dx)dz

=: I31(t)+ I32(t).
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Let M = sup1≤i≤n|hi|. For t large, we have

I31(t)≤
∫ 1−δ

0

∫
∞

t
P
(

S−Xi ≥
δt

1−δ

∣∣∣∣Xi = x
)

Fi(dx)dz

≤ (1+ ε)
n

∑
k=1,k 6=i

∫ 1−δ

0

∫
∞

t
hi(x)Fk

(
δt

1−δ

)
Fi(dx)dz

≤ (1+ ε)M F i(t)
n

∑
k=1,k 6=i

Fk

(
δ

1−δ
t
)
,

where the second inequality holds due to (35). It is easy to see that I31(t) = o(1)P(S > t). Moreover, for t large,

I32(t) =
∫ 1

1−δ

∫
∞

t
P
(

S−Xi ≥
(

1
z
−1
)

x
∣∣∣∣Xi = x

)
Fi(dx)dz ≤ δF i(t).

Letting δ→ 0, we obtain I3(t) = o(1)P(S > t). This completes the proof.

To prove Theorem 5.6, let us start by considering a simpler two-dimensional case, which will play an important

auxiliary role in establishing the desired result in higher dimensions.

Lemma A.1. Let N = {1,2} in condition (C5). Then

lim
q↑1

r̃i,q =
ci

c1 + c2
, i ∈N .

Proof. We prove for i = 1 only and the result for i = 2 follows immediately. Note that equations (28) and (29) still

hold. Obviously,

E (R1|S > t) =
∫ 1

0

P(X1 > zS,S > t)
P(S > t)

dz

=
∫ 1

0

P(X1 > zX2/(1− z),X1 +X2 > t)
P(S > t)

dz

=
∫

∞

0

1
(1+w)2

P(X1 > wX2,X1 +X2 > t)
P(S > t)

dw, (39)

where the last step follow from a change of variable w = z/(1− z) in the integration.

We claim that the probability P(X1 > wX2,X1 +X2 > t) is asymptotically equivalent to F1(t) for every w ∈

(0,∞) and now prove the claim. For every fixed w > 0, by the proof of Lemma 2.1 of Mitra and Resnick (2009), it

holds for some M > max{L12,L12/w} that

1
F1(t)

P
((

X1− t
a(t)

,
X2

a(t)

)
∈ ·
)

ν→ µ1 in M+ ([−M,∞]× [−∞,∞]) , (40)
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where M+ ([−M,∞]× [−∞,∞]) is the set of all nonnegative Randon measures on [−M,∞]× [−∞,∞] and the Radon

measure µ1 is defined as µ1 (dx1,dx2) = e−x1dx1ε0 (dx2), where ε0 denotes the Dirac measure. Now, for fixed w > 0

and M > 0 given above, split the probability in the numerator of equation (39) as follows:

P(X1 > wX2,X1 +X2 > t)

= P(X1 > wX2,X1 +X2 > t,X1 > t−Ma(t))+P(X1 > wX2,X1 +X2 > t,X1 ≤ t−Ma(t))

=: I1(t)+ I2(t).

Note that

I2(t) = P(X1 > wX2,X1 +X2 > t,X1 ≤ t−Ma(t),X2 > Ma(t))

≤ P(X1 > wX2,X2 > Ma(t))

≤ P(X1 > L12 a(t),X2 > L12 a(t))

= o
(
F1(t)

)
,

where in the second last step, we used the fact that M > max{L12,L12/w}. For I1(t), write

I1(t) = P(X1 > wX2,X1 +X2 > t,X1 > t−Ma(t),X2 ≤Ma(t))

+P(X1 > wX2,X1 +X2 > t,X1 > t−Ma(t),X2 > Ma(t))

= I11(t)+ I12(t).

Obviously, we have I12(t) ≤ P(X1 > wMa(t),X2 > Ma(t)) = o
(
F1(t)

)
. Moreover, with A = {(x1,x2) ∈ R2 : x1 +

x2 > 0,x1 >−M,x2 ≤M},

lim
t→∞

I11(t)
F1(t)

= lim
t→∞

1
F1(t)

P(X1 > wX2,X1 +X2 > t,X1 > t−Ma(t),X2 ≤Ma(t))

= lim
t→∞

1
F1(t)

P(X1 +X2 > t,X1 > t−Ma(t),X2 ≤Ma(t))

= lim
t→∞

1
F1(t)

P
((

X1− t
a(t)

,
X2

a(t)

)
∈ A
)

= µ1(A)

=
∫

∞

0
e−x1dx1

= 1,
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where in the second step, we used the fact that t−Ma(t)≥ wMa(t) for t large enough; in the fourth step, we used

the vague convergence in equation (40); and in the second last step, we used the fact that µ1 concentrates on the

x-axis only.

In summary, we have established the claim regarding the asymptotic equivalence between P(X1 > wX2,X1 +X2 > t)

and F1(t) for every w ∈ (0,∞). By equation (39), we have

lim
q↑1

r̃1,q = lim
t→∞

E (R1|S > t)

= lim
t→∞

∫
∞

0

1
(1+w)2

P(X1 > wX2,X1 +X2 > t)
P(S > t)

dw

=
∫

∞

0

1
(1+w)2 lim

t→∞

P(X1 > wX2,X1 +X2 > t)
P(S > t)

dw

=
c1

c1 + c2

∫
∞

0

1
(1+w)2 lim

t→∞

P(X1 > wX2,X1 +X2 > t)
F1(t)

dw

=
c1

c1 + c2

∫
∞

0

1
(1+w)2 dw

=
c1

c1 + c2
,

where we used the Dominated Convergence Theorem in the second step. The proof is now completed.

Proof of Theorem 5.6. Suppose n > 2, and write S−i = S−Xi. We prove the assertion by showing that S−i and Xi,

regarded as two risks, satisfy the conditions for X1 and X2 in Lemma A.1, respectively.

First, by Corollary 2.2 of Mitra and Resnick (2009),

P(S−i > t)∼
n

∑
k=1,k 6=i

P(Xk > t)∼
n

∑
k=1,k 6=i

ckF1(t),

where ∑
n
k=1,k 6=i ck ≥ c1 = 1. Hence, because of the closure of MDA(Λ) under tail equivalence, S−i is also in

MDA(Λ). This implies the distribution of S−i has an auxiliary function, say, ã(t), that is asymptotically equivalent

to a(t). Moreover, we obviously have P(Xi > t)/P(S−i > t)→ ci/∑
n
k=1,k 6=i ck ≥ 0.

Second, we show that, for every x > 0,

P(Xi > xã(t),S−i > t) = o(1)P(S−i > t) and P(Xi > t,S−i > xã(t)) = o(1)P(S−i > t) .

The first equation above is a consequence of Lemma 3.4 of Asimit et al. (2011), the asymptotic equivalence between
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ã(t) and a(t), and the tail equivalence between X1 and S−i. The other equation holds because

P(Xi > t,S−i > xã(t))
F1(t)

≤ 1
F1(t)

P

(
Xi > t,

n⋃
k=1,k 6=i

{
Xk >

xã(t)
n−1

})

≤
n

∑
k=1,k 6=i

1
F1(t)

P
(

Xi > t,Xk >
xã(t)
n−1

)
→ 0,

where the first step is due to the nonnegativity of the risks, and the last step follows from the asymptotic equivalence

between ã(t) and a(t).

Third, we shall prove that there exists Li > 0, such that

P(Xi > Li ã(t),S−i > Li ã(t)) = o(1)P(S−i > t) . (41)

Let Li = (n−1)max j,k∈N , j 6=k L jk. We have

P(Xi > Li ã(t),S−i > Li ã(t))
F1(t)

≤
P
(
Xi > Li ã(t),

⋃n
k=1,k 6=i

(
Xk > max j,k∈N , j 6=k L jk ã(t)

))
F1(t)

≤
n

∑
k=1,k 6=i

P
(
Xi > Li ã(t),Xk > max j,k∈N , j 6=k L jk ã(t)

)
F1(t)

→ 0,

where the first step is due to the nonnegativity of X , and the last step is due to condition (C5) and the asymptotic

equivalence between ã(t) and a(t). Equation (41) holds since X1 and S−i are tail equivalent.

Collectively, we have shown that S−i and Xi satisfy all the assumptions in the two-risk case as described in

Lemma A.1, and thus we readily obtain

lim
q↑1

r̃i,q =
ci/∑

n
k=1,k 6=i ck

1+ ci/∑
n
k=1,k 6=i ck

=
ci

∑
n
k=1 ck

.

This completes the proof.

Appendix B Technical calculations for the example in the numerical section

This section details the calculations needed to derive the limits of the CTE-based and GTE-based allocations, which

are identical and given in (15). To this end, we focus on the limit of r̃1,q as q ↑ 1, and the limit of r̃2,q can be obtained
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via limq↑1 r̃2,q = 1− limq↑1 r̃1,q.

With (19) and (26), the limit measure µ in condition (C1) as well as Theorem 4.2 can be evaluated via (Asimit

et al., 2011; Tang and Yuan, 2013):

µ(x,∞) = x−α

1 +bx−α

2 −
(

x−αβ

1 +bβ x−αβ

2

)1/β

,

where b = (λ2/λ1)
α and x ∈ R2

+. Let us rewrite the limit in (15) as

∫ 1

0

µ(x ∈ [0,∞) : x1 > x2 z/(1− z), x1 + x2 > 1)
µ(x ∈ [0,∞) : x1 + x2 > 1)

dz

= 1−
∫ 1

0

µ(x ∈ [0,∞) : x2 > x1 (1− z)/z, x1 + x2 > 1)
µ(x ∈ [0,∞) : x1 + x2 > 1)

dz. (42)

For x ∈ R2
+, define

µ1(x) =−
∂

∂x1
µ(x,∞) = αx−α−1

1

[
1−
(
x−αβ

1 +bβx−αβ

2

)1/β−1 xα(1−β)
1

]
.

To compute the denominator in the integration in (42), we have

µ(x ∈ [0,∞) : x1 + x2 > 1) = µ
(
x ∈ [0,∞) : x1 > 1

)
+µ
(
x ∈ [0,∞) : x1 ∈ [0,1],x1 + x2 > 1

)
= 1+

∫ 1

0
µ1(s,1− s)ds,

where the second term is calculated numerically. Now consider the numerator in (42). For z ∈ (0,1), we have

µ(x ∈ [0,∞) : x2 > x1 (1− z)/z, x1 + x2 > 1)

= µ
(
x ∈ [0,∞) : x1 > 1

)
+µ
(
x ∈ [0,∞) : x1 ∈ [0,z), x2 > x1 (1− z)/z

)
+µ
(
x ∈ [0,∞) : x1 ∈ [z,1], x2 > 1− x1

)
= 1+

∫ z

0
µ1(s, s(1− z)/z)ds+

∫ 1

z
µ1(s, 1− s)ds,

where the last two terms can be readily computed using numerical integration.
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