Lecture

Poisson Processes

Text: A Course in Probability by Weiss 12.1

STAT 225 Introduction to Probability Models
March 28, 2014

Whitney Huang
Purdue University
Average Rate: λ per time unit
Number of Successes ($=n$) is distributed $\text{Poisson}(\lambda)$

$I_2 \sim \text{Exp}(\lambda)$ \hspace{1cm} $I_5 \sim \text{Exp}(\lambda)$

W_1, \ldots, W_n are independently uniformly distributed over $(0,W_n = t]$

Time between successes is distributed $\text{Exponential}(\lambda)$

Time intervals are independent if they do not overlap
Example 51

Suppose that phone calls arrive at a switchboard according to a Poisson Process at a rate of 2 per minute.

1. Let X be the number of calls between 9:30 and 9:45. Find the distribution of X.

2. Let T be the time between the 8th and 9th calls. What is the distribution (and parameters) of T?

3. What is the probability that exactly 10 calls come in the next 4 minutes?

4. What is the probability that the next call comes in 30 seconds and the second call comes at least 45 seconds after that?

5. Given there are exactly 7 calls in 3 minutes, what is the probability that they all came in the last minute?
Example 51 cont’d

Solution.

$X \sim \text{Poisson} (\lambda = 2 \times 15 = 30)$

$T \sim \text{Exp} (\lambda = 2)$

$P(\text{exactly 10 calls come in the next 4 minutes}) = e^{-8} \frac{8^{10}}{10!} = 0.0993$

$P(I_{\text{in}} < 0.5, I_{\text{in}+1} > 0.75) = P(I_{\text{in}} < 0.5) \times P(I_{\text{in}+1} > 0.75) = (1 - e^{-1}) \times e^{-1.5} = 0.6321 \times 0.2231 = 0.1410$

Z be the number of calls came in last minute

$Z \sim \text{Binomial} (n = 7, p = \frac{1}{3})$

$P(Z = 7) = 0.0005$
Example 51 cont’d

Solution.

\[X \sim \text{Poisson}(\lambda = 2 \times 15 = 30) \]
Example 51 cont’d

Solution.

1. $X \sim \text{Poisson}(\lambda = 2 \times 15 = 30)$
2. $T \sim \text{Exp}(\lambda = 2)$
Example 51 cont’d

Solution.

1. \(X \sim \text{Poisson}(\lambda = 2 \times 15 = 30) \)
2. \(T \sim \text{Exp}(\lambda = 2) \)
3. \(\mathbb{P}(\text{exactly 10 calls come in the next 4 minutes}) = e^{-8} \frac{8^{10}}{10!} = .0993 \)
Example 51 cont’d

Solution.

1. $X \sim Poisson(\lambda = 2 \times 15 = 30)$
2. $T \sim Exp(\lambda = 2)$
3. $P(\text{exactly 10 calls come in the next 4 minutes}) = e^{-8} \frac{8^{10}}{10!} = 0.0993$
4. $P(I_n < .5, I_{n+1} > .75) = P(I_n < .5)P(I_{n+1} > .75) = (1 - e^{-1})(e^{-1.5}) = .6321 \times .2231 = .1410$
Example 51 cont’d

Solution.

1. \(X \sim \text{Poisson}(\lambda = 2 \times 15 = 30) \)

2. \(T \sim \text{Exp}(\lambda = 2) \)

3. \(P(\text{exactly 10 calls come in the next 4 minutes}) = \frac{e^{-8}8^{10}}{10!} = .0993 \)

4. \(P(I_n < .5, I_{n+1} > .75) = P(I_n < .5)P(I_{n+1} > .75) = (1 - e^{-1})(e^{-1.5}) = .6321 \times .2231 = .1410 \)

5. Let \(Z \) be the number of calls came in last minute
 \(Z \sim \text{Binomial}(n = 7, p = \frac{1}{3}) \)
 \(P(Z = 7) = .0005 \)
Example 52

At any point during a Stat 225 exam, the next person to drop a calculator will take 5 minutes on average to do so. Let \(C \) represent the time until the next person drops their calculator.

1. Name the distribution and parameter(s) of \(C \).
2. Find the following probabilities:
 (i) \(P(C > 5 | C < 10) \)
 (ii) \(P(C \geq 8 | C < 15) \)
 (iii) \(C \) is at least 7 given that it is more than 5.
Example 52 cont’d

Solution.

$C \sim \text{Exp}(\lambda = \frac{1}{5})$

(i)

$P(C > 5 | C < 10) = P(5 < C < 10)P(C < 10) = e^{-\frac{5}{1}} - e^{-\frac{2}{1}} = 0.2689$

(ii)

$P(C \geq 8 | C < 15) = P(8 \leq C < 15)P(C < 15) = e^{-\frac{15}{1}} - e^{-\frac{3}{1}} = 0.1601$

(iii)

$P(C \geq 7 | C > 5) = P(C \geq 2) = e^{-\frac{0.4}{1}} = 0.6703$
Example 52 cont’d

Solution.

\[C \sim Exp(\lambda = \frac{1}{5}) \]

(i) \[P(C > 5 | C < 10) = P(5 < C < 10) \cdot P(C < 10) = e^{-\frac{1}{5}} - e^{-2} \cdot \frac{1}{5} - e^{-2} = 0.2689. \]

(ii) \[P(C \geq 8 | C < 15) = P(8 \leq C < 15) \cdot P(C < 15) = e^{-\frac{1}{5} \cdot 6} - e^{-3} \cdot \frac{1}{5} - e^{-3} = 0.1601. \]

(iii) \[P(C \geq 7 | C > 5) = P(C \geq 2) = e^{-\frac{1}{5} \cdot 4} = 0.6703. \]
Example 52 cont’d

Solution.

\[C \sim \text{Exp}(\lambda = \frac{1}{5}) \]
Example 52 cont’d

Solution.

1. \(C \sim \text{Exp}(\lambda = \frac{1}{5}) \)

2. (i) \(\mathbb{P}(C > 5 | C < 10) = \frac{\mathbb{P}(5 < C < 10)}{\mathbb{P}(C < 10)} = \frac{e^{-1} - e^{-2}}{1 - e^{-2}} = .2689 \)
Example 52 cont’d

Solution.

1. $C \sim \text{Exp}(\lambda = \frac{1}{5})$

2. (i) \[P(C > 5 | C < 10) = \frac{P(5 < C < 10)}{P(C < 10)} = \frac{e^{-1} - e^{-2}}{1 - e^{-2}} = 0.2689 \]

 (ii) \[P(C \geq 8 | C < 15) = \frac{P(8 \leq C < 15)}{P(C < 15)} = \frac{e^{-1.6} - e^{-3}}{1 - e^{-3}} = 0.1601 \]
Example 52 cont’d

Solution.

1. \(C \sim \text{Exp}(\lambda = \frac{1}{5}) \)

2.
 (i) \(P(C > 5 | C < 10) = \frac{P(5 < C < 10)}{P(C < 10)} = \frac{e^{-1} - e^{-2}}{1 - e^{-2}} = 0.2689 \)

 (ii) \(P(C \geq 8 | C < 15) = \frac{P(8 \leq C < 15)}{P(C < 15)} = \frac{e^{-1.6} - e^{-3}}{1 - e^{-3}} = 0.1601 \)

 (iii) \(P(C \geq 7 | C > 5) = P(C \geq 2) = e^{-0.4} = 0.6703 \)