Lecture 9
SLR in Matrix Form

STAT 512
Spring 2011

Background Reading
KNNL: Chapter 5
Topic Overview

- Matrix Equations for SLR

- Don’t focus so much on the matrix arithmetic as on the form of the equations.

- Try to understand how the different pieces fit together.
SLR Model in Scalar Form

\[Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \quad \text{where} \quad \begin{cases} \varepsilon_i & \overset{iid}{\sim} N(0, \sigma^2) \\ i = 1, 2, \ldots, n \end{cases} \]

Consider now writing an equation for each obsn:

\[
\begin{align*}
Y_1 &= \beta_0 + \beta_1 X_1 + \varepsilon_1 \\
Y_2 &= \beta_0 + \beta_1 X_2 + \varepsilon_2 \\
&\vdots \quad \vdots \\
Y_n &= \beta_0 + \beta_1 X_n + \varepsilon_n
\end{align*}
\]

9-3
SLR Model in Matrix Form

\[\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \beta_0 + \beta_1 X_1 \\ \beta_0 + \beta_1 X_2 \\ \vdots \\ \beta_0 + \beta_1 X_n \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} \Rightarrow \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} \]

\[\mathbf{Y}_{n \times 1} = \mathbf{X}_{n \times 2} \mathbf{\beta}_{2 \times 1} + \varepsilon_{n \times 1} \]
Terminology

- Y is the response vector
- X is called the design matrix
- β is the vector of parameters
- ε is the error vector
Covariance Matrix for ε

$$\sigma^2 \{ \varepsilon \} = \text{Cov} \left[\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} \right] = \sigma^2 I_{n \times n} = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{bmatrix}$$
Covariance Matrix for Y

$$\sigma^2 \{ Y \} = \text{Cov} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \sigma^2 I_{n \times n}$$
Assumptions in Matrix Form

- $\varepsilon \sim N(0, \sigma^2 I)$
- 0 is the $n \times 1$ zero vector; I is the $n \times n$ identity matrix.
- Ones in the diagonal elements specify that the variance of each ε_i is σ^2.
- Zeros in the off-diagonal elements specify that the covariance between ε_i and ε_j is zero for $i \neq j$.
- Implies zero correlation.
Least Squares Estimation

Errors are $\varepsilon = Y - X\beta$. Want to minimize sum of squared errors:

$$\sum \varepsilon_i^2 = \left[\varepsilon_1 \ \varepsilon_2 \ \cdots \ \varepsilon_n \right] \left[\begin{array}{c} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{array} \right] = \varepsilon'\varepsilon$$

That is, we want to minimize:

$$\varepsilon'\varepsilon = (Y - X\beta)'(Y - X\beta)$$
Least Squares (2)

We take the derivative with respect to the vector β

- This is like a quadratic function: think “$(Y - X\beta)^2$”.

- Using the chain rule, this derivative works out to

$$\frac{d}{d\beta} \left((Y - X\beta)' (Y - X\beta) \right) = -2X' (Y - X\beta)$$
Least Squares (3)

We set this equal to 0 (a vector of zeros) and solve for β, resulting in the normal equations:

$$X'Y = (X'X)\beta$$

Solving this equation for β gives the least squares solution for $\mathbf{b} = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = (X'X)^{-1}(X'Y).$
Least Squares Solution

$$b = (X'X)^{-1} X'Y$$

(REMEMBER THIS!!!)
Reality break

This is just to convince you that we have done nothing new or magical – all we are doing is writing the same old formulas for b_0 and b_1 in matrix format. Do NOT worry if you cannot reproduce the following matrix algebra, but you SHOULD try to follow it so that you believe me that this is really not a new formula.
Recall from previous topics we had:

\[
b_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} \triangleq \frac{SS_{XY}}{SS_X}
\]

\[
b_0 = \bar{Y} - b_1 \bar{X}
\]

For the matrix format, we begin by noting:

\[
X'X = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
X_1 & X_2 & \cdots & X_n \\
1 & X_2 & \cdots & X_n \\
\vdots & \vdots & \ddots & \vdots \\
1 & X_n & \cdots & 1
\end{bmatrix}\begin{bmatrix}
1 \\
1 \\
1 \\
\vdots \\
1
\end{bmatrix} = \begin{bmatrix}
n & \sum X_i \\
\sum X_i & \sum X_i^2
\end{bmatrix}
\]
\[
(X'X)^{-1} = \frac{1}{n\sum X_i^2 - (\sum X_i)^2} \begin{bmatrix}
\sum X_i^2 & -\sum X_i \\
-\sum X_i & n
\end{bmatrix}
\]

\[
= \frac{1}{nSS_X} \begin{bmatrix}
\sum X_i^2 & -\sum X_i \\
-\sum X_i & n
\end{bmatrix}
\]

\[
X'Y = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
X_1 & X_2 & \cdots & X_n
\end{bmatrix} \begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_n
\end{bmatrix} = \begin{bmatrix}
\sum Y_i \\
\sum X_iY_i
\end{bmatrix}
\]

Plugging these into the equation for \(b \) yields:
\[
\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{Y}
\]

\[
= \frac{1}{nSS_X} \begin{bmatrix}
\sum X_i^2 & -\sum X_i \\
-\sum X_i & n
\end{bmatrix} \begin{bmatrix}
\sum Y_i \\
\sum X_i Y_i
\end{bmatrix}
\]

\[
= \frac{1}{nSS_X} \begin{bmatrix}
(\sum X_i^2)(\sum Y_i) - (\sum X_i)(\sum X_i Y_i) \\
-(\sum X_i)(\sum Y_i) + n \sum X_i Y_i
\end{bmatrix}
\]

\[
= \frac{1}{SS_X} \begin{bmatrix}
\bar{Y} (\sum X_i^2) - \bar{X} \sum X_i Y_i \\
\sum X_i Y_i - n \bar{X} \bar{Y}
\end{bmatrix}
\]

\[
= \frac{1}{SS_X} \begin{bmatrix}
\bar{Y} (\sum X_i^2) - \bar{Y} (n \bar{X}^2) + \bar{X} (n \bar{X} \bar{Y}) - \bar{X} \sum X_i Y_i \\
SS_{XY}
\end{bmatrix}
\]

\[
= \frac{1}{SS_X} \begin{bmatrix}
\bar{Y} SS_X - SS_{XY} \bar{X} \\
SS_{XY}
\end{bmatrix} = \begin{bmatrix}
\bar{Y} - \frac{SS_{XY}}{SS_X} \bar{X} \\
\frac{SS_{XY}}{SS_X}
\end{bmatrix} = \begin{bmatrix}
b_0 \\
b_1
\end{bmatrix}
\]
SLR in Matrices

- All we have done is to write the same old formulas for b_0 and b_1 in a fancy new format.

- Why have we bothered to do this? The cool part is that the same approach works for multiple regression. All we do is make X and b into bigger matrices, and use exactly the same formula.
Fitted Values

- The fitted (or predicted) values are:

\[
\hat{Y} = \begin{bmatrix}
\hat{Y}_1 \\
\hat{Y}_2 \\
\vdots \\
\hat{Y}_n
\end{bmatrix} = \begin{bmatrix}
b_0 + b_1 X_1 \\
b_0 + b_1 X_2 \\
\vdots \\
b_0 + b_1 X_n
\end{bmatrix} = \begin{bmatrix}
1 & X_1 \\
1 & X_2 \\
\vdots & \vdots \\
1 & X_n
\end{bmatrix} \begin{bmatrix}
b_0 \\
b_1
\end{bmatrix} = Xb
\]
Hat Matrix

\[\hat{Y} = Xb \]

\[\hat{Y} = X(X'X)^{-1}X'Y \]

\[\hat{Y} = HY \quad \text{where} \quad H = X(X'X)^{-1}X' \]

- Involved in standard errors
- Plays large role in diagnostics and the identification of influential observations
Hat Matrix Properties

- Hat matrix is symmetric
- Hat matrix is *idempotent* since

\[HH = H \]
Residuals

• Formula: \(e = Y - Xb = (I - H)Y \)

• Only \(Y \) is random. \(Var(Y) = \sigma^2 I \)

• Variance Covariance Matrix for \(e \) is the \(n \times n \) matrix:

\[
Var \{ e \} = (I - H)^2 \sigma^2 I = \sigma^2 (I - H)
\]

• Estimated covariance matrix for \(e \) is (also an \(n \times n \) matrix):

\[
s^2 \{ e \} = MSE (I - H)
\]
Other Variances / Covariances

- The vector b is a linear combination of the elements of Y.
- Since Y is normal, b must also be normal.
- Even if normality is violated, these estimates are robust and will be approximately normal in general.
- To determine the var-cov matrix we need to use the following theorem:
Useful Multivariate Theorem

Suppose \(U \sim N(\mu, \Sigma) \), a multivariate normal vector, and \(V = c + DU \), a linear transformation of \(U \) where \(c \) is a vector and \(D \) is a matrix.

Then \(V \sim N(c + D\mu, D\Sigma D') \).
Covariance Matrix for \(b \)

- Recall: \(b = (X'X)^{-1} X'Y = [(X'X)^{-1} X'] Y \)

 and \(Y \sim \mathcal{N}(X\beta, \sigma^2 I) \).

- Now apply theorem to \(b \) using

\[
U = Y, \quad \mu = X\beta, \quad \Sigma = \sigma^2 I \\
V = b, \quad c = 0 \text{ and } D = (X'X)^{-1} X'
\]
Covariance Matrix for b (2)

The theorem tells us the vector b is normally distributed with mean

$$(X'X)^{-1}(X'X)\beta = \beta$$

and covariance matrix

$$\sigma^2 \left((X'X)^{-1} X' \right) I \left((X'X)^{-1} X' \right)' = ... = \sigma^2 (X'X)^{-1}$$

Note: Use basic results from section 5.7 and the fact that both $X'X$ and its inverse are symmetric to show this equality.
Other Variances in Matrix Form

\[
s^2 \{ \hat{Y}_h \} = MSE \left(X_h' (X'X)^{-1} X_h \right)
\]

\[
s^2 \{ \hat{Y}_{h,new} \} = MSE \left(1 + X_h' (X'X)^{-1} X_h \right)
\]

Note: \(X_h' \) is the row vector \([1 \ \ X_h] \).
Sums of Squares

- Sums of squares can also be written in terms of matrices.

- Need a special matrix J which is square and every entry is 1.

- Results shown in Section 5.12.
Sum of Squares Formulas

\[SSR = b'X'Y - \left(\frac{1}{n} \right) Y'JY \]

\[SSE = e'e = Y'Y - b'X'Y \]

\[SSTO = Y'Y - \left(\frac{1}{n} \right) Y'JY \]
Sums of Squares (2)

- Can also be written as *quadratic forms*

\[
SSR = Y' \left[H - \left(\frac{1}{n} \right) J \right] Y
\]

\[
SSE = Y' [I - H] Y
\]

\[
SSTO = Y' \left[I - \left(\frac{1}{n} \right) J \right] Y
\]
Computations

- As usual we will continue to use software to do computations, so you need not worry about having to multiply big matrices.

- “Thinking” in matrix form will come in handy when we begin talking about multiple regression, because all one needs to do is extend the dimensions of the matrices.
Upcoming in Lecture 10...

- Introduction to Multiple Regression
- Background Reading:
 - KNNL 6.1-6.3