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a b s t r a c t

The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed
as a dynamic optimization algorithm in the literature. In this paper, we show in theory that
the samples generated by SAMC can be used for Monte Carlo integration via a dynamically
weighted estimator by calling some results from the literature of nonhomogeneous
Markov chains. Our numerical results indicate that SAMC can yield significant savings over
conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the
problems for which the energy landscape is rugged.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

As known by many researchers, the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) and
the Gibbs sampler (Geman and Geman, 1984) are prone to get trapped into local energy minima in simulations from a
system for which the energy landscape is rugged. In terms of physics, the negative of the logarithmic density/mass function
is called the energy function of the system. To overcome the local trap problem, advancedMonte Carlo algorithms have been
proposed, such as parallel tempering (Geyer, 1991), simulated tempering (Marinari and Parisi, 1992), evolutionary Monte
Carlo (Liang and Wong, 2001), dynamic weighting (Wong and Liang, 1997), multicanonical sampling (Berg and Neuhaus,
1991), the Wang–Landau algorithm (Wang and Landau, 2001), equi-energy sampler (Kou et al., 2006), SAMC (Liang et al.,
2007; Atchadé and Liu, 2007), among others.
Among the aforementioned algorithms, SAMC is a very sophisticated one in both theory and applications. The basic idea

of SAMC stems from the Wang–Landau algorithm and can be briefly explained as follows. Let

f (x) = cψ(x), x ∈ X, (1)

denote the target probability density/mass function, where X is the sample space and c is an unknown constant. Let
E1, . . . , Em denote a partition of X, and let ωi =

∫
Ei
ψ(x)dx for i = 1, . . . ,m. SAMC seeks to draw samples from the trial

distribution

fω(x) ∝
m∑
i=1

πiψ(x)
ωi

I(x ∈ Ei), (2)

where I(·) is an indicator function, πi’s are pre-specified constants such that πi > 0 for all i and
∑m
i=1 πi = 1. In Liang et al.

(2007), π = (π1, . . . , πm) is called the desired sampling distribution of the subregions. Ifω1, . . . , ωm can be well estimated,
sampling from fω(x) will result in a ‘‘random walk’’ in the space of subregions (by regarding each subregion as a ‘‘point’’)
with each subregion being sampled with a frequency proportional to πi. Hence, the local trap problem can be overcome
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essentially, provided that the sample space is partitioned appropriately. SAMC provides a systematic way, as reviewed in
Section 2.1, to estimate ω1, . . . , ωm under the framework of the stochastic approximation method (Robbins and Monro,
1951).
SAMC has been applied successfully to many hard computational problems, such as phylogenetic tree reconstruc-

tion (Cheon and Liang, 2008), neural network training (Liang, 2007), and Bayesian model selection (Liang et al., 2007). How-
ever, its use in Monte Carlo integration has not yet been well explored. Suppose that our goal is to estimate the quantity

Ef h(x) =
∫
h(x)f (x)dx, (3)

where h(x) denotes an integrable functionwith respect to f (x). Liang et al. (2007) proposed a two-stage sampling procedure
which can generate (importance) samples used for evaluating the integral Ef h(x). The procedure is as follows:

(i) (ω-estimation) Run SAMC to estimate ωi’s.
(ii) (Resampling) Simulate samples from fω̂(x) using a MCMC algorithm, and retain each sample with a probability
proportional to ω̂J(x), where J(x) denotes the index of the subregion the sample x belongs to. Alternatively, we can retain
all the samples and the corresponding subregion weights.

Although the procedure is general with respect to the setting ofπ, it is not optimal in terms of efficiency, as it discards the
samples generated in the ω-estimation stage for use in estimating Ef h(x). In this paper, we show in theory that the samples
generated in the ω-estimation stage can be used for estimating Ef h(x). Our numerical results indicate that SAMC can create
significant savings over conventional Monte Carlo algorithms for the problems for which the energy landscape is rugged.

2. Use of SAMC for Monte Carlo integration

2.1. A brief review of the SAMC algorithm

Let θti denote the working estimate of log(ωi/πi) obtained at iteration t , let θt = (θt1, . . . , θtm), and let {γt} denote the
gain factor sequence which satisfies the condition (A1) given in Appendix. In this article, we set

γt =
t0

max(t0, t)
, t = 0, 1, 2, . . . (4)

for some specified values of t0 > 1. A large value of t0 will allow the sampler to reach all subregions very quickly even for a
large system. Let J(x) denote the index of the subregion the sample x belongs to. With the above notations, one iteration of
SAMC can be described as follows:
SAMC algorithm:

(i) (MH sampling) Simulate a sample xt by a single MH update with the target distribution

fθt (x) ∝
m∑
i=1

ψ(x)
eθti
I(x ∈ Ei). (5)

(i.1) Generate y according to the proposal distribution q(xt , y).
(i.2) Calculate the ratio

r = e(θtJ(xt )−θtJ(y))
ψ(y)
ψ(xt)

q(y, xt)
q(xt , y)

.

(i.3) Accept ywith probability min(1, r). If it is accepted, set xt+1 = y; otherwise, set xt+1 = xt .
(ii) (Weight updating) Set

θ∗ = θt + γt+1(et − π), (6)

where et = (et,1, . . . , et,m) and et,i = 1 if xt ∈ Ei and 0 otherwise. If θ∗ ∈ Θ , set θt+1 = θ∗; otherwise, set θt+1 = θ∗+c∗,
where c∗ = (c∗, . . . , c∗) can be an arbitrary vector which satisfies the condition θ∗ + c∗ ∈ Θ .

As implied by Theorem 5.4 of Andrieu et al. (2005), the varying truncation of θ∗ can only occur a finite number of times,
and thus {θt} can be kept in a compact space during simulations. To avoid frequent truncations, Liang et al. (2007) suggested
to set Θ to [−BΘ , BΘ ]m with BΘ being a huge number, e.g., 10100, which, as a practical matter, is equivalent to setting
Θ = Rm. Note that adding to or subtracting a constant vector from θt will not change fθt (x).
To study the convergence of the algorithm, Liang et al. (2007) assumed that the MH updates used in step (i) satisfy the

condition (A2) given in Appendix. In practice, such kinds of updates can be easily designed for both discrete and continuum
systems. For example, a sufficient design is to restrict X to a compact set and to choose a proposal distribution q(x, y)
satisfying the condition: For every x ∈ X, there exist ε1 > 0 and ε2 > 0 such that |x − y| ≤ ε1 H⇒ q(x, y) ≥ ε2. If X
is unbounded, some other constraints can be put on the tails of the target distribution f (x) and the proposal distribution
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q(x, y) to ensure the condition (A2) hold. Refer to Roberts and Tweedie (1996), Rosenthal (1995) and Roberts and Rosenthal
(2004) for more discussions on this issue. Under the conditions (A1) and (A2), Liang et al. (2007) showed that as t →∞,

θti →

{
C+ log(ωi)− log(πi + ν), if Ei 6= ∅,
−∞. if Ei = ∅,

(7)

holds almost surely, where ν =
∑
j∈{i:Ei=∅}

πj/(m−m0),m0 is the number of empty subregions, and C represents an arbitrary
constant. A subregion Ei is called empty if

∫
Ei
ψ(x)dx = 0. In SAMC, the sample space partition can bemade blindly, and this

may lead to some empty subregions. SAMC allows for the existence of empty subregions. The constant C can be determined
by imposing a constraint on θt , say,

∑m
i=1 e

θti is equal to a known number. Refer to Liang et al. (2007) for practical issues
on implementation of SAMC, where the issues, such as how to partition the sample space, how to choose the gain factor
sequence, and how to diagnose the convergence of the algorithm, have been discussed at length.
The superiority of SAMC in sample space exploration is due to its self-adjusting mechanism. If a proposal is rejected,

the weight of the subregion that the current sample belongs to will be adjusted to a larger value, and thus the proposal of
jumping out from the current subregion will be less likely to be rejected in the next iteration. This mechanism enables the
system to escape from local traps very quickly. This is very important for the systems with multiple local energy minima.

2.2. Use of SAMC for Monte Carlo integration

In this section, we show that the samples generated by SAMC in theω-estimation stage can be used directly in evaluation
of Ef h(x). To show this property, we first introduce the following lemmas.

Lemma 2.1 (Billingsley, 1986, P. 218). Suppose that Ft(A) =
∫
A ft(x)dx and F(A) =

∫
A f (x)dx for densities ft(x) and f (x) defined

on X. If ft(x) converges to f (x) almost surely, then Ft(A) −→ F(A) as t → ∞ uniformly for any A ∈ B(X), where B(X)
denotes the Borel set of the spaceX.

Let {Zt , t ≥ 0} be a nonhomogeneous Markov chain with the finite state space S = {1, 2, . . . , k}, the initial distribution

(P(1), P(2), . . . , P(k)) , P(i) > 0, i ∈ S, (8)

and the transition matrix

Pt = (Pt(j|i)) , Pt(j|i) > 0, i, j ∈ S, t ≥ 1, (9)

where Pt(j|i) = P(Zt = j|Zt−1 = i) for t ≥ 1. Let P = (P(j|i)) be an ergodic transition matrix, and let (p1, . . . , pk) be the
stationary distribution determined by P .

Lemma 2.2 (Liu and Yang, 1996; Theorem 7). Let {Zt , t ≥ 0} be a nonhomogeneous Markov chain with the initial distribution
(8) and the transition matrix (9), and let g and gt , t ≥ 1, be functions defined on S. If the following conditions hold,

lim
n→∞

1
n

n∑
t=1

|Pt(j|i)− P(j|i)| = 0, a.s., ∀i, j ∈ S, (10)

lim
n→∞

1
n

n∑
t=1

|gt(i)− g(i)| = 0, a.s., ∀i ∈ S, (11)

then

lim
n→∞

1
n

n∑
t=1

gt(Zt) =
k∑
i=1

pig(i), a.s. (12)

Let (x1, θ1), . . . , (xn, θn) denote a set of samples generated by SAMC in theω-estimation stage.Without loss of generality,
we assume that in the SAMC simulations, there are no empty subregions and a constraint has been imposed on θt such that
C = 0 holds in (7). Let J(xt) denote the index of the subregion that the sample xt belongs to. Then J(x1), . . . , J(xn) forms a
sample from a nonhomogeneous Markov chain defined on the finite state space {1, . . . ,m}, recalling that the sample space
has been partitioned intom disjoint subregions E1, . . . , Em. The Markov chain is nonhomogeneous as the target distribution
fθt (x) changes from iterations to iterations. Let

fθ (x) =
m∑
i=1

πiψ(x)
ωi

I(x ∈ Ei). (13)

It follows from (7) that fθt (x)→ fθ (x) almost surely. Then, it follows from Lemma 2.1 that

lim
t→∞

Pt(j|i) = P(j|i), (14)
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where the transition probability Pt(j|i) is defined as

Pt(j|i) =
∫
Ei

∫
Ej

[
st(x, dy)+ I(x ∈ dy)

(
1−

∫
X

st(x, dz)
)]
dx, (15)

st(x, dy) = q(x, dy)min{1, [fθt (y)q(y, x)]/[fθt (x)q(x, y)]}, and P(j|i) can be defined similarly by replacing fθt (·) by fθ (·) in
(15). Following from (14), (10) holds. It is obvious that π forms the stationary distribution of the Markov chain induced by
the transition matrix P . Define the function

gt(J(xt)) = eθtJ(xt ) , t = 0, 1, 2, . . . . (16)

Following from (7), we have

lim
t→∞

gt(i) = ωi/πi, ∀i ∈ S, (17)

which implies (11) holds by defining g(i) = ωi/πi, i = 1. . . . ,m. Since both conditions (10) and (11) hold, we have, by
Lemma 2.2, the following law of large numbers for the SAMC samples.

Proposition 2.1. Assume the conditions (A1) and (A2). For a set of samples generated by SAMC, we have

lim
n→∞

1
n

n∑
t=1

eθtJ(xt ) =
m∑
i=1

ωi, a.s. (18)

Let A ⊂ X denote an arbitrary Borel set, and let Ac denote the complementary set of A. Thus, Ẽ1 = E1 ∩ A,
Ẽ2 = E1∩Ac, . . . , Ẽ2m−1 = Em∩A, Ẽ2m = Em∩Ac form a new partition of the sample spaceX. In this paper, we call the new
partition an induced partition byA, and the subregion Ẽi an induced subregion byA. Let (x1, θ1), . . . , (xn, θn) denote again
a set of samples generated by SAMC with the partition E1, . . . , Em, and let J̃(xt) denote the index of the induced subregion
xt belongs to. Then J̃(x1), . . . , J̃(xn) forms a sample from a nonhomogeneous Markov chain defined on the finite state space
{1, . . . , 2m}. The transition matrices of the Markov chain can be defined similarly to (15). The stationary distribution of
the limiting Markov chain is then (p̃1, . . . , p̃2m), where p̃2i−1 = πiPf (A|Ei) and p̃2i = πiPf (Ac |Ei) for i = 1, . . . ,m, and
Pf (A|B) =

∫
A∩B f (x)dx/

∫
B f (x)dx. Define

g̃t(J̃(xt)) = eθtJ(xt ) I(xt ∈ A), t = 0, 1, 2, . . . , (19)

where I(·) is the indicator function. Following from (7), we have

lim
t→∞

g̃t(2i− 1) = ωi/πi and lim
t→∞

g̃t(2i) = 0, i = 1, . . . ,m, (20)

which implies (11) holds by defining g̃(2i − 1) = ωi/πi and g̃(2i) = 0, i = 1. . . . ,m. With the similar arguments as for
Proposition 2.1, we have Proposition 2.2:

Proposition 2.2. Assume the conditions (A1) and (A2). For a set of samples generated by SAMC, we have

lim
n→∞

1
n

n∑
t=1

eθtJ(xt ) I(xt ∈ A) =
m∑
i=1

ωiPf (A|Ei), a.s. (21)

Consider again the samples (x1, θ1), . . . , (xn, θn) generated by SAMCwith the partition E1, . . . , Em. Let y1, . . . , yn′ denote
the distinct samples among x1, . . . , xn. Generate a random variable/vector Y such that

P(Y = yi) =

n∑
t=1
eθtJ(xt ) I(xt = yi)

n∑
t=1
eθtJ(xt )

, i = 1, . . . , n′, (22)

where I(·) is the indicator function. Since Θ has been restricted to a compact set in SAMC, θtJ(xt ) is finite. The following
theorem shows that Y is asymptotically distributed as f (·).

Theorem 2.1. Assume the conditions (A1) and (A2). For a set of samples generated by SAMC, the random variable/vector Y
generated in (22) is asymptotically distributed as f (·).



Author's personal copy

F. Liang / Statistics and Probability Letters 79 (2009) 581–587 585

Proof. For any Borel setA ⊂ X,

P (Y ∈ A|(x1, θ1), . . . , (xn, θn)) =

n∑
t=1
eθtJ(xt ) I(xt ∈ A)

n∑
t=1
eθtJ(xt )

.

Following from Propositions 2.1 and 2.2, we have, by noting Pf (Ei) = ωi/
∑m
j=1 ωj,

P (Y ∈ A|(x1, θ1), . . . , (xn, θn))→

m∑
i=1
ωiPf (A|Ei)

m∑
i=1
ωi

=

∫
A

f (x)dx

which, by Lebesgue’s dominated convergence theorem, implies that

P(Y ∈ A) = E [P (Y ∈ A|(x1, θ1), . . . , (xn, θn))]→
∫

A

f (x)dx.

The proof is completed. �

Theorem 2.1 implies that for an integrable function h(x), the expectation Ef h(x) can be estimated by

Êf h(x) =

n∑
t=1
eθtJ(xt )h(xt)

n∑
t=1
eθtJ(xt )

. (23)

As n→∞, Êf h(x)→ Ef h(x) for the same reason that the usual importance sampling estimate converges (Geweke, 1989).
We note that SAMC falls into the class of dynamic weighting algorithms, that is, SAMC is (asymptotically) invariant with

respect to the importanceweights (IWIW) (Wong and Liang, 1997). Let gt(x, w) be the joint distribution of the sample (x, w)
drawn at iteration t , wherew = exp(θtJ(x)). The concept IWIW can be defined as follows:
The joint distribution gt(x, w) is said to be correctly weighted with respect to a distribution f (x) if∫

wgt(x, w)dw ∝ f (x). (24)

A transition rule is said to satisfy IWIW if it maintains the correctly weighted property for the joint distribution gt(x, w)whenever
an initial joint distribution is correctly weighted.
IWIW is a more general concept than the detailed balance condition satisfied by conventional Monte Carlo algorithms.

It is easy to verify that both the MH algorithm and the adaptive Metropolis algorithm (Harrio et al., 2001) satisfy IWIW by
assigning each sample an equal weight of 1.

Theorem 2.2. Assume the conditions (A1) and (A2). Then SAMC asymptotically satisfies IWIW.

Proof. Let gt(x, wx) denote the joint distribution of the sample (x, wx) generated by SAMC at iteration t , wherewx = eθtJ(x) .
If x can be regarded as a sample drawn from fθt (x), then (x, wx) has the joint distribution

gt(x, wx) = fθt (x)δ
(
wx = eθtJ(x)

)
, (25)

where δ(·) denotes a Dirac measure and corresponds to the conditional distribution of wx given the sample x. It is easy to
check that (25) is correctly weighted with respect to f (x). The existence of such a sample is obvious, as it can, at least, be
obtained after the convergence of θt .
Let (y, wy)denote the sample generated at iteration t+1, and letw′y = e

θtJ(y) . It follows from (6) thatwy = eγt+1(1−πJ(y))w′y.
Furthermore, we have∫

wygt+1
(
y, wy

)
dwy =

∫ ∫ ∫
eγt+1(1−πJ(y))w′ygt (x, wx) Pθt

(
(x, wx)→

(
y, w′y

))
dxdwxdw′y

=

∫ ∫ ∫
eγt+1(1−πJ(y))w′yδ

(
wx = eθtJ(x)

)
fθt (x)Pθt

(
(x, wx)→

(
y, w′y

))
dxdwxdw′y

=

∫ ∫ ∫
eγt+1(1−πJ(y))w′yδ(w

′

y = e
θtJ(y))fθt (y)Pθt

((
y, w′y

)
→ (x, wx)

)
dxdwxdw′y

=

∫
eγt+1(1−πJ(y))w′ygt

(
y, w′y

)
dw′y, (26)
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Table 1
The unnormalized mass function of the 10-state distribution.

x 1 2 3 4 5 6 7 8 9 10
ψ(x) 1 100 2 1 3 3 1 200 2 1

Table 2
Comparison of SAMC and MH for the 10-state example, where the Bias and Standard Error (of the Bias) were calculated based on 100 independent runs,
and the CPU times were measured on a 2.8 GHz computer for each run.

Algorithm Bias (×10−3) Standard error (×10−3) CPU time (s)

SAMC −0.528 1.513 0.38
MH −3.685 4.634 0.20

(a) MH samples. (b) SAMC samples. (c) Log-weight of SAMC samples.

Fig. 1. Computational results for the 10-state example. (a) Autocorrelation plot of the MH samples. (b) Autocorrelation plot of the SAMC samples.
(c) Log-weight of the SAMC samples.

where Pθt (· → ·) denotes theMH transition kernel used in the t-th iteration of SAMC. Since γt → 0,
∫
wygt+1

(
y, wy

)
dwy ∝

f (y) holds asymptotically by the last line of (26). If πJ(y) is independent of y, i.e., π1 = · · · = πm = 1/m, then∫
wygt+1

(
y, wy

)
dwy ∝ f (y) holds exactly. �

Theorem 2.2 suggests that setting π to be non-uniform over the subregions may lead to a slightly biased estimate of
Ef h(x) for a short run of SAMC for which the gain factor sequence has not yet decreased to be sufficiently small. This is
consistent with our numerical results, which are available at the request from the author.

3. An illustrative example

Reconsider Example 3.1 of Liang et al. (2007). The distribution consists of 10 states with the unnormalizedmass function
ψ(x) as given in Table 1. It has two modes which are well separated by low mass states. Our goal is to estimate Ef (X), the
mean of the distribution.
The sample space was partitioned according to the mass function into five subregions: E1 = {8}, E2 = {2}, E3 = {5, 6},

E4 = {3, 9} and E5 = {1, 4, 7, 10}. In SAMC simulations, we set π1 = · · · = π5 = 1/5, chose the MH transition proposal
matrix as a stochastic matrix with each row being generated independently from the Dirichlet distribution Dir(1, . . . , 1),
and set the gain factor sequence as in (4) with T0 = 10. SAMC was run 100 times independently, and each run consisted of
5.1× 105 iterations, for which the first 104 iterations were discarded for the burn-in process and the samples generated in
the remaining iterations were used for estimation.
For comparison, the MH algorithm was also applied to this example with the same transition proposal matrix. The

algorithm was run 100 times independently. Each run consisted of 5.1 × 105 iterations, and the samples generated in the
last 5× 105 iterations were used for estimation. The numerical results are summarized in Table 2. They indicate that SAMC
is significantly better than MH for this example in terms of standard errors of the estimates. After accounting for the CPU
cost, SAMC can still make about 4-fold improvement over MH. Note that for more complex problems, e.g., the phylogeny
estimation problem considered in Cheon and Liang (2008), SAMC and MH will cost about the same CPU time for the same
number of iterations, because in this case the CPU time used by each algorithm is dominated by the part used for energy
evaluation, and the part used for weighting updating in SAMC is ignorable.
The reasonwhy SAMC outperformsMH can be explained by Fig. 1 (a) and (b). For this example,MHmixes very slowly due

to the presence of two separated modes, whilst SAMC can still mix very fast due to its self-adjusting mechanism. Fig. 1(c)
shows the evolution of the log-weight of SAMC samples. It indicates that themagnitude of the SAMCweights is rather stable.
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Note that in the SAMC simulation, the formula (6) was applied to update θt , for which the term −γt+1π helps to stabilize
the magnitude of the importance weights by keeping the sum of θti’s unchanged over iterations.
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Appendix

(A1) The sequence {γt} is positive and non-increasing, and satisfies the conditions:

lim
t→∞

γt = 0,
∞∑
t=1

γt = ∞,

∞∑
t=1

γ
η
t <∞,

for some η ∈ (1, 2).
(A2) Let Pθ denote the MH transition kernel for a given θ ∈ Θ . For any θ ∈ Θ , Pθ isψ-irreducible and aperiodic (Meyn and

Tweedie, 1995). In addition, there exist a function V : X → [1,∞) and a constant α ≥ 2 such that for any compact
subsetK ⊂ Θ ,
(i) there exist a set C ⊂ X, an integer l, constants 0 < λ < 1, b, ζ , δ > 0 and a probability measure ν such that

• sup
θ∈K
P lθV

α(x) ≤ λV α(x)+ bI(x ∈ C), ∀x ∈ X,

• sup
θ∈K
PθV α(x) ≤ ζV α(x), ∀x ∈ X,

• inf
θ∈K
P lθ (x, A) ≥ δν(A), ∀x ∈ C,∀A ∈ BX

where PθV (x) =
∫

X
Pθ (x, y)V (y)dy andBX is the Borel set defined onX.

(ii) there exists a constant c such that for all (θ, θ ′) ∈ K ×K ,
• ‖Pθg − Pθ ′g‖V ≤ c‖g‖V |θ − θ ′|, ∀g ∈ LV ,

• ‖Pθg − Pθ ′g‖Vα ≤ c‖g‖Vα |θ − θ ′|, ∀g ∈ LVα ,
where |z| denotes the norm of the vector z, ‖g‖V = supx∈X |g(x)|/V (x), andLV = {g : X→ Rm, ‖g‖V <∞}.
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