
Continuous Contour Monte Carlo for Marginal
Density Estimation With an Application to a

Spatial Statistical Model

Faming Liang

The problem of marginal density estimation for a multivariate density function f (x)
can be generally stated as a problem of density function estimation for a random vector
λ(x) of dimension lower than that of x. In this article, we propose a technique, the
so-called continuous Contour Monte Carlo (CCMC) algorithm, for solving this prob-
lem. CCMC can be viewed as a continuous version of the contour Monte Carlo (CMC)
algorithm recently proposed in the literature. CCMC abandons the use of sample space
partitioning and incorporates the techniques of kernel density estimation into its simula-
tions. CCMC is more general than other marginal density estimation algorithms. First,
it works for any density functions, even for those having a rugged or unbalanced energy
landscape. Second, it works for any transformation λ(x) regardless of the availability of
the analytical form of the inverse transformation. In this article, CCMC is applied to es-
timate the unknown normalizing constant function for a spatial autologistic model, and
the estimate is then used in a Bayesian analysis for the spatial autologistic model in place
of the true normalizing constant function. Numerical results on the U.S. cancer mortality
data indicate that the Bayesian method can produce much more accurate estimates than
the MPLE and MCMLE methods for the parameters of the spatial autologistic model.

Key Words: Autologistic models; Kernel density estimation; Reversible jump Markov
chain Monte Carlo; Stochastic approximation; Wang-Landau algorithm.

1. INTRODUCTION

A common computational problem in statistics is the calculation of marginal densities.
When the joint density is too complicated to allow for an analytical solution, we must turn
to approximations. Such a situation arises naturally in the problems of Bayesian model
selection and spatial statistical model estimation. The goal of the former problem is to esti-
mate the Bayes factors for a set of prespecified models; that is, to estimate a marginal mass
function defined on a set of points. This problem has been tackled by many authors using a
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variety of approaches including reversible jump MCMC (Green 1995; Green and Richard-
son 2002), ratio importance sampling (Chen and Shao 1997a,b), path sampling (Meng and
Wong 1996; Gelman and Meng 1998), reverse logistic regression (Geyer 1994), marginal
likelihood (Chib 1995; Chib and Jeliazkov 2001; Ishwaran, James, and Sun 2001), among
others. The latter problem can be described as follows. Let f (s|θθθ) = ψ(s, θθθ)/ϕ(θθθ) denote
the probability mass function of a spatial statistical model, where s denotes a configuration
of the model, and and θθθ the parameter vector of the model. For some spatial statistical mod-
els, for example, Ising, autologistic, autonormal, and very-soft-core models (Ripley 1981),
the normalizing constant function ϕ(θθθ) is not available analytically. Evaluating ϕ(θθθ) can be
treated as a problem of marginal density estimation by viewing ψ(s, θθθ) as an unnormalized
joint distribution of s and θθθ .

This article will focus on the latter problem, which can be stated in a general form
as follows. Let x denote a d-dimensional random vector, and let f (x) denote its density
function which is known up to a normalizing constant; that is,

f (x) = 1

C
ψ(x), x ∈ X , (1.1)

where X is the sample space, C is the unknown normalizing constant, and ψ(x)is fully
known or at least calculable for any points in X . Let y = λ(x) denote an arbitrary function
which maps X to a lower dimensional space Y with dimension dλ < d. The goal is to
estimate the marginal density ξ(y) = ∫

{x:y=λ(x)} f (x)dx for y ∈ Y . To this end, approx-
imate samples can often be generated from f (x) via MCMC samplers, and the marginal
density can then be estimated using the kernel density estimation method (e.g., Wand and
Jones 1995). The kernel density estimation method allows for dependent samples (Hart and
Vieu 1990; Yu 1993; Hall, Lahiri, and Truong 1995). When independently and identically
distributed samples are available, other nonparametric density estimation methods, such
as local likelihood (Loader 1999), smoothing spline (Gu 1993; Gu and Qiu 1993), and
logspline (Kooperberg and Stone 1991; Kooperberg 1998), are also applicable to estimate
the marginal density.

The problem has also been tackled by some authors from a different angle. For example,
Chen (1994) proposed an importance sampling-based parametric method for the case where
y is a subvector of x. Chen’s estimator also allows for dependent samples. The major short-
coming with Chen’s methods is its strong dependence on the knowledge of the analytical
form of the inverse transformation x = λ−1(y). Other parametric methods (Gelfand, Smith,
and Lee 1992; Verdinelli and Wasserman 1995) suffer from similar handicaps.

The aforementioned methods have a common feature: they are all sample-based. Hence,
they will fail to produce an estimate when identically distributed samples (including MCMC
samples) cannot be generated from f (x). The difficulty is two-fold: f (x) has a rugged en-
ergy landscape on X and f (x) has an unbalanced energy landscape on different regions of
X . The function, − logψ(x), is known in statistical physics as the energy function of f (x).
In the first case, the energy landscape of the distribution contains a multitude of local energy
minima separated by high energy barriers. In simulation from such a distribution, conven-
tional MCMC samplers, such as the Metropolis-Hastings (MH) algorithm (Metropolis et
al. 1953; Hastings 1970) and the Gibbs sampler (Geman and Geman 1984), tend to get
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trapped in a local energy minimum indefinitely, rendering the simulation ineffective. This
difficulty can be alleviated to some extent by employing an advanced MCMC sampler, such
as parallel tempering (Geyer 1991), evolutionary Monte Carlo (Liang and Wong 2001), and
the slice sampler (Neal 2003). In the second case, MCMC samples can be drawn only from
the low-energy region of X . This difficulty cannot be alleviated by employing advanced
MCMC samplers as explained at the end of Section 5.

In this article, we propose a new algorithm for estimating marginal densities. The new
algorithm can be viewed as a continuous version of the contour Monte Carlo (CMC) algo-
rithm proposed by Liang (2005, 2006). Henceforth, the new algorithm will be abbreviated
as the continuous CMC algorithm or CCMC. CCMC is very general. It works for any
transformation λ(x) regardless of the availability of the analytical form of the inverse trans-
formation. Like CMC, CCMC has the capability to self-adjust the acceptance probability
of local moves. This mechanism enables it to escape from local energy minima to sample
relevant parts of the sample space very quickly. As illustrated by our examples studied
in Sections 4 and 5, respectively, CCMC works for both types of density functions, those
having a rugged energy landscape and those having an unbalanced energy landscape.

The remaining part of this article is organized as follows. In Section 2, we briefly
review the CMC algorithm. In Section 3, we describe the CCMC algorithm and prove a
theorem concerning its convergence. In Section 4, we apply CCMC to a mixture distribution
example, which illustrates the performance of CCMC for a distribution with a rugged energy
landscape. In Section 5, we apply CCMC to a spatial autologistic model, which illustrates the
performance of CCMC for a distribution with an unbalanced energy landscape. In Section
6, we conclude the article with a brief discussion on the use of CCMC in some statistical
problems other than spatial statistical models.

2. A BRIEF REVIEW FOR CONTOUR MONTE CARLO

The Wang-Landau (WL) algorithm (Wang and Landau 2001) is a dynamic Monte Carlo
algorithm used to calculate the spectral density for a physical system. A remarkable feature
of the WL algorithm is that it is not trapped by local energy minima. This feature has led to
many successful applications of the algorithm in statistical physics; however, the algorithm
has a shortcoming in convergence, and the estimates produced by it can reach only a limited
statistical accuracy. The CMC algorithm proposed by Liang (2006) can be regarded as a
stochastic approximation correction of the WL algorithm. The CMC algorithm overcomes
the shortcoming of the WL algorithm in convergence; and the estimates produced by it can
be improved continuously as the simulation proceeds. The CMC algorithm can be described
as follows.

Suppose that we are working with the distribution (1.1) and that the sample space X
has been partitioned into the following m disjoint subregions according to the function
λ(x): E1 = {x : λ(x) ≤ λ1}, E2 = {x : λ1 < λ(x) ≤ λ2}, . . . , Em−1 = {x : λm−2 <

λ(x) ≤ λm−1}, and Em = {x : λ(x) > λm−1}, where λ1, . . . , λm−1 are m − 1 known real
numbers. Note that λ(x) can be any functions of interest to us. For example, if f (x) is a
likelihood function with x being the parameter vector, and we are interested in finding the
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MLE of the parameters, we can set λ(x) = − logψ(x). For simplicity, we here assume that
the probability value carried by each subregion is nonzero, that is,

∫
Ei

f (x)dx > 0 for all
i = 1, . . . , m, but CMC allows for the existence of zero-probability subregions.

To facilitate sampling from different subregions, a different weight is attached to each
subregion. Let gi = ∫

Ei
f (x)dx/πi , i = 1, . . . , m, denote the respective weights attached

to the m subregions, where π1, . . . , πm are m prespecified positive real numbers satisfying
the constraint

∑m
i=1 πi = 1. Define

f ∗(x) ∝
m∑
i=1

ψ(x)
gi

I (x ∈ Ei),

where I (·) is the indicator function. It is easy to see that sampling from f ∗(x) will lead
to a random walk in the space of subregions (by regarding each subregion as a “point”)
with each subregion being sampled with a frequency proportional to πi . In this sense,
πππ = (π1, . . . , πm) is called the desired sampling distribution of the subregions. CMC
provides a dynamic procedure to learn the weights g1, . . . , gm simultaneously.

Let ĝ(t)
i denote the working estimate of gi obtained at iteration t ; let

f̂ (t)(x) ∝
m∑
i=1

ψ(x)

ĝ
(t)
i

πiI (x ∈ Ei) (2.1)

denote the working density at iteration t ; let x(t)
k , k = 1, . . . ,M , denote the samples drawn

from f̂ (t)(x); and let ννν(t) = (ν
(t)
1 , . . . , ν

(t)
m ) denote the realized sampling frequency of the

m subregions with ν
(t)
i = 1

M

∑M
k=1 I (x

(t)
k ∈ Ei). One iteration of CMC consists of two

steps.

CMC algorithm

(a) (Sampling) Draw samples x(t)
k , k = 1, . . . ,M , from the working density f̂ (t)(x) via

a MCMC sampler, e.g., the MH algorithm or the Gibbs sampler.

(b) (Weight updating) Update the working estimate ĝ(t) = (ĝ
(t)
1 , . . . , ĝ

(t)
m ) recursively

by setting

log ĝ
(t+1)
i = log ĝ

(t)
i + δt

(
ν
(t)
i − πi

)
, i = 1, . . . , m, (2.2)

where δt is called the gain factor.

Note that in the initial iteration, we have t = 0 and log ĝ
(0)
1 = · · · = log ĝ

(0)
m = 0. The

gain factors are positive and nonincreasing, and satisfy the conditions

∞∑
t=0

δt = ∞ and
∞∑
t=0

δ2
t < ∞, (2.3)

where the first condition ensures that the solution can be reached from any initial points when
the number of iterations is large enough, and the second condition asymptotically damps the
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effect of the random errors introduced by the innovation ν
(t)
i . Refer to a classical stochastic

approximation book, for example, Nevelson and Hasminskii (1973), for more explanations
of the conditions. There are many ways to choose the sequence {δt : t = 1, 2, . . . } to satisfy
(2.3). For example, Liang (2006) suggested the following,

δt = ρκ

max(κ, t)
, κ > 0, t = 0, 1, 2, . . . , (2.4)

for a given value of κ . In theory, the choice of κ should not affect the convergence of the
algorithm; however, in practice, a good choice of κ may affect the stability of the algorithm.
Also, a large value of κ will enable the sampler to reach all subregions very quickly even
for a large system.

Based on the standard theory of stochastic approximation (Robbins and Monro 1951;
Blum 1954), Liang (2006) proved that,

P

{
lim
t→∞ log ĝ

(t)
i = c + log

(∫
Ei

ψ(x)dx
)

− log(πi)

}
= 1, i = 1, . . . , m, (2.5)

where c is an arbitrary constant which can be determined by imposing an additional con-
straint on ĝ(t). Hence, when t becomes large, ĝ(t)

i ∝ ∫
Ei

ψ(x)dx/πi holds approximately,
and sampling from f (t)(x) is approximately equivalent to sampling from πππ if each sub-
region is viewed as a point. The proof is based on the assumption that the samples drawn
in Step (a) are exactly from f̂ (t)(x). However, this assumption can be relaxed to that ν(t)i

satisfies the condition

E
(
ν
(t)
i

)
= S

(t)
i /S(t), i = 1, . . . , m, (2.6)

where S
(t)
i = ∫

Ei
ψ(x)dx/ĝ(t)

i and S(t) = ∑m
j=1 S

(t)
j .

To ensure the validity of (2.6), M does not need to be a large number. This can be argued
as follows. When t becomes large, sampling from f (t)(x) is approximately equivalent to
sampling from πππ . Since πππ is usually chosen to be a distribution that can be easily mixed
by a MCMC sampler, for example, the uniform distribution, M is not required to be large
at this stage. When t is small, the validity of (2.6) is not a concern, since the goal of the
early stage simulations is just to generate starting values for the latter stage simulations.
The self-adjusting mechanism of CMC, which adjusts the sampling probability of Ei (by
adjusting the value of ĝ

(t)
i ) in the adverse direction of the realized sampling frequency of

Ei , guarantees the success of the “initialization” process.

3. CONTINUOUS CONTOUR MONTE CARLO

Despite its success, CMC does not work well for density estimation problems because it
only provides a histogram estimate for the marginal density ξ(y). In this article we provide
a continuous version for CMC. CCMC abandons the use of sample space partitioning and
incorporates the technique of kernel density estimation into simulations. Consequently, this
incorporation improves the convergence of the simulation.



Continuous Contour Monte Carlo 613

In what follows, CCMC is described for the case where y is a bivariate vector. Let
ξ(y) be evaluated at the grid points of a lattice. Without loss of generality, we assume that
the endpoints of the lattice form a rectangle denoted by Y . In practice, the rectangle can
be chosen such that its complementary space is of little interest to us. For example, in
Bayesian statistics, the parameter space is often unbounded, Y can then be set to a rectangle
which covers the high posterior density region. A rough high posterior density region can
usually be identified based on a preliminary analysis of the data. Alternatively, the high
posterior density rectangle can be identified by a trial-and-error process, starting with a
small rectangle and increasing it gradually until the resulting estimates converges.

Let the grid points be denoted by {zij : i = 1, . . . , L1, j = 1, . . . , L2}, where zij =
(z

(1)
i , z

(2)
j ). Letd1 = z

(1)
2 −z

(1)
1 andd2 = z

(2)
2 −z

(2)
1 be the horizontal and vertical neighboring

distances of the lattice, respectively. Let gij = ξ(zij ) be the true marginal density value at
the point zij , and let ĝ(t)

ij be the working estimate of gij obtained at iteration t . For any point
ỹ = (ỹ1, ỹ2) ∈ Y , the density value can then be approximated by bilinear interpolation as
follows. If z(1)i < ỹ1 < z

(1)
i+1 and z

(2)
j < ỹ2 < z

(2)
j+1 defines i and j , then

ξ̂ (t)(ỹ) = (1 − u)(1 − v)ĝ
(t)
ij + u(1 − v)ĝ

(t)
i+1,j + (1 − u)vĝ

(t)
i,j+1 + uvĝ

(t)
i+1,j+1, (3.1)

where u = (ỹ1 − z
(1)
i )/(z

(1)
i+1 − z

(1)
i ) and v = (ỹ2 − z

(2)
j )/(z

(2)
j+1 − z

(2)
j ).

Similarly to the desired sampling distribution used in CMC, we specify π(y) as the
desired sampling distribution on the marginal space Y . Theoretically, π(y) can be any
distribution defined on Y . Let {δt : t = 1, 2, . . . } denote a sequence of gain factors as used
in CMC, and let H(t) = diag(h2

t1, h
2
t2) denote the bandwidth matrix used in the density

estimation procedure at iteration t . The sequence {hti : t = 1, 2, . . . } is positive and
nonincreasing, and converges to 0 as t → ∞. In this article, we set

hti = min

{
δ
γ
t ,

range(ỹi)

2
(
1 + log2(M)

)} , i = 1, 2, (3.2)

where γ ∈ ( 1
2 , 1], and the second term in min{·, ·} is the default bandwidth used in conven-

tional density estimation procedures, for example, the procedure density(·) in S-Plus 5.0
(Venables and Ripley 1999, pp. 135). For convenience, we link the choices of {δt } and {ht ·}
together in this article, although this is not necessary in theory. With the notations defined
above, one iteration of CCMC can be described as follows.

CCMC algorithm

(a) (Sampling) Draw samples x(t)
k , k = 1, . . . ,M , from the working density

f̂ (t)(x) ∝ ψ(x)

ξ̂ (t)(λ(x))
, (3.3)

via a MCMC sampler, for example, the MH algorithm or the Gibbs sampler, where
ψ(x) is as defined in (1.1), and ξ̂ (t)(λ(x)) is as defined in (3.1).
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(b) (Estimate updating)

(b.1) Estimate the density of the transformed samples y(t)
1 = λ(x(t)

1 ), . . . , y(t)
M =

λ(x(t)
M ) using the kernel method. Evaluate the density at the grid points,

ζ (t)
u (zij ) = 1

M

M∑
k=1

∣∣∣H(t)
∣∣∣− 1

2
K
(
(H(t))−

1
2 (zij − y(t)

k )
)
,

i = 1, . . . , L1, j = 1, . . . , L2, (3.4)

where K(y) is a bivariate kernel density function.

(b.2) Normalize ζ
(t)
u (zij ) on the grid points by setting

ζ (t)(zij ) = ζ
(t)
u (zij )∑L1

i′=1

∑L2
j ′=1 ζ

(t)
u (zi′j ′)

, i = 1, . . . , L1, j = 1, . . . , L2.

(3.5)

(b.3) Update the working estimate ĝ
(t)
ij in the following manner,

log ĝ
(t+1)
ij = log ĝ

(t)
ij + δt

(
ζ (t)(zij ) − π ′(zij )

)
,

i = 1, . . . , L1, j = 1, . . . , L2, (3.6)

where π ′(zij ) = π(zij )/[
∑L1

i′=1

∑L2
j ′=1 π(zi′j ′)].

(c) (Lattice refinement) Refine the lattice by increasing the values of L1, L2 or both, if
max

{
d1
ht1

, d2
ht2

}
> υ, where υ is a threshold value. In this article, we set υ = 4 for all

examples.

On the convergence of CCMC, we have the following theorem.

Theorem 1. If {δt : t = 1, 2, . . . } satisfies the condition (2.3) and {hti : t = 1, 2, . . . }
is a sequence as specified in (3.2), then

P
{

lim
t→∞ log ξ̂ (t)(zij ) = c + log ξ(zij ) − logπ(zij )

}
= 1,

i = 1, . . . , L1, j = 1, . . . , L2, (3.7)

where c is an arbitrary constant which can be determined by imposing an additional con-
straint on ξ̂ (zij )’s.

Proof: The proof of this theorem mimics a similar proof in the context of CMC. Since
x(t)

1 , . . . , x(t)
M are MCMC samples generated from (3.3), it follows from Wand and Jones

(1995, pp. 97) that

Eζ (t)
u (zij ) = -(t)(zij ) + 1

2
µ2(K)tr

{
H(t)H(t)(zij )

}
+ o

{
tr(H(t))

}
, (3.8)

where -(t)(z) is a density function proportional to ξ(z)/̂ξ (t)(z), µ2(K) = ∫
z2K(z)dz,

and H(t) is the Hessian matrix of -(t)(z). Thus, ζ (t)
u (z) forms an (asymptotically) unbiased

estimator of -(t)(z) as ht · goes to 0.
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Using Taylor’s theorem, we have

Eζ (t)(zij ) = E
ζ
(t)
u (zij )∑L1

i=1

∑L2
j=1 ζ

(t)
u (zij )

≈ -(t)(zij )∑L1
i=1

∑L2
j=1 -

(t)(zij )

= ξ (t)(zij )/̂ξ (t)(zij )∑L1
i=1

∑L2
j=1 ξ

(t)(zij )/̂ξ (t)(zij )
, (3.9)

as ht · goes to 0. The proof can then be completed similarly to Liang (2006) by noting the
similarity of (2.6) and (3.9).

CCMC tends to converge faster than CMC. This is because CCMC employs the tech-
niques of kernel density estimation, and thus the estimates can be updated in large blocks
at the early stage of the simulation. In CCMC, the bandwidth plays a similar role as the
gain factor. It is meant to enhance the ability of the sampler in sample space exploration.
The difference is that the bandwidth controls the moving stepsize of the sampler, while the
gain factor controls the moving mobility of the sampler. CCMC is equipped with both the
bandwidth and the gain factor.

In the above, CCMC is described in two-dimensional space. Extension to other dimen-
sional spaces, such as one or three-dimensional spaces, is straightforward. For a higher
dimensional space, CCMC may be hindered by the curse of dimensionality. First, the mul-
tivariate kernel density estimator itself suffers from the curse of dimensionality. High-
dimensional space is very different than one-, two-, or three-dimensional space. It is vast,
and the points lying in such a space have very few near neighbors. To maintain required
estimation accuracy, the sample size should increase exponentially with dimension. Refer
to Scott (1992) for more discussions on this issue. Second, CCMC evaluates the kernel den-
sity at grid points. As the dimension increases, the number of grid points should increase
exponentially, typically, at a rate O(Ld

λ), where L denotes the linear size of the lattice.
For an effective implementation of CCMC, several issues need to be addressed.

• Choice of the desired sampling distribution. Theorem 1 implies that ξ(z)/̂ξ (t)(z)
converges to π(z) when t becomes large. This, together with Equation (3.8), suggests
that the uniform distribution is an attractive choice for π(y), as it leads to an approx-
imate zero Hessian matrix and thus a small bias of density estimation. In this article,
we set π(y) to the uniform distribution for all examples. Equation (3.6) can then be
simplified to

log ĝ
(t+1)
ij = log ĝ

(t)
ij + δt ζ

(t)(zij ), i = 1, . . . , L1, j = 1, . . . , L2, (3.10)

because adding to or subtracting from {log ĝ
(t)
ij } a constant will not change the dy-

namics of CCMC.

• Choice of the MCMC sampler. As in CMC, the self-adjusting mechanism of CCMC
can provide substantial help for the system to escape from local traps. Hence, the
choice of the MCMC sampler is no longer crucial to the mixing of CCMC. Our
numerical results indicate that the MH algorithm can work well for many problems,
even for those having a rugged or severely unbalanced energy landscape. When
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the problems are more complicated, an advanced MCMC sampler, such as parallel
tempering (Geyer 1991), evolutionary Monte Carlo (Liang and Wong 2001), or the
slice sampler (Neal 2003), can be used to avoid possible local-trap problems.

• Choice of the kernel and bandwidth matrix. The kernel method is used in CCMC
based on two considerations. First, the kernel method allows for the dependence of
the MCMC samples (Yu 1993). Second, the asymptotics of (3.8) depend on only the
bandwidth matrix, and thus a small value of M is allowed for in (3.8). These two
considerations rule out other density estimation techniques, such as local likelihood,
logspline, and smoothing spline, although they may have better performance on the
boundary regions.

Before discussing the choices of the kernel and bandwidth matrix, we note that CCMC
is different from other density estimators in its dynamic nature. In CCMC, the esti-
mates are updated iteratively, each updating is based on a small number of MCMC
samples simulated from the working density, and the updating manner turns gradually
from global to local due to the gradual decrease of the kernel bandwidth as iterations
progress. Hence, the rules developed for the choices of kernel and bandwidth matrix
for conventional kernel density estimators may not work for CCMC.

In this article, we associate the choice of bandwidth matrix with the choice ofπππ . Since
πππ is set to the uniform distribution, the samples y(t)

1 , . . . , y(t)
M tend to be uniformly

distributed on Y (independent of f (x)) when t becomes large. This suggests the use
of a diagonal bandwidth matrix with the diagonal elements accounting for the vari-
ability (range) of the samples in the coordinate directions. Other bandwidth matrices,
such as the full bandwidth matrix, are not recommended here due to the uniformity
of the samples. When nonequally spaced grid points are used in evaluation of the
density, the bandwidth hti may be allowed to vary with the position of the grid point.
However, the data-driven approaches—for example, the nearest neighbor and balloon
approaches (Loftsgaarden and Quesenberry 1965; Terrell and Scott 1992)—may not
be appropriate to CCMC, because the convergence of bandwidth is out of our control
in these approaches.

As in conventional kernel density estimation problems, the shape of the kernel has
little influence on the results. In this article, K(·) is set to the standard dλ-variate
normal density, that is,

K(y) = 1

(2π)dλ/2
exp

(
−1

2
y′y

)
.

Since the bandwidth tends to zero as t becomes large, this choice also works for
the case where the marginal density has some discontinuous points. Refer to Ghosh
and Huang (1992) and references therein for methods of estimation of discontinuous
densities. Other kernels, for example, the Epanechnikov kernel, should work equally
well. It is worth noting that a boundary kernel should work better for CCMC due
to the elimination of boundary bias. Refer to Müller and Stadtmüller (1999), Jones
(1993), and references therein for development of boundary kernels.
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• Fast computation of kernel estimates. The kernel method requires us to evaluate the
kernel density at all grid points for any given sample y(t)

k . For fast computation, we
only need to evaluate the kernel density at the grid points lying in a neighborhood of
y(t)
k , for example, the grid points within a cycle of radius max{4ht1, 4ht2} and centered

at y(t)
k . This will save a lot of CPU time when the lattice size is large, while keeping

the estimation being less affected by the kernel density truncation. Alternatively, the
binning techniques developed by Fan and Marron (1994) and Wand (1994) can be
used to accelerate the computation of the kernel estimates.

• Lattice refinement. Since the normal kernel is used and 1 −1(2) is a small number,
where 1(·) denotes the CDF of the standard normal distribution, a sample lying in
the middle of two neighboring grid points will have only very minor contributions
to the marginal density estimate when min{d1/ht1, d2/ht2} > 4. Based on this
consideration, we set υ = 4 in the step of lattice refinement. In practice, d1, d2 and
the sequence {ht ·; t = 1, 2, . . . } are often set a priori such that the lattice does not
need to be refined during simulations. Of course, this is done only for convenience.
For efficiency of the algorithm, the lattice should be refined sequentially, as this avoids
updating {ĝij } on a large lattice at the early stage of the simulation.

• Choice of other parameters. Other parameters of CCMC include the sample size
M , the parameters ρ and κ used in specifying {δt : t = 1, 2, . . . }, the parameter
γ used in specifying {ht · : t = 1, 2 . . . }, and the number of iterations. As argued
before, M is not required to be very large for the convergence of CCMC. Based on
empirical evidence, Liang (2006) suggested that a value of M between 10 and 100 is
appropriate for most problems. In this article, we fixed M = 10 in all computations.
Our numerical results indicate that this choice is appropriate. The parameters ρ, κ
and the number of iterations are related. They can be set according to the following
criterion: The more complex the problem is, the larger values they should have. The
appropriateness of the settings can be diagnosed based on the deviation of the realized
sampling distribution from the desired one. Since we have fixed π(y) to the uniform
distribution, the transformed samples y1, y2, . . . should be approximately uniformly
distributed on Y if ρ, κ and the number of iterations are chosen appropriately. If this
is not the case, CCMC should be rerun with more iterations, a large value of ρ or a
large value of κ .

The choice of {ht · : t = 1, 2, . . . } given in (3.2) implies that the parameter γ

controls the smoothness of the resulting marginal density estimate. The smaller γ , the
smoother the resulting marginal density estimate will be. However, if γ is too small,
the resulting estimate may be over-smoothed and thus biased. Hence, the choice of γ
should balance the efficiency of CCMC in sample space exploration and the accuracy
of the resulting marginal density estimate. Note that the choice of γ will not affect
the convergence of CCMC. For simplicity, we set γ = 1 in all computations of this
article.
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4. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate the use of CCMC as a technique of marginal density esti-
mation through a synthetic example. Our numerical results indicate that CCMC converges
much faster than CMC. Consider the following mixture distribution,

f (x) = 1

3
N3(−µµµ1, 31) + 2

3
N3(µµµ2, 32), (4.1)

where x = (x1, x2, x3), µµµ1 = (−5,−5,−5), µµµ2 = (10, 25, 1),

31 =
4 5 0

5 64 0
0 0 1

 , and 32 =
1/4 0 0

0 1/4 0
0 0 1/4

 .

Suppose that we want to estimate the marginal density of y = (x1, x2). This example
mimics a multimodal posterior distribution in Bayesian inference. The two modes of the
distribution are well separated.

CCMC was first applied to this example. We restricted Y to the square [−30.5, 30.5] ×
[−30.5, 30.5], and evaluated the marginal density on a square lattice of size 245 × 245. We
set M = 10, ρ = 20, κ = 1000, and the total number of iterations to be 5 × 106. At each
iteration, the working density is simulated using the MH algorithm with the random walk
proposal N3(xt , 53I3), where I3 denotes the 3 × 3 identity matrix. The overall acceptance
rate is about 0.18. Figure 1(a) shows the log-marginal density estimate obtained in one run
of CCMC. To show the shape of the first component, the estimate is plotted in the log-
scale instead of the true density scale; otherwise, we can only see a flat surface for the first
component. Note that for this example, the region {x : log f (x) > −16.5} contains more
than 99.9% percent of the mass of f (x). Figures 1(c) and (d) compare the contour plots
of the estimated and true log-marginal densities. The comparison shows that the estimate
is accurate and potentially it can be used in inference for the target distribution in place
of the true density. CCMC was then run four more times independently. Table 1 reports
the resulting estimates of the probabilities p1 = P(x1 < 0) and p2 = P(x2 < 0). These
estimates are calculated based on the marginal density estimates produced in the five runs.

For comparison, CMC was also applied to this example to estimate the probabilities
p1 and p2. The sample space was partitioned into 244 × 244 subregions according to the
lattice used by CCMC, the desired sampling distribution was set to the uniform distribution,
and the total number of iterations was set to 107. Other parameters were set as in CCMC,
that is, M = 10, ρ = 20, and κ = 1,000. The algorithm was run five times independently.
The results shown in Table 1 indicate that CMC fails for this example even with twice
the number of iterations that CCMC used. Here we use the number of energy evaluations
instead of the CPU time to measure the computational cost of a run. Actually, this is a much
better measure than the CPU time for comparing efficiency of two algorithms, because the
CPU time is usually dominated by the part used for energy evaluations when a complex
system is simulated. This measure has long been used in statistical physics (Hesselbo and
Stinchcombe 1995).



Continuous Contour Monte Carlo 619

Figure 1. Computational results of CCMC for the mixture Gaussian example. (a) The log-marginal density
estimate; (b) the true log-marginal density; (c) the contour plot of the log-marginal density estimate; (d) the
contour plot of the true log-marginal density. The circles in the two contour plots corresponds to the 95%, 90%,
50%, and 10% percentiles of the log-density, respectively.

Table 1. Comparison of CMC and CCMC for estimating the probabilities p1 and p2. The numbers in the
parentheses are the standard deviations of the estimates. The true values of p1 and p2 are 0.331 and
0.245, respectively.

Algorithm p1 p2 Number of energy evaluations

CCMC 0.330 (0.003) 0.245 (0.002) 5 × 106

CMC 0.267 (0.137) 0.211 (0.110) 107
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This example shows that CCMC outperforms CMC in marginal density estimation due
to the use of the kernel smoothing techniques. As mentioned before, the kernel smoothing
step enhances the ability of CCMC in sample space exploration by penalizing the transitions
into the neighborhood of historical samples. One possible way to improve efficiency of CMC
is to repartition the sample space according to a coarser lattice, say, a lattice of size 50×50.
However, a coarser partition often causes the inability of CMC in transitions between
different modes of the distribution, and a rougher histogram estimate for the marginal
density.

5. BAYESIAN INFERENCE FOR SPATIAL AUTOLOGISTIC
MODELS

5.1 Introduction

The autologistic model (Besag 1974) has been widely used for spatial data analysis,
for example, Preisler (1993), Augustin et al. (1996), Wu and Huffer (1997), and Sherman,
Apanasovich, and Carroll (2006). Let s = {si : i ∈ D} denote the observed binary data,
where si is called a spin and D is the set of indices of the spins. Let |D| denote the total
number of spins in D, and let N(i) denote a set of “neighbors” of spin i. The likelihood
function of the model is

f (s|α, β) = 1

ϕ(α, β)
exp

α
∑
i∈D

si + β

2

∑
i∈D

si

 ∑
j∈N(i)

sj

 , (α, β) ∈ 8, (5.1)

where 8 is the parameter space, and ϕ(α, β) is the normalizing constant defined by

ϕ(α, β) =
∑

for all possible s
exp

α
∑
j∈D

sj + β

2

∑
i∈D

si

 ∑
j∈N(i)

sj

 .

The parameter α determines the overall proportion of si with a value of +1, and the
parameter β determines the intensity of the interaction between si and its neighbors. When
β is large, say, near or greater than 0.44 (the critical value of the Ising model), the configura-
tion s tends to have large clusters of the same orientation, which fluctuate very slowly. The
orientation of the cluster is largely determined by the sign of α, and the size of the cluster
is determined by the magnitudes of both α and β. When β is large, the Gibbs sampler (Ge-
man and Geman 1984) suffers from an extremely long autocorrelation time in simulating
configurations of the model.

A major difficulty with this model is that the normalizing constant is generally unknown
analytically and thus the parameters are difficult to estimate. Evaluating ϕ(α, β) requires to
sum over all 2|D| possible realizations of s. An exact evaluation ofϕ(α, β) is impossible even
for a moderate system. To circumvent this difficulty, many authors approximate the likeli-
hood function by a tractable pseudo-likelihood function, for example, Besag (1974), Besag
et al. (1991), Heikkinen and Högmander (1994), and Rydén and Titterington (1998). For
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example, Besag (1974) proposed to approximate (5.1) by the following pseudo-likelihood
function,

PL(α, β|s) =
∏
i∈D

exp
{
si

(
α + β

∑
j∈N(i) sj

)}
exp

{
α + β

∑
j∈N(i) sj

}
+ exp

{
−α − β

∑
j∈N(i) sj

} , (5.2)

which avoids the problem of unknown normalizing constant. The estimator maximizing
(5.2) is called the maximum pseudo-likelihood estimator (MPLE). When the neighboring
dependence is strong, MPLE tends to have a large deviation from the true value. This
has been noted by several authors, for example, Huang and Ogata (1997) and Geyer and
Thompson (1992).

On the other hand, many authors attempt to find the MLE of the parameters based
on Monte Carlo approximations. For example, Geyer and Thompson (1992) proposed
the following method. Let (α∗, β∗) be any point in the space 8, and let ψ(α, β, s) =
ϕ(α, β)f (s|α, β). Based on the identity

ϕ(α, β)

ϕ(α∗, β∗)
=
∑

s

ψ(α, β, s)
ψ(α∗, β∗, s)

f (α∗, β∗|s) = Ef

ψ(α, β, s)
ψ(α∗, β∗, s)

, (5.3)

Geyer and Thompson (1992) proposed to approximate (5.1) by

Ln(α, β|s) = α
∑
i∈D

si + β

2

∑
i∈D

si

 ∑
j∈N(i)

sj


− logϕ(α∗, β∗) − log

[
1

n

n∑
k=1

ψ(α, β, s(k))
ψ(α∗, β∗, s(k))

]
, (5.4)

where s(1), . . . , s(n) denote the samples drawn from f (s|α∗, β∗). As n → ∞, Ln(α, β|s)
approaches log f (s|α, β). The estimator which maximizes Ln(α, β|s) is called Monte
Carlo MLE or MCMLE. The same technique has been used by other Monte Carlo based
methods. For example, Huang and Ogata (1999) and Gu and Zhu (2001) approximated
the first and second derivative of logϕ(α, β) using averages of Monte Carlo samples. As
indicated by the numerical results reported by Gu and Zhu (2001), these methods have
similar performances in terms of bias, standard deviation and mean squared errors of the
resulting estimates. It is worth noting that the method proposed by Møller et al. (2006)
avoids the approximation to the normalizing constant function ϕ(α, β) by introducing an
auxiliary variable into the MH algorithm for the posterior of the parameters (α, β), and thus
is suitable for a Bayesian analysis for the model. However, due to the difficulty in choosing
the auxiliary variable distribution, their method only works for the case where both the
lattice size and the association parameter β are small.

Finally, we note that some nonsimulation-based methods have been recently proposed
for estimating the function ϕ(α, β). However, these methods are usually quite restrictive
and not applicable to general autologistic models. For example, the method proposed by
Pettitt, Friel, and Reeves (2003) only works for a lattice for which each column has two
nearest column neighbors and the smallest number of rows and columns is not greater
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than 10. The method proposed by Reeves and Pettitt (2004) is exact, but works only for a
small rectangular lattice. These two methods will not work for the example studied in the
following. Indeed the U.S. cancer mortality data is analyzed using the autologistic model
for which the lattice is large (|D| = 2293) and has an irregular shape.

5.2 Bayesian Analysis

Before going to the detailed data analysis, we first consider a general Bayesian frame-
work for the analysis of autologistic models. Suppose that (α, β) take values in a compact
set 8 = [−0.9, 0.9] × [0, 0.6], which covers the strong neighboring dependence region (β
can be greater than 0.44) of the model. To conduct the Bayesian analysis, we assume the
following prior distribution for (α, β),

P(α, β) ∝ 1

ϕτ (α, β)
, (α, β) ∈ 8, (5.5)

where τ is a hyperparameter. This prior is equivalent to the likelihood of τ independently
and identically distributed observations with

∑
i∈D si = 0 and

∑
i∈D si(

∑
j∈N(i) sj ) = 0.

Hence, it will drive the estimates of α and β to the point (0,0), and thus will be helpful to
reduce the correlation of the estimates of α and β. As known by many researchers, when α

and β are large, the correlation of the estimates tends to reduce the accuracy of the estimates.
This phenomenon can also be observed in Table 3 (p. 626), where the accuracy of MPLE
and MCMLE deteriorate as α and β increase. Since, in most practical examples we have
only one observation available, τ should be set to a small value. In our example, we set
τ = 0.0025 in all computations. A sensitivity analysis has been done below. It shows that
the Bayesian estimates are not very sensitive to the choice of τ .

Given an observation s, the posterior distribution of the model can be written as

P(α, β|s) ∝ 1

ϕ1+τ (α, β)
exp

α
∑
i∈D

si + β

2

∑
i∈D

si

 ∑
j∈N(i)

sj

 . (5.6)

If MCMC samples (α1, β1), . . . , (αN, βN) can be simulated from P(α, β|s), then Bayesian
inference can be made for the model. However, ϕ(α, β) is unknown. The posterior (5.6)
can be approximated by

P̂ (α, β|s) ∝ 1

R

R∑
r=1

1

ϕ̂1+τ
r (α, β)

exp

α
∑
i∈D

si + β

2

∑
i∈D

si

 ∑
j∈N(i)

sj

 , (5.7)

where ϕ̂1(α, β), . . . , ϕ̂R(α, β) denote the estimates of ϕ(α, β) produced by CCMC in R

independent runs. Note that ϕ(α, β) can be viewed as a marginal distribution of the unnor-
malized joint distribution

f (α, β, s) ∝ exp

α
∑
i∈D

si + β

2

∑
i∈D

si

 ∑
j∈N(i)

sj

 , (α, β) ∈ 8, (5.8)
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Figure 2. U.S. cancer mortality data. (a) The mortality map of liver and gallbladder cancers (including bile ducts)
for white males during the decade 1950–1959. Black squares denote counties of high cancer mortality rate, and
white squares denote counties of low cancer mortality rate. (b) Fitted cancer mortality rates by the autologistic
model with the parameters being replaced by its Bayes estimates. The cancer mortality rate of each county is
represented by the gray level of the corresponding square.

and thus can be estimated using CCMC by setting λ(s, α, β) = (α, β). Theorem 1 implies
that P̂ (α, β|s) will converge to the true posterior P(α, β|s) almost surely for all (α, β) ∈ 8

when the run is long enough and bothL1 andL2 tend to infinity. Let (α1, β1), . . . , (αN, βN)

denote MCMC samples drawn from P̂ (α, β|s). The standard MCMC theory implies that
the Bayesian estimates

α̂ = 1

N

N∑
i=1

αi, β̂ = 1

N

N∑
i=1

βi, (5.9)

will converge to their respective posterior means as N tends to infinity.

5.3 U.S. Cancer Mortality Data

United States cancer mortality maps have been compiled by Riggan et al. (1987) for
investigating possible association of cancer with unusual demographic, environmental, in-
dustrial characteristics, or employment patterns. Figure 2(a) shows the mortality map of
liver and gallblader (including bile ducts) cancers for white males during the decade from
1950–1959. Refer to Sherman, Apamasovich, and Carroll (2006) for more descriptions of
the data. The plot shows some apparent geographic clustering.

CCMC was applied to estimate the normalizing constant function ϕ(α, β) for this ex-
ample. Due to its symmetry about α, that is, ϕ(α, β) = ϕ(−α, β), it only needs to be
estimated on the region [0, 0.9] × [0, 0.6]. Considering the boundary bias of kernel density
estimation, we estimated ϕ(α, β) on a larger region Y = [−0.1, 1.0] × [−0.05, 0.65]. In
simulations, we set M = 10, ρ = 50, κ = 10,000, and the total number of iterations to be
108, and evaluated ϕ(α, β) on a rectangular lattice of size 56 × 71 with steps 0.02 and 0.01
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Figure 3. The estimate of logψ(α, β) produced by CCMC in a single run.

for α and β, respectively. At each iteration, the model configuration s and the parameters
(α, β) are updated alternatively as follows.

(a) (Sampling) Repeat (a.1)–(a.3) for k = 1, . . . ,M .

(a.1) Draw a random number u ∼ Unif(0, 1).

(a.2) If u ≤ 1
2 , set (α(t)

k , β
(t)
k ) = (α

(t)
k−1, β

(t)
k−1) and simulate configuration s(t)k in a

Gibbs iteration cycle (Geman and Geman, 1984) conditional on (α
(t)
k , β

(t)
k ).

(a.3) If u > 1
2 , set s(t)k = s(t)k−1 and simulate (α

(t)
k , β

(t)
k ) in a single MH move with the

invariant distribution proportional to f (α, β, s(t)k )/̂ξ (t)(α, β).

The initial sample is set to the last sample generated at iteration t − 1; that is, (s(t)0 , α
(t)
0 ,

β
(t)
0 ) = (s(t−1)

M , α
(t−1)
M , β

(t−1)
M ).

The free boundary condition is assumed for the autologistic model. In Step (a.3), the
proposal distribution we adopted for the MH move is a random walk Gaussian proposal
N2((αt , βt )

′, 0.052I2). The overall acceptance rate of the MH moves is about 0.22. CCMC
was run five times independently. Figures 4(a) and (b) show the sample paths of α and β

obtained in a run. The plots indicate that after the burn-in stage, CCMC can move rather
freely in the space Y . Figure 3 shows one estimate of ϕ(α, β) produced by CCMC in a run.
These estimates were used in all computations of this section.

The MH algorithm was then applied to simulate samples from the approximate posterior
(5.7). A total of 5,000 samples were simulated. The resulting estimates of α and β are
−0.3008 (4.5e-4) and 0.1231 (2.5e-4), respectively, where the numbers in the parentheses
are Monte Carlo errors. These estimates are close to the MPLE estimate (̂α = −0.3205 and
β̂ = 0.1115) and the MCMLE estimate (̂α = −0.304 and β̂ = 0.117). The MPLE estimate
was obtained using the conjugate gradient method, and the MCMLE estimate was obtained



Continuous Contour Monte Carlo 625

Table 2. Comparison of accuracy of the MPLE, MCMLE, and Bayes estimators for the U.S. cancer mortality
example. “SD” stands for the standard deviation of the discrepancy tsim

i
− tobs

i
, i = 1, 2. The values of

tsim
i

, i = 1, 2, were calculated based on 1,000 independently simulated configurations.

Method MPLE MCMLE Bayes

(̂α, β̂) (−0.3205,0.1115) (−0.304,0.117) (−0.3008,0.1231)

tsim
1 − tobs

1 (×10−2) −0.3823 0.6968 −0.0157
SD (×10−2) 0.0708 0.0744 0.0718

tsim
2 − tobs

2 (×10−2) −1.1482 −1.9870 −0.1360
SD (×10−2) 0.1287 0.1291 0.1267

by Sherman, Apanasovich, and Carroll (2006). These estimates indicate an overall majority
of low rate counties (α̂ < 0) and a weak positive correlation between neighboring counties
(β̂ ≈ 0.1).

To compare the quality of the three estimates, we conduct the following experiment
based on the principle of the parametric bootstrap method (Efron and Tibshirani 1993). Let
T1 = ∑

i∈D si/|D| and T2 = 1
2

∑
i∈D si

(∑
j∈N(i) sj

)
/|D|. Thus, T = (T1,T2) forms

a sufficient statistic for the parameters (α, β). Given an estimate (̂α, β̂), we can reversely
estimate the quantities T1 and T2 by drawing samples from the distribution f (s|̂α, β̂). If
the estimate (̂α, β̂) is accurate, we should have tobs ≈ tsim, where tobs and tsim denote the
values of T calculated from the true and simulated samples, respectively. Table 2 compares
the values of tobs and tsim for the three estimators. To calculate tsim, 1,000 independent
configurations were simulated conditional on each estimate, where each configuration was
generated by a run of the Gibbs sampler with a random initial configuration and 1,000
iteration cycles. A convergence diagnostic indicates that 1,000 iterations are long enough
for the Gibbs sampler to generate a sample from f (s|̂α, β̂). Table 2 shows that the values of
tsim corresponding to the Bayes method are not significant differently from the true values,
while this is not the case for MPLE and MCMLE. This experiment indicates that the Bayes
method does a better job than MPLE and MCMLE for this example.

To assess the general accuracy of the Bayesian estimator, we simulated 100 independent
configurations for the autologistic model under each setting of the parameters (α, β) given in
Table 3, and re-estimated the parameters using the Bayes method. The computational results
are summarized in Table 3. For comparison, Table 3 also gives the corresponding MPLEs
and MCMLEs. The MPLEs and MCMLEs are both calculated using the conjugate gradient
method. In computing MCMLEs, (α∗, β∗) is set to the MPLE estimate as in Sherman,
Apanasovich, and Carroll (2006), and the sample size n (in Equation (5.4)) is set to 200
with each configuration being generated by a run of the Gibbs sampler with 1,000 iteration
cycles. Table 3 shows that the Bayesian method outperforms MPLE and MCMLE in terms of
mean squared errors of the resulting estimates. The improvement is especially significant for
the strong neighboring dependence region, for example, the points (0,0.4), (0,0.5), (0.4,0.4),
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Table 3. Computational results for the simulated data. ave: average of the 100 estimates. sd: standard deviation
of the average of the 100 estimates. srmse: square root of mean squared error of the 100 estimates.

MPLE MCMLE Bayes

(α, β) α̂ β̂ α̂ β̂ α̂ β̂

ave −0.0053 0.0980 −0.0054 0.0982 −0.0052 0.0972
(0,0.1) sd 0.0016 0.0015 0.0016 0.0015 0.0016 0.0015

srmse 0.0171 0.0151 0.0171 0.0150 0.0169 0.0149

ave 0.0015 0.1987 0.0015 0.1983 0.0016 0.1972
(0,0.2) sd 0.0013 0.0014 0.0013 0.0012 0.0013 0.0012

srmse 0.0129 0.0140 0.0129 0.0124 0.0128 0.0125

ave 0.0003 0.2995 0.0003 0.2973 0.0001 0.2965
(0,0.3) sd 0.0008 0.0016 0.0008 0.0013 0.0008 0.0013

srmse 0.0079 0.0159 0.0081 0.0136 0.0079 0.0133

ave −0.0011 0.3999 −0.0013 0.3921 −0.0004 0.3966
(0,0.4) sd 0.0010 0.0016 0.0010 0.0021 0.0004 0.0010

srmse 0.0097 0.0163 0.0089 0.0195 0.0039 0.0102

ave 0.0000 0.5023 0.0004 0.4709 0.0002 0.4882
(0,0.5) sd 0.0049 0.0027 0.0069 0.0032 0.0021 0.0014

srmse 0.0489 0.0269 0.0438 0.0353 0.0205 0.0182

ave 0.1007 0.1020 0.1003 0.1015 0.1013 0.1002
(0.1,0.1) sd 0.0020 0.0016 0.0020 0.0016 0.0020 0.0016

srmse 0.0199 0.0161 0.0201 0.0156 0.0202 0.0157

ave 0.1978 0.2018 0.1978 0.2018 0.2007 0.1998
(0.2,0.2) sd 0.0028 0.0018 0.0029 0.0018 0.0026 0.0017

srmse 0.0283 0.0183 0.0285 0.0180 0.0255 0.0165

ave 0.2979 0.3003 0.2981 0.3006 0.3050 0.2972
(0.3,0.3) sd 0.0063 0.0028 0.0063 0.0028 0.0045 0.0021

srmse 0.0628 0.0274 0.0627 0.0277 0.0446 0.0215

ave 0.4188 0.3987 0.4192 0.3994 0.4059 0.4018
(0.4,0.4) sd 0.0177 0.0058 0.0177 0.0059 0.0114 0.0040

srmse 0.1773 0.0580 0.1770 0.0588 0.1135 0.0394

ave 0.5660 0.4860 0.5669 0.4876 0.4923 0.4985
(0.5,0.5) sd 0.0342 0.0108 0.0342 0.0108 0.0107 0.0038

srmse 0.3465 0.1079 0.3464 0.1084 0.1069 0.0379
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Table 4. Sensitivity analysis for the hyperparameter τ . ave: average of the 100 estimates. sd: standard deviation
of the average of the 100 estimates. srmse: square root of mean squared error of the 100 estimates.

(0,0.2) (0,0.5) (0.3,0.3)

τ α̂ β̂ α̂ β̂ α̂ β̂

ave 0.0016 0.1974 0.0002 0.4889 0.3082 0.2964
0.001 sd 0.0013 0.0012 0.0021 0.0014 0.0045 0.0022

srmse 0.0128 0.0125 0.0205 0.0178 0.0458 0.0217

ave 0.0016 0.1972 0.0002 0.4882 0.3050 0.2972
0.0025 sd 0.0013 0.0012 0.0021 0.0014 0.0045 0.0021

srmse 0.0128 0.0125 0.0205 0.0182 0.0446 0.0215

ave 0.0016 0.1967 0.0002 0.4870 0.2996 0.2984
0.005 sd 0.0013 0.0012 0.0021 0.0014 0.0043 0.0021

srmse 0.0128 0.0126 0.0205 0.0190 0.0429 0.0211

and (0.5,0.5). The long CCMC run is rewarded with highly accurate Bayesian estimates.
To assess the sensitivity of the Bayesian estimator to the setting of the hyperparameter

τ , we conducted a sensitivity analysis for three (α, β) pairs: (0,0.2), (0,0.5), and (0.3,0.3).
The results are summarized in Table 4. The estimates only differ at the third digit after the
decimal point when τ varies from 0.001 to 0.005 (a five-fold change). This is acceptable to
us.

In this example, CCMC is used to estimate the normalizing constant function ϕ(α, β)

at a set of prespecified parameter points. It seems that the job can also be done by a hybrid
MCMC sampler (Müller 1991; Robert and Casella 2004, p. 393) through simulation of the
joint distribution

g(α′, β ′, s) = 1∑
(α′,β ′)∈8′ ϕ(α′, β ′)

exp

α′∑
i∈D

si + β ′

2

∑
i∈D

si

 ∑
j∈N(i)

sj

 ,

(α′, β ′) ∈ 8′, (5.10)

where 8′ denotes the set of prespecified parameter points. For comparison, the hybrid
MCMC sampler was applied to estimate ϕ(α, β) for this example at the same grid points
used by CCMC. Let (αt , βt , st ) denote the state of the Markov chain at iteration t . One
iteration of the hybrid sampler consists of the following steps.

(a) Draw a random number u ∼ Unif(0, 1).

(b) If u ≤ 1
2 , set (αt , βt ) = (αt−1, βt−1) and simulate st ∼ g(s|αt , βt ) in a Gibbs

iteration cycle.

(c) If u > 1
2 , set st = st−1 and simulate (αt , βt ) ∼ g(α′, β ′|st ) in a single MH move. The

new point is selected at random among the nearest neighboring points of (αt−1, βt−1).



628 F. Liang

Figure 4. Sample paths of CCMC and the hybrid MCMC sampler for the U.S. cancer mortality example. Plots
(a) and (b) show the sample paths of α and β, respectively, obtained in a run of CCMC. Plots (c) and (d) show the
sample paths of α and β, respectively, obtained in a run of the hybrid MCMC sampler.

The hybrid sampler started with the point (−0.1,−0.05), moved very quickly to the
corner (1.0, 0.65), and then got trapped in the corner never moving out in 109 iterations.
Note that this run has the same number of energy evaluations as the run of CCMC. The
local trap phenomenon can be seen from the sample paths shown in Figures 4(c) and (d).
The hybrid sampler fails to sample from relevant parts of the parameter space, and thus fails
to produce a good estimate for the function ϕ(α, β). Let 80 = [0, 1] × [0, 0.65] denote a
subset of 8. In 80, ϕ(α, β) has only one mode attained at the corner point (1,0.65). This
mode is very high, just like a needle inserted into a flat region. The CCMC estimate tells
us that max(α,β)∈80 logϕ(α, β) − min(α,β)∈80 logϕ(α, β) is approximately 3,109.4. This
suggests that producing an accurate estimate for ϕ(α, β) has been far beyond the ability
of conventional MCMC samplers. Intuitively, to achieve an accurate estimate for ψ(α, β)

using Monte Carlo samples, the ratio of the number of the samples accumulated from the
region around the point (1,0.65) and the number of samples from the region around the
point (0,0), which corresponds to the minimum point of ψ(α, β), should be approximately
e3109. No one can afford such a long run.

The advanced MCMC samplers, such as parallel tempering, evolutionary Monte Carlo
or the slice sampler, will also fail for this example due to the limited accuracy of sampling
approximation. The strength of the advanced samplers is at transitions between different
modes of the distribution instead of sampling from low-density regions. Due to the lack
of samples from the low-density region, the nonparametric density estimation methods
also fail for this example. Note that the nonparametric density estimation methods belong
to the category of sampling frequency approximation based methods. To the best of our
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knowledge, CCMC is the first method which can handle such a difficult situation. CCMC
approximates the log-marginal density in a dynamic manner.

6. DISCUSSION

In this article, CCMC has been proposed as a general algorithm for marginal density
estimation. The generality is reflected in two aspects. First, it works for any transformation
λ(x), even for one for which the inverse transformation is not available analytically. Second,
it works for any distribution, f (x), even for one for which the energy landscape is rugged or
unbalanced. When the samples from f (x) are easily available, other methods as reviewed in
the introduction can be used. In this case, CCMC may not be the best choice to the problem,
because sampling uniformly in the space Y may cause an unnecessary waste of CPU time.

Besides spatial statistical models, CCMC can potentially be applied for the solution
of many other problems provided that the dimension of λ(x) is not high. Here are some
examples.

Nuisance parameter elimination. Elimination of nuisance parameters is a central prob-
lem in statistical inference. Berger, Liseo, and Wolpert (1999) proposed to solve the problem
by integrating the joint posterior with respect to the nuisance parameters and then working
with the resulting marginal distribution. The marginal likelihood automatically takes into
account the uncertainty of the nuisance parameters. Ignoring the uncertainty of the nui-
sance parameters, for example, the profile likelihood, can cause serious problems when the
dimension of the nuisance parameters is high.

Missing data problems. Let zobs and zmis denote the observed and missed parts of the
data, respectively; and let θ denote the parameter vector of the model. Monte Carlo EM
(Wei and Tanner 1990) provides a method for finding the MLE of θθθ when the conditional
expectation in the “E-step” are not available analytically. Otherwise, the EM algorithm
(Dempster et al. 1977) can be used. CCMC can work as an alternative to Monte Carlo
EM. Once the marginal f (θ |zobs) is available numerically, finding the MLE is trivial. One
remarkable advantage of this method is that it avoids the local trap problem suffered by EM
and Monte Carlo EM.

Bayesian model selection. Although CCMC is developed for continuous random vari-
ables, its discrete nature implies that it can be applied to the Bayesian model selection
problem as well by setting λ(x) to the index of models and representing each model by a
different grid point. We note that CMC can also be applied to the Bayesian model selection
problem by partitioning the sample space according to the index of models, that is, setting
Ei to the parameter space of model Mi . An efficiency comparison of the two methods is
of interest. We anticipate that CCMC will outperform CMC because of the use of kernel
smoothed estimators in its simulations. As illustrated by the numerical example studied
in Section 4, the kernel smoothing step often can improve the convergence of the CMC
simulation.
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