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Inference for a complex system with a rough energy landscape is a central topic in Monte Carlo computation. Motivated by the successes
of the Wang–Landau algorithm in discrete systems, we generalize the algorithm to continuous systems. The generalized algorithm has
some features that conventional Monte Carlo algorithms do not have. First, it provides a new method for Monte Carlo integration based on
stochastic approximation; second, it is an excellent tool for Monte Carlo optimization. In an appropriate setting, the algorithm can lead to
a random walk in the energy space, and thus it can sample relevant parts of the sample space, even in the presence of many local energy
minima. The generalized algorithm can be conveniently used in many problems of Monte Carlo integration and optimization, for example,
normalizing constant estimation, model selection, highest posterior density interval construction, and function optimization. Our numerical
results show that the algorithm outperforms simulated annealing and parallel tempering in optimization for the system with a rough energy
landscape. Some theoretical results on the convergence of the algorithm are provided.
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1. INTRODUCTION

Let f (x) be a given probability mass/density function ex-
pressed in the form

f (x) = 1

Zτ

exp{−H(x)/τ }, x ∈ X , (1)

where τ is the temperature, Zτ is the normalizing constant, and
H(x) is the energy function, which corresponds to the negative
of the log-posterior of x in Bayesian computation. In statistics
we are often interested in two problems: estimating the expec-
tation Ef h(x) for a given function h(x) with Ef |h(x)| < ∞, and
minimizing the energy function H(x). In the context of Monte
Carlo computation, these problems are termed Monte Carlo in-
tegration and Monte Carlo optimization.

Monte Carlo algorithms can be divided into two categories
according to the distribution from which the samples are drawn,
namely simulation algorithms and importance sampling algo-
rithms. Simulation algorithms include the Metropolis–Hastings
(MH) algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller 1953; Hastings 1970), the Gibbs sampler (Geman
and Geman 1984), the Swendsen–Wang algorithm (Swendsen
and Wang 1987), simulated tempering (Marinari and Parisi
1992; Geyer and Thompson 1995), parallel tempering (Geyer
1991), evolutionary Monte Carlo (Liang and Wong 2001),
and others. They work by simulating a Markov chain that
is able to generate samples from the target distribution f (x).
Let x1, . . . ,xn be the samples generated by the Markov chain,
where the successive samples may be highly correlated. The
Ef h(x) can be estimated by

Ẽf h(x) = 1

n

n∑

i=1

h(xi). (2)

The ergodicity of the Markov chain ensures that as n → ∞,

Ẽf h(x) → Ef h(x) almost surely (Tierney 1994; Roberts 1996).
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In simulation from f (x), the H(x)’s can often be minimized si-
multaneously; for example, simulated tempering has been suc-
cessfully used in optimizing protein structures (Hansmann and
Okamoto 1997).

In importance sampling, one does not draw samples from
f (x) directly but rather from a trial distribution π(x) that has
a much “smoother” energy landscape than f (x) but also has
key characteristics of f (x). Let x1, . . . ,xn denote samples drawn
from π(x). The Ef h(x) can be estimated by

Êf h(x) =
∑n

i=1 h(xi)wi∑n
i=1 wi

, (3)

where wi = f (xi)/π(xi) is the importance weight of xi. In
simulation from π(x), H(x) can also be minimized. For ex-
ample, simulated annealing (Kirkpatrick, Gelatt, and Vecchi
1983) minimizes H(x) by simulating from a sequence of trial
distributions with the temperature scaled from high to low.
Other algorithms of this category include dynamically weighted
importance sampling (DWIS) (Liang 2002), the multicanoni-
cal algorithm (Berg and Neuhaus 1991), 1/k-ensemble sam-
pling (Hesselbo and Stinchcombe 1995), and the Wang–Landau
(WL) algorithm (Wang and Landau 2001). In DWIS π(x) is de-
fined implicitly, and the weight is itself a random variable. The
complexity of the weight control scheme makes the algorithm
not very user-friendly. The multicanonical algorithm and the
WL algorithm are essentially the same (as reviewed in Sec. 2).
They seek to sample from a trial distribution under which the
energy variable U = H(x) is approximately uniformly distrib-
uted. They are very useful in optimization problems, especially
for a problem that has a rough energy landscape. The energy
landscape of a problem or distribution refers to the image of the
sample space X under the corresponding energy function H(x).
These two algorithms have been applied successfully to some
hard optimization problems, including traveling salesman prob-
lems (Lee and Cho 1994) and protein folding (Hansmann and
Okamoto 1997; Rathore and de Pablo 2002). Despite the suc-
cesses in Monte Carlo optimization, the use of these two algo-
rithms in Monte Carlo integration is limited only to discrete
distributions, say, the Potts model (Wang and Landau 2001;
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Yamaguchi and Okabe 2001), for estimating the spectral den-
sity (defined in Sec. 2.1) of the distribution. Applying them
to continuous distributions will lead to some uninterpretable or
uninteresting results. This is similar to the 1/k-ensemble sam-
pling algorithm.

In this article we generalize the WL algorithm to continuous
systems. The generalized algorithm provides a new method, in
addition to (2) and (3), for Monte Carlo integration. The gener-
alized algorithm has also introduced a user-specified parameter
such that it can be tuned to sample more frequently from some
specific area of the sample space. The generalized algorithm
can be used in many problems of Monte Carlo integration and
optimization, including normalizing constant estimation, high-
est posterior density (HPD) interval construction, model selec-
tion, and function optimization. Numerical results show that it
outperforms other advanced Monte Carlo algorithms, such as
simulated annealing and parallel tempering, for the problem
with a rough energy landscape.

The article is organized as follows. Section 2 briefly re-
views the multicanonical and related algorithms. Section 3 de-
scribes the generalized Wang–Landau (GWL) algorithm and
gives some theoretical results on the algorithm. Section 4 com-
pares the GWL algorithm with the multicanonical and WL al-
gorithms through a numerical example. Section 5 demonstrates
the use of the GWL algorithm in Monte Carlo integration. Sec-
tion 6 demonstrates the use of the GWL algorithm in Monte
Carlo optimization. Section 7 concludes the article with a brief
discussion.

2. MULTICANONICAL AND RELATED ALGORITHMS:
A LITERATURE REVIEW

Suppose that our target distribution is f (x) as defined in (1).
As in earlier works (Berg and Neuhaus 1991; Hesselbo and
Stinchcombe 1995; Wang and Landau 2001), we assume that
the sample space X only contains a finite number of sample
points and the energy function H(x) only takes a finite num-
ber of distinct values. Let {u1, . . . ,um} be a set of real numbers
containing all possible values of H(x). We describe these algo-
rithms in the following sections.

2.1 The Multicanonical Algorithm

As mentioned in Section 1, the multicanonical algorithm
seeks to sample from a trial distribution π(x) under which the
energy variable U = H(x) is approximately uniformly distrib-
uted. With a slight abuse of notations, we denote the marginal
distribution of U by fU(u),

fU(u) = 1

Zτ

�(u)e−u/τ , (4)

where �(u) = #{x : H(x) = u} is called the spectral density (or
the density of states) of f (x). If the samples are drawn from

π(x) ∝ e−V(H(x)),

where V(H(x)) = log�(H(x)), then the marginal distribution
of U under π(x) is πU(u) ∝ 1; that is, U is uniformly distrib-
uted. Therefore, the key step of the multicanonical algorithm is
to estimate �(u).

The initial estimate of �(u) can be obtained as follows
through a short simulation from f (x). Let X1, . . . ,XN denote the

Markov chain Monte Carlo (MCMC) samples drawn from f (x),
and let N(ui) = #{xj : H(xj) = ui} denote the number of samples
with energy ui. As N → ∞, we have

N(ui)

N
→ 1

Zτ

�(ui)e
−ui/τ .

Thus �(ui) can be estimated by

�̂(ui) = (N(ui) + ci)eui/τ

∑m
j=1(N(uj) + cj)euj/τ

, (5)

where the cj’s serve as “prior counts” to smooth out the estimate
in �. Let V̂s(H(x)) denote the estimate of V(H(x)) obtained at
stage s. Set V̂0(u) = log �̂(u); then V̂s(u) can be updated itera-
tively as follows:

a. Sample x sufficiently long according to the current trial
distribution πs(x) ∝ e−V̂s(H(x)). The sampling can be done by a
conventional simulation algorithm, say, the MH algorithm.

b. Update V̂s+1(ui) = − log(as) + V̂s(ui) + log(N(ui) + ci)

for i = 1, . . . ,m, where as is introduced to ensure that V̂s+1(u)

is scaled properly. For example, as can be determined by im-
posing on the V̂s+1(uj)’s the constraint

∑m
j=1 exp(V̂s+1(uj)) =∑m

j=1 �(uj), where
∑m

j=1 �(uj) is assumed to be known a pri-
ori.

The recursive formula in step b enforces a “free” random
walk in the energy space by penalizing moving to and staying
at the energy that was overvisited in the previous stage.

2.2 1/k-Ensemble Sampling

Similar to the multicanonical algorithm, 1/k-ensemble sam-
pling (Hesselbo and Stinchcombe 1995) suggests the following
trial distribution for simulation:

π(x) ∝ 1

k(H(x))
,

where k(H(x)) = ∑
u′≤H(x) �(u′) is the number of states with

energies up to and including H(x). Because k(·) is an increasing
function of energy, it will lead to a random walk in the space
of energy, but with more weights toward low-energy regions.
Improvement over the multicanonical algorithm is observed in
the ergodicity of simulations for the Ising model and traveling
salesman problems.

In practice, the function k(u) is unknown a priori. It can be
estimated with the same iterative strategy as described in the
previous section. Obviously, with a good estimation to �(u),
one would be able to get a good estimation to k(u), and vice
versa.

2.3 The Wang–Landau Algorithm

The WL algorithm provides a much convenient method for
estimating the spectral density �(u). Hence it can be consid-
ered an innovative implementation for the multicanonical algo-
rithm. But it goes beyond that. In the multicanonical algorithm,
the random walk tends to be blocked by the edge of the already-
visited area; in addition, it takes a long time to traverse an area
because of the general features of a random walk. The WL al-
gorithm succeeds in removing these problems by timely penal-
izing moving to and staying at the energy that has been visited
many times.
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The simulation of the WL algorithm consists of several
stages. The first stage starts with the initial estimates �̂(u1) =
· · · = �̂(um) = 1 and a sample x0 drawn from X at random, and
iterates between the following steps:

a. Propose a new configuration x∗ according to a symmetric
proposal distribution T , that is, T(x∗|xk) = T(xk|x∗).

b. Accept x∗ with probability min{ �̂(H(xk))

�̂(H(x∗)) ,1}. If it is ac-

cepted, then set xk+1 = x∗ and �̂(H(xk+1)) ← �̂(H(x∗)) ×
(1+ δ); otherwise, set xk+1 = xk and �̂(H(xk)) ← �̂(H(xk))×
(1 + δ), where δ > 0 is a modification factor.

The algorithm iterates until a flat histogram has been produced
in the energy space. Wang and Landau (2001) consider a his-
togram to be flat if the sampling frequency for each of the ui’s
is not less than 80% of the average sampling frequency. Once
this condition is satisfied, the estimated �̂(ui)’s and the cur-
rent sample xk are passed on to the next stage as initial values,
the modification factor is reduced to a smaller value, and the
sampler collector is resumed. The next-stage simulation is then
started, continuing until the new histogram is flat again. Wang
and Landau (2001) recommended that δ should decrease in the
scheme δnew = √

1 + δold − 1, which is approximately equiv-
alent to the geometric scheme δnew = .5δold when δ is small.
The process is repeated until δ is smaller than some specified
value, say, 10−8. As δ → 0, the foregoing process satisfies the
detailed balance condition approximately. Based on this, Wang
and Landau (2001) claimed that �̂(u) will converge to �(u) as
δ → 0 and k → ∞.

We note that the multicanonical algorithm and 1/k-ensemble
sampling have been applied by Hannsmann and Okamoto
(1997) to optimization for a continuous system. They discretize
the energy as −∞ < u1 < · · · < um < ∞, and redefine N(ui)

as the number of samples with energy between ui−1 and ui;
that is, N(ui) = #{xj : ui−1 < H(xj) ≤ ui}. In this case �(ui) is
no longer the spectral density of the system, but rather a num-
ber proportional to

∫
Ei

dx, the hypervolume of the subregion
Ei = {x : ui−1 < H(x) ≤ ui}. The quantity

∫
Ei

dx is seldom of
interest to us.

3. GENERALIZED WANG–LANDAU ALGORITHM

The GWL algorithm generalizes over the WL algorithm in
two respects. First, it extends the use of the WL algorithm to
Monte Carlo integration for continuous systems. The exten-
sion is done by specifying a working function ψ(x), x ∈ X ;
partitioning the sample space into a finite number of disjoint
subregions, E1, . . . ,Em; and attaching a different weight, g(Ei)

(defined later), to each of the subregions. For example, if we are
interested in estimating the expectation Ef h(x), where h(x) > 0
and Ef |h(x)| < ∞, then we can set ψ(x) = h(x)f (x). We dis-
cuss the case for a general function h(x) in Section 5. The
sample space can be partitioned using a method similar to
that used by Hannsmann and Okamoto (1997). For example,
the sample space can be partitioned into E1 = {x : H(x) ≤ u1},
E2 = {x : u1 < H(x) ≤ u2}, . . . , and Em = {x : H(x) > um−1} for
a set of given energy values u1, . . . ,um−1. The partition can be
made according to any function of x, say, a component of x,
instead of the energy function only. Second, a user-specified
parameter ρ (ρ ≥ 0) is introduced into the GWL algorithm to

control the sampling frequency of each of the subregions. The
GWL algorithm can be tuned to sample more frequently from
some subregions of interest by tuning the value of ρ, whereas
the WL algorithm can sample only from each of the subregions
equally. With the parameter ρ, the g(Ei)’s can be defined as

g(E1) =
∫

E1

ψ(x)dx and

(6)
g(Ei) =

∫

Ei

ψ(x)dx + ρg(Ei−1) for i = 2, . . . ,m,

which work as analogies of the �(ui)’s of the WL algorithm.
The g(Ei)’s have very meaningful statistical interpretations.
g(Ei) − ρg(Ei−1) [setting g(E0) = 0] is the normalizing con-
stant of the truncated distribution of ψ(x) on the subregion Ei;
g(E1), g(E2) − ρg(E1), . . . ,g(Em) − ρg(Em−1) forms a his-
togram estimate for the marginal density of f (x) in the space
of subregions; and

∑n
i=1[g(Ei) − ρg(Ei−1)] = ∫

X ψ(x)dx.
Therefore, the key step of the GWL algorithm is to estimate
the g(Ei)’s.

Let T(y|x) be a global proposal distribution, where x de-
notes the current state and y denotes the proposed one. T(y|x) is
called a global proposal distribution if T(y|x) > 0 is true for any
pair (x,y) ∈ X0 × X0, where X0 = {x :ψ(x) > 0} is a reduced
sample space induced by ψ(x). The global proposal distribu-
tion is used in the GWL algorithm to guarantee that X0 can
be fully explored in simulation regardless of its shape. Many
of the commonly used proposal distributions are global, includ-
ing the normal, Cauchy and Student t-distributions. Note that in
the GWL algorithm, the proposal distribution is not necessarily
symmetric. This makes the GWL algorithm much more flexible
than the WL algorithm in simulation.

Simulation of the GWL algorithm involves a number of
stages. Let x(s,k) denote a sample drawn at iteration k of stage s,
and let ĝ(s,k)(Ei) denote the estimate of g(Ei) at iteration k of
stage s. In the first stage (s = 1 and k = 0), the simulation starts
with the initial estimates ĝ(1,0)(E1) = · · · = ĝ(1,0)(Em) = 1 and
a random sample x(1,0) drawn from X0 according to an arbitrary
distribution, and then iterates between the following two steps:

a. Sampling: Propose a new configuration x∗ according to
the proposal distribution T(x∗|x(s,k)). Accept x∗ with probabil-
ity

min

{ ĝ(s,k)(EIx(s,k) )

ĝ(s,k)(EIx∗ )

ψ(x∗)
ψ(x(s,k))

T(x(s,k)|x∗)
T(x∗|x(s,k))

,1

}
, (7)

where Iz denotes the index of the subregion to which z belongs.
If it is accepted, then set x(s,k+1) = x∗; otherwise, set x(s,k+1) =
x(s,k).

b. Weight updating: Set

ĝ(s,k+1)
(
EIx(s,k+1)+i

) = ĝ(s,k)(EIx(s,k+1)+i
) + δsρ

iĝ(s,k)(EIx(s,k+1)

)

for i = 0, . . . ,m − Ix(s,k+1) .

The iteration continues until a stable histogram (described
later) has been produced in the space of subregions. Once the
histogram is stable, the simulation will proceed to the next
stage, resuming the sample collector, reducing the modifica-
tion factor to a smaller value, and passing on the current es-
timate and sample as initial values to the new stage; that is,
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setting x(s,0) = x(s−1,Ks−1) and ĝ(s,0)(Ei) = ĝ(s−1,Ks−1)(Ei) for
i = 1, . . . ,m, where Ks−1 denotes the total number of iterations
performed in stage s−1. The process is repeated until δs < δend,
where δend is usually a very small number, say 10−7.

In the GWL algorithm x(s,0) = x(s−1,Ks−1) is set for conve-
nience only. Theoretically, xs,0 can be set to any random sample
drawn from X0 as x(1,0). The modification factor δ1 is usually
set to a large number, say 1 or 2, which allows the sampler
to reach all subregions very quickly even for a large system.
It will then decrease strictly in the following stage. For exam-
ple, it can decrease in a scheme like δs = γ δs−1 with γ < 1,
or δs = √

1 + δs−1 − 1, as suggested by Wang and Landau
(2001). The latter was used in all examples of this article with
δ1 = e − 1 = 1.718.

A histogram is considered stable if its shape will not change
much with further samples generated from the same process.
In this article we define the following statistic to measure the
stability of the histogram:

S(k,b) = 1

m

m∑

i=1

∣∣∣∣
P̂i,(k+1)b

P̂i,kb
− 1

∣∣∣∣, (8)

where b is the batch size and P̂i,kb is the normalized sampling
frequency of subregion Ei within the first kb iterations of the
stage. In Sk, 0/0 = 1 is defined to accommodate the empty Ei’s.
Because Sk → 0 as k → ∞, a threshold value can be chosen
for Sk to monitor the stability of the histogram. Our experience
shows that .01 may be a good choice for the threshold value.

At each iteration, the sampling step can be repeated a num-
ber of times; that is, generating x(s,k+1) with multiple MH steps
instead of only one step. The repetition will improve the ap-
proximation accuracy of ĝ to g, but should not affect its conver-
gence even for a very large system (Wang and Landau 2001).
The repeat also renders a rigorous theoretical analysis for the
algorithm by treating x(s,k) as a sample drawn from the trial
density π(s,k)(x) ∝ ∑m

i=1 ψ(x)/ĝ(s,k)(Ei)I(x ∈ Ei), x ∈ X . The
following theorem is shown based on the assumption that x(s,k)

is a sample drawn from π(s,k)(x). Because number of sampling
steps performed in each iteration will not affect the convergence
of the algorithm, and for simplicity, the sampling step is per-
formed only once in all simulations of this article.

Theorem 1. Suppose that the GWL algorithm satisfies the
following conditions: (A1) ψ(x) is a nonnegative function de-
fined on X with 0 <

∫
X ψ(x)dx < ∞; (A2) the proposal dis-

tribution is global; and (A3) δs → 0 as s → ∞. As s → ∞ and
k → ∞, we have

ĝ(s,k)(Ei) −→ cg(Ei) in probability, (9)

for i = 1, . . . ,m, where g(Ei)’s are defined in (6) and c is a
constant. The value of c can be determined by imposing an ad-
ditional constraint on the ĝ(Ei)’s, for example,

∑m
i=1 ĝ(Ei) =∑n

i=1 g(Ei) if
∑m

i=1 g(Ei) is known or ĝ(Ej) = g(Ej) if g(Ej) is
known for some j.

As a byproduct of the proof of Theorem 1, we have the fol-
lowing corollary, which gives the approximation accuracy of
ĝ(Ei) to g(Ei) at each stage.

Corollary 1. At each stage s, we have
m∑

i=1

E
[
ĝ(Ei)

(s,k) − g(Ei)
]2 ≈ O(δs),

as k → ∞.

If the ĝ(Ei)’s have converged, then the visiting frequency to
each subregion must be proportional to

∫
Ei

ψ(x)dx

g(Ei)
for i = 1, . . . ,m, (10)

because of the acceptance rule (7). Here 0/0 = 0 is defined to
accommodate the case g(Ei) = 0. If ρ = 0, then (10) implies
that each of the subregions with g(Ei) > 0 will be sampled from
equally. In this sense, we say that GWL leads to a free random
walk in the space of subregions while within the same subre-
gion, GWL is reduced to the conventional MH algorithm. If
ρ > 0, then GWL will also lead to a random walk in the space of
subregions, but with more weight toward low-indexed regions.
If we code the subregions appropriately such that the subregion
from which we want to sample most frequently is coded as E1,
and then E2, E3, and so on, then a choice of ρ > 0 will of-
ten result in an efficient simulation. This typically happens in
Monte Carlo optimization, where one needs to bias sampling
to low-energy regions. In what follows, we sometimes denote
the GWL algorithm by ρ-GWL to emphasize that ρ is taking a
nonzero value.

The ρ-GWL algorithm is so general that it has included sev-
eral other algorithms as its special cases. If ψ(x) ≡ 1, X is
finite, T(·|·) is a symmetric function, and ρ = 0, then the algo-
rithm is reduced to the WL algorithm. In this case ĝ estimates
the spectral density of the system. If ψ(x) ≡ 1, X is finite, and
ρ = 1, then the algorithm gives a WL-style implementation for
1/k-ensemble sampling. In this case ĝ estimates the cumulative
spectral density of the system.

4. AN ILLUSTRATIVE EXAMPLE

In this section the GWL algorithm is illustrated by and com-
pared with the multicanonical algorithm through an example.
The distribution consists of 10 states with the unnormalized
mass function P(x) as specified in Table 1. The transition matrix
used is a random matrix of which each row is generated inde-
pendently from Dirichlet(1, . . . ,1). The proposal distribution is
global.

The GWL algorithm was applied to this example. The
state space was partitioned according to the unnormalized
mass function into seven subregions: E1 = {x : log P(x) > 5} =
{8}, E2 = {x : 5 ≥ log P(x) > 4} = {2}, E3 = {x : 4 ≥ log P(x) >

3} = ∅, E4 = {x : 3 ≥ log P(x) > 2} = ∅, E5 = {x : 2 ≥ log P(x) >

1} = {5,6}, E6 = {x : 1 ≥ log P(x) > 0} = {3,9}, and E7 =
{x : log P(x) ≤ 0} = {1,4,7,10}. The GWL algorithm was run
20 times independently. In the first 10 runs, ψ(x) = P(x), ρ = 0,
δend = 10−6, n1 = 10,000, and ns+1 = 1.2ns, where ns denotes
the number of iterations of stage s. The total CPU time cost for

Table 1. The Unnormalized Mass Function of the 10-State Distribution

x 1 2 3 4 5 6 7 8 9 10
P(x) 1 100 2 1 3 3 1 200 2 1
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(a) (b) (c)

Figure 1. Curves of S(k, b) (b = 100) for the Histograms Obtained in Stages (a) 1, (b) 10, and (c) 20 of a Run.

the 10 runs was about 4 seconds on a 2.8-GHz computer. (All
computations reported in this article were done on the same
computer.) Figure 1 examines the stability of the histograms
produced in stages 1, 10, and 20 of a run by plotting the curves
of S(k,b). The plots indicate that the GWL algorithm converges
slower and slower as δs decreases. This suggests that a larger
number of iterations should be used in the latter stages of the
simulation. In the next 10 runs, the GWL algorithm had the
same settings as used in the first 10 runs except for ρ = 1. The
computational results are summarized in Table 2. In the GWL

algorithm, the constraint
∑7

i=1 ĝ(Ei) − ρĝ(Ei) = 314 [setting
g(E0) = 0] is imposed on ĝ to remove the unknown constant c
of Theorem 1.

For the foregoing partition, it happens that each subregion is
either empty or contains only states with the same energy val-
ues. Hence the multicanonical and WL algorithms can still be
used to estimate the spectral density of the distribution. The WL
algorithm was run for 10 times independently with the same
setting as that used for the GWL algorithm except for ψ(x) and
the transition matrix. In the WL algorithm ψ(x) = 1, and the

Table 2. Computational Results for the 10-State Distribution

Multicanonical Wang–Landau GWL (ρ = 0) ρ-GWL (ρ = 1)

Subregion State Ω g(E) Ω̂ F(×10−4) Ω̂ F(×10−4) ĝ(E) F(×10−4) ĝ(E) F(×10−4)

E1 8 1 200 1.002(.007) .20(15.74) 1.001(.001) .20(3.24) 199.93(.11) .20(3.61) 200.13(.10) .725(5.81)

E2 2 1 100 .995(.003) .20(13.57) 1.000(.001) .20(4.24) 100.07(.11) .20(3.47) 99.88(.11) .242(6.49)

E3 0 0 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

E4 0 0 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

E5 5 2 6 1.996(.010) .10(7.75) 2.000(.001) .10(1.25) 6.00(.01) .10(3.24) 5.99(.02) .007(.58)
6 .10(5.33) .10(1.96) .10(2.24) .007(1.08)

E6 3 2 4 2.002(.008) .10(9.67) 2.000(.002) .10(1.90) 4.00(.01) .10(3.32) 3.96(.02) .005(.72)
9 .10(8.20) .10(2.12) .10(2.95) .005(.20)

E7 1 4 4 4.005(.016) .05(4.11) 3.999(.002) .05(.98) 4.00(.01) .05(1.52) 4.03(.04) .002(.20)
4 .05(3.28) .05(1.13) .05(1.93) .002(.62)
7 .05(2.93) .05(1.23) .05(2.73) .002(.47)

10 .05(2.92) .05(1.64) .05(1.43) .002(.33)

NOTE: The numbers before and in the parentheses are the average of the estimates and the standard deviation of the average value. These numbers are calculated with 10 independent runs. The
“F ” column records the average of the sampling frequency of each state and the standard deviation of the average value. The standard deviation is reported on a scale of 10−4.
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transition matrix is a constant matrix with all elements equal
to .1. The multicanonical algorithm was also run for 10 times
independently. Each run consisted of 21 stages, including the
initial stage. Each stage consisted of 1.1 × 105 iterations. The
total CPU time for those 10 runs was also about 4.0 seconds.
The computation results are summarized in Table 2. In the two
algorithms, the constraint

∑7
i=1 �̂(ui) = 10 is imposed on �̂

for obtaining a valid estimate for the spectral density.
The multicanonical and WL algorithms estimate the spectral

density of the distribution, whereas the GWL algorithm esti-
mates the weights defined for each of the subregions. The mul-
ticanonical, WL, and GWL (with ρ = 0) algorithms all sample
from each of the subregions equally, regardless of the true spec-
tral density or the weight of each subregion. This is not the case
for the ρ-GWL algorithm (ρ > 0). The ρ-GWL algorithm tends
to sample more frequently from the low-indexed subregions.
Table 2 shows that the plain GWL algorithm (ρ = 0) may be
better than the ρ-GWL algorithm if our target is to estimate g.
We explore this point theoretically in Section 7. As a byprod-
uct, Table 2 also shows that the WL algorithm produces much
more accurate estimates than the multicanonical algorithm for
this example.

5. USE OF THE GENERALIZED WANG–LANDAU
ALGORITHM IN MONTE CARLO INTEGRATION

As mentioned in Section 1, the GWL algorithm provides a
new approach for estimating the expectation Ef h(x). However,
Theorem 1 demonstrates that the expectation can be approxi-
mated by the GWL algorithm only up to an unknown constant c
if there is no extra information available on the g(Ei)’s. To de-
termine the value of c, we use two tricks when there is no ex-
tra information available on the g(Ei)’s. First, truncate X to a
bounded region X̃ if X is unbounded. This can be done as fol-
lows. Run the GWL algorithm on the space X with an appro-
priate partition, and identify a bounded region X̃ such that the
ratio

∫
X̃ c h(x)f (x)dx/

∫
X h(x)f (x)dx is negligible, say <.001,

where X̃ c = X − X̃ is the complementary set of X̃ . Note that
the ratio can be estimated with the ĝ(Ei)’s, as shown in Sec-
tion 5.2. This truncation is different from the conventional dis-
tribution truncation. It is made on the integral instead of the
density function f (x), and the resulting region X̃ may be differ-
ent for a different h(x). Hence it may not be so harmful to the
latter statistical inference as the conventional distribution trun-
cation. Kass and Wasserman (1996) gave an overview on the in-
fluence of distribution truncation. Second, augment X̃ by adding
a small region A disjoint from X̃ , and specify a function on A
such that the integral

∫
A ψ(x)dx is tractable analytically. With

the foregoing tricks, the expectation Ef h(x) can be estimated as
follows, providing that h(x) ≥ 0 and 0 < Ef |h(x)| < ∞:

a. Define

f ∗(x) =





f (x), x ∈ X̃
1

a
, x ∈ A,

and

h∗(x) =
{

h(x), x ∈ X̃
1, x ∈ A,

where a = ∫
A dx is the hypervolume of the region A.

b. Code region A as E0, and partition the sample space X̃
into m disjoint subregions, E1, . . . ,Em, according to a chosen
criterion.

c. Set ψ(x) = h∗(x)f ∗(x), and run the GWL algorithm on
the space X̃ ∪A.

d. Estimate the integral Ef h(x) by

m∑

i=1

[ĝ(Ei) − ρĝ(Ei−1)]/ĝ(E0). (11)

Because g(E0) > 0, it follows from Theorem 1 that esti-
mate (11) is consistent as s → ∞ and k → ∞. For a general
function h(x), the expectation can be calculated by considering
two integrals, Ef h+(x) and Ef h−(x), where h+(x) and h−(x)

are defined as

h+(x) =
{

h(x) if h(x) > 0

0 otherwise
and

h−(x) =
{−h(x) if h(x) < 0

0 otherwise.

For simplicity, we assume that X is bounded in the following
examples of this section. Thus we have X = X̃ .

5.1 A Demonstration Example

We use this example to demonstrate the validity of the GWL
algorithm for Monte Carlo integration. The distribution is a
mixture of truncated bivariate normal distributions. The density
function is

f (x) = 1

Z

[
1

3
exp

{
−1

2

2∑

i=1

(xi + 5)2

}

+ 2

3
exp

{
−1

2

2∑

i=1

(xi − 5)2

}]
I(x ∈X ),

where X = [−10,10]2, I(·) is the indicator function, and Z is
the normalizing constant. In the first experiment, Z is estimated
using the GWL algorithm. The true value of Z is 2π . The sam-
ple space X is augmented by A = [10,11] × [−10,10], and
ψ(x) is set as

ψ(x) =






1

3
exp

{
−1

2

2∑

i=1

(xi + 5)2

}

+ 2

3
exp

{
−1

2

2∑

i=1

(xi − 5)2

}
, x ∈X

.05, x ∈A.

The region A is coded as E0, and X is partitioned into the fol-
lowing subregions: E1 = {x ∈ X :− logψ(x) ≤ −4.9}, E2 =
{x ∈ X :−4.9 < − logψ(x) ≤ −4.8}, . . . , and E351 = {x ∈
X : 30 < − logψ(x)}. In simulation, the following are set:
ρ = 0, the proposal distribution N2(xk,32I2), δend = 10−7,
n1 = 105, and ns+1 = 1.1ns. Here a small variance is set for
the proposal distribution to test the ability of the GWL algo-
rithm in escaping from local energy minima. A run of the GWL
algorithm costs about 10 seconds of CPU time. The overall ac-
ceptance rate of the GWL moves is about .6. The computational
results are summarized in Figures 2(a) and 2(b). Figure 2(a)
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shows the convergence of the estimate of Z, where the y-axis is
defined as Distance = |Ẑs − 6.28|/6.28, with Ẑs being the esti-
mate of Z obtained at stage s. Figure 2(b) shows the sampling
frequencies of the subregions E0, . . . ,E351 at the last stage. Be-
cause − logψ(x) > .4 for all x ∈ X , the sets E1, . . . ,E54 are
all empty and the corresponding sampling frequencies are 0.
Figure 2(b) indicates that the GWL algorithm (ρ = 0) samples
from each of the nonempty subregions equally. Later, the run
was repeated for 50 times independently. By averaging over the
50 runs, we obtained one estimate for Z, 6.26 with standard de-
viation .05.

In the second experiment, Ef X2
1 is estimated using the GWL

algorithm. The true value of the expectation is 26.0. The GWL
algorithm was run for this example with the same setting as that
used in the first experiment except for ψ(x), which was

ψ(x) =






x2
1

2π

[
1

3
exp

{
−1

2

2∑

i=1

(xi + 5)2

}

+ 2

3
exp

{
−1

2

2∑

i=1

(xi − 5)2

}]
, x ∈X ,

.05, x ∈A.

The computational results are summarized in Figures 2(c)
and 2(d). Figure 2(c) shows the convergence of the estimate
of Ef X2

1 , where the y-axis is defined as Distance = |ξ̂s − 26|/26
with ξ̂s being the estimate of Ef X2

1 obtained at stage s. Fig-
ure 2(d) shows the sampling frequencies of the subregions
E0, . . . ,E351 at the last stage. Because − logψ(x) > −1.2,
E1, . . . ,E39 are all empty, and the corresponding sampling fre-
quencies are all 0. Later the run was repeated 50 times indepen-
dently. By averaging over the 50 runs, we obtained one estimate
for Ef X2

1 , 25.8 with standard deviation .19.

We note that the tasks studied in this section can also be ac-
complished by other Monte Carlo methods. For example, the
normalizing constant Z can be estimated by the methods pre-
sented by Meng and Wong (1996) or Chen, Shao, and Ibrahim
(2000). Here we just provide a different treatment for the prob-
lems and do not want to compare their efficiency, because the
strength of the GWL algorithm is in overcoming the high-
energy barriers of a rough energy landscape, whereas this ex-
ample is still relatively simple.

5.2 Computing Highest Posterior Density Intervals

Consider a Bayesian posterior density f (θ,φ|D), where
D denotes data, θ is a one-dimensional parameter, and φ may
be a multidimensional vector of parameters other than θ in the
model. A 100(1 − α)% HPD interval for θ is given by

R( fα) = {θ : f (θ |D) ≥ fα},
where fα is the largest constant such that P(θ ∈ R( fα)) ≥ 1 −α.
The HPD interval has the following two properties:

a. Every point inside the interval has greater density than
every point outside the interval.

b. For a given probability content, say 1 − α, the interval is
of the shortest length.

HPD intervals are usually used to delineate a comparatively
small set that contains most of the probability in summarizing
a distribution but may be nonzero over infinite regions of the
sample space. When f (θ |D) is multimodal, R( fα) is actually a
collection of intervals and should be called a 100(1−α)% HPD
region. In this article we follow Chen et al. (2000) to still call it
a HPD interval, considering that θ is one-dimensional.

Let F(θ |D) denote the cdf of f (θ |D). When the closed forms
of f (θ |D) and F(θ |D) are available and f (θ |D) is continuous

(a) (b)

(c) (d)

Figure 2. Results of the First Experiment [(a) and (b)] and the Second Experiment [(c) and (d)]. (a) The convergence of the estimate of the
normalizing constant. (b) The sampling frequencies of the subregions, E0, . . . ,E351, at the last stage. (c) The convergence of the estimate of Ef X2

1 .
(d) The sampling frequencies of the subregions, E0, . . . ,E351, at the last stage.
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and unimodal, R( fα) can be computed by solving the following
minimization problem:

min
θL<θU

{∣∣ f (θU|D)− f (θL|D)
∣∣+ ∣∣F(θU|D)−F(θL|D)− (1−α)

∣∣},

where θL and θU are the lower and upper bounds of the HPD in-
terval. However, in Bayesian computation the closed forms of
f (θ |D) and F(θ |D) are usually not available, especially when
φ is high-dimensional. Various Monte Carlo methods have
been proposed to approximate R( fα) (see, e.g., Wei and Tanner
1990; Tanner 1996; Hyndman 1996; Chen and Shao 1999). The
method developed by Wei and Tanner (1990), Tanner (1996),
and Hyndman (1996) approximates fα as follows. Let θ1, . . . , θn

denote random samples drawn from f (θ |D), and let ξi = f (θi|D)

for i = 1, . . . ,n. A consistent estimator of R( fα) can then be ob-
tained by computing

R̂( fα) = {θ : f (θ |D) ≥ f̂α},
where f̂α = ξ[nα], the [nα]th smallest of the {ξi}’s. This method
has two drawbacks. First, it requires that a closed form of
f (θ |D) be available; second, it is difficult to compute R̂( fα),
especially when f (θ |D) is multimodal. Chen and Shao (1999)
proposed a method to estimate R( fα) based on the order sta-
tistics of the random samples. Although their method avoids
the requirement for the closed form of f (θ |D), it requires that
f (θ |D) be unimodal. Extension to the multimodal case is diffi-
cult.

Later we give a method for estimating R( fα) using the GWL
algorithm. Comparing to the methods reviewed earlier, our
method has the following advantages: It avoids the requirement
for the closed form of f (θ |D) and is valid for the multimodal
case. Suppose that f (θ |D) is continuous and has a moderate
number of modes, and that f (θ |D) is defined on the interval � =
(θmin, θmax) or that the total probability outside this interval
is negligible. Furthermore, suppose that the sample space has
been partitioned into the subregions E1 = {(θ,φ) : θmin < θ ≤
θ1}, E2 = {(θ,φ) : θ1 < θ ≤ θ2}, . . . , and Em = {(θ,φ) : θm−1 <

θ ≤ θmax}, where θmin, θ1, . . . , θm−1, θmax are equally spaced.
Here m is usually a large number that is at least several folds of
the number of the modes of f (θ |D). Let ei = {θ : θ1 < θ ≤ θi} be
a subinterval of θ corresponding to Ei, i = 1, . . . ,m. The HPD
interval can be constructed as follows.
Procedure I.

a. Run the GWL algorithm with ψ(θ,φ) = f (θ,φ|D).
b. Compute

P(Ei) = ĝ(Ei) − ρĝ(Ei−1)∑m
j=1[ĝ(Ej) − ρĝ(Ej−1)] , i = 1, . . . ,m, (12)

where g(E0) = 0. It follows from Theorem 1 that P(Ei) forms
a consistent estimator for the quantity

∫
Ei

∫


f (θ,φ|D)dθ dφ,
where  denotes the sample space of φ.

c. Order the subregions in descending order by P(Ei)’s.
Let E(1), . . . ,E(m) denote the ordered subregions, and let
e(1), . . . , e(m) be the corresponding subintervals. Construct the
HPD interval as

R̂( fα) =
m0⋃

i=1

e(i), (13)

where m0 = min{k :
∑k

i=1 P(E(i)) ≥ 1 − α}.

d. If
∑m0

i=1 P(E(i)) ≤ 1 − α + ε, stop; otherwise, refine the
partition and go to step a. The ε is the tolerance error specified
by the user.

The accuracy of R̂( fα) depends on the length of the subin-
tervals, and it can be improved by refining the partition. By the
fundamental theorem of calculus, we know that

m0∑

i=1

P
(
E(i)

) →
∫

⋃m0
i=1 E(i)

f (θ |D)dθ,

as m → ∞ or, equivalently, the length of the subinterval tends
to 0. This implies that R̂( fα) forms a consistent estimator
for R( fα). In practice, a reasonable criterion for the sam-
ple space partition is to partition the sample space such that
P(E(1)) < ζ , where ζ is a user set tolerance value. Augmen-
tation of a region A to X is not needed in the foregoing pro-
cedure, as we are interested only in the ratios of the [ĝ(Ei) −
ρĝ(Ei−1)]’s instead of their values.

When the closed form of f (θ |D) is available, Procedure I can
be refined as follows.
Procedure II.

a. Run the GWL algorithm with ψ(θ) = f (θ |D) and the cur-
rent sample space partition, E1, . . . ,Em. Let θ1, . . . , θn denote
the samples drawn by the GWL algorithm in the run.

b. Compute

P(Ei) = ĝ(Ei) − ρĝ(Ei−1)∑m
j=1[ĝ(Ej) − ρĝ(Ej−1)] , i = 1, . . . ,m, (14)

where g(E0) = 0.
c. Construct the HPD interval as

R̂( fα) =
m1⋃

i=1

E∗
i , (15)

where m1 = max{k :
∑k

i=1 P(E∗
i ) ≤ 1 − α + ε1, inf⋃k

i=1 E∗
i

f (θ |
D) ≥ sup⋃m−k

i=1 E+
i

f (θ |D)}. Here the E∗
i ’s and E+

i ’s denote the
subintervals included in and excluded from (15). If∑m1

i=1 P(E∗
i ) ≥ 1 − α − ε2, then stop; otherwise, go to step d.

The ε1 and ε2 are the tolerance errors chosen by the user.
d. Construct the HPD interval as

R̂( fα) =
( m1⋃

i=1

E∗
i

)
∪

( m2⋃

i=1

E∗∗
i

)
, (16)

where m2 = min{k :
∑k

i=1 P(E∗
i ) + ∑k

i=1 P(E∗∗
i ) ≥ 1 − α,

inf⋃k
i=1 E∗∗

i
f (θ |D) ≥ sup⋃m−m1−k

i=1 E++
i

f (θ |D)}. Here the E∗∗
i ’s

denote the subintervals selected from the set {E+
i : i = 1, . . . ,

m − m1}, and the E++
i ’s denote the unselected subintervals by

(15) and (16).
e. If a positive m2 is found in step d, refine the subintervals

E∗∗
1 , . . . ,E∗∗

m2
, reset the value of m, and go to step a. Otherwise,

refine the subintervals E+
1 , . . . ,E+

m−m1
, reset the value of m, and

go to step a.

In the foregoing procedure, infA f (θ |D) and supA f (θ |D) can
be estimated by minθk∈A f (θk|D) and maxθk∈A f (θk|D), where
the minimization and maximization are taken over all GWL
samples θ1, . . . , θn. These estimators are consistent. Compared
with Procedure I, a smaller value of m is often used here as an
award for the availability of the closed form of f (θ |D).
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In what follows we consider one example for which the den-
sity function is

f (θ,φ) = 1

Z

[
1

3
exp

{
−1

2

(
(θ + 5)2 + (φ + 5)2)

}

+ 2

3
exp

{
−1

2

(
(θ − 5)2 + (φ − 5)2)

}]

× I
(
θ ∈ (−10,10)

)
,

which mimics a multimodal posterior density.
Procedure I was applied to this example by assuming that

f (θ) is not available analytically. The GWL algorithm was
run for 10 times independently with ρ = 0, � = (−10,10),
m = 500, δend = 10−7, n1 = 5 × 105, ns+1 = 1.1ns, and the
proposal density N(xk,32I2). The CPU time cost for each
run was about 52 seconds. The overall acceptance rate was
about .29. The computational results are summarized in Fig-
ure 3 and show that the GWL algorithm produced a rather ac-
curate estimate for the marginal density of θ in each of the
10 runs. By averaging over the 10 runs, we obtained one es-
timate for the weight of the left component of f (θ,φ) and
one estimate for the 90% HPD interval. The estimate of the
weight is .3337 with standard deviation .0021, which is al-
most identical to the true value 1/3. The estimate of the inter-
val is (−6.35,3.61) ∪ (3.20,6.83). The standard deviations of
the four endpoints are .008, .005, .004, and .005. The coverage
probability of the interval is .897. Comparing this with the true
90% HPD interval (−6.4,−3.6) ∪ (3.17,6.82), we see that the
GWL algorithm has produced a quite accurate estimate for the

HPD interval for this example. We have tried other settings, for
example, m = 200 and ni+1 = 1.2ni; the results are similar.

6. USE OF THE GENERALIZED WANG–LANDAU
ALGORITHM IN MONTE CARLO OPTIMIZATION

Suppose that the energy function H(x) has a very rough land-
scape, with many local minima separated by high-energy bar-
riers. As mentioned in Section 1, H(x) can be minimized by
simulating from the distribution

f (x) ∝ exp

{
−H(x)

t

}
(17)

with a Monte Carlo algorithm, where t is the temperature. Typ-
ical algorithms include simulated annealing, simulated temper-
ing, and parallel tempering. These algorithms use the same
technique, trying to escape from local energy minima by simu-
lating at high temperatures. This raises the question of how high
a temperature is suitable for a given energy function. If the tem-
perature is too high, then simulating from (17) will be almost
equivalent to making a random walk in the space X . Hence lo-
cation the attraction basin of the global minimum will be very
difficult, especially when X is large, whereas if the tempera-
ture is too low, then locating the attraction basin of the global
minimum will also be very difficult, because of the sampler’s
difficulty in escaping from high-energy barriers.

The GWL algorithm works in a quite different style than the
foregoing annealing-based algorithms. With an appropriate set-
ting, it leads to a random walk in the energy space, and thus it

Figure 3. Plot for the HPD Interval Example. The solid line shows the true density f (θ ,φ), the dotted lines (10 lines) show the estimates of f (θ ,φ)
obtained in the 10 runs, and the dashed line shows the estimate of f (θ ,φ) by averaging over the 10 runs. The two segments at the bottom show the
estimate of the 90% HPD interval.
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can overcome any barriers of the energy landscape. The follow-
ing example compares the behavior of the GWL and simulated
annealing algorithms in minimizing a function with multiple
minima.

6.1 A Multimodal Example

Consider minimizing the following function on [−1.1,1.1]2:

H(x, y) = −(
x sin(20y) + y sin(20x)

)2 cosh(sin(10x)x)

− (
x cos(10y) − y sin(10x)

)2 cosh(cos(20y)y),

whose global minimum is −8.12465 attained at (x, y) =
(−1.0445,−1.0084) and (1.0445,−1.0084). This example is
modified from example 5.2.1 of Robert and Casella (1999).
Figure 4 shows that H(x, y) has a multitude of local minima
separated by high-energy barriers. In what follows we form the
problem so as to find the modes of the distribution

f (x, y) =





1

Z
exp

(
−H(x, y)

t

)
if (x, y) ∈ [−1.1,1.1]2

0 otherwise,

where t = .1 and Z is the unknown normalizing constant.
The GWL algorithm was first applied to this example. The

sample space was partitioned into 41 subregions with equal
energy bandwidths: E1 = {(x, y) ∈ X : H(x, y) ≤ −8.0}, E2 =
{(x, y) ∈ X :−8.0 < H(x, y) ≤ −7.8}, . . . , and E41 = {(x, y) ∈
X :−.2 < H(x, y) ≤ 0}. In simulations, we set ψ(x, y) =
exp(−H(x, y)/.1), ρ = 0, and the proposal distribution as
N2((xk, yk)

′, .32I2). The GWL algorithm was run for only one
stage with 1,000 iterations. The overall acceptance rate was
about .2, and the CPU time was about .03 second. Figure 5(a)
shows the sample path of a typical run of the GWL algorithm.
The central part of the sample space [Fig. 4(b)] has a big area,

which is about half of the total area of the sample space, but it
is seldom visited in the run. This is the fact due to that the GWL
algorithm leads to a random walk in the energy space instead of
the sample space. Hence the GWL algorithm can overcome any
energy barrier of the energy landscape and locate the global
energy minima very quickly. In fact, the GWL algorithm has
located the two global minima many times within the 1,000
iterations.

For comparison, the MH algorithm was also applied to this
example. Two runs were made with t = 5 and t = .1. The
run with the high temperature mimics the simulation of sim-
ulated annealing and other tempering algorithms at high tem-
peratures. The respective proposal distributions used in the two
runs are N2((xk, yk)

′, .752I2) and N2((xk, yk)
′, .05I2). Each run

consisted of 1,000 iterations and cost about .03 second of CPU
time. The acceptance rates of the two runs were .38 and .25.
Figures 5(b) and 5(c) show the sample paths of the two runs.
Figure 5(b) shows that at the high temperature, the MH algo-
rithm is almost equivalent to a random walk in the space X .
Because the sample space is usually very large, it is almost im-
possible for the algorithm to locate the global energy minimum
at this stage. Figure 5(c) shows that at the low temperature, the
MH algorithm tends to get trapped in one of local minima. It
is also almost impossible for the algorithm to locate the global
minimum at this stage.

Later, the GWL algorithm was rerun with δend = 10−4, n1 =
1,000, ns+1 = 1.1ns, and the proposal distribution N((xk, yk)

′,
.12I2). Here a smaller variance was chosen for the proposal dis-
tribution, because we would like to locate the global minimum
precisely, instead of only the attraction basin of the global min-
imum. The simulation was repeated 100 times. The total CPU
time was 3.6 seconds. The computational results are summa-
rized in Table 3.

(a) (b)

Figure 4. Contour (a) and Grid (b) Representations of the Function H(x, y) on [−1.1, 1.1]2 .
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(a) GWL (b) Metropolis (t = 5) (c) Metropolis (t = .1)

Figure 5. Sample Paths of the GWL and MH Algorithms. The circles in the plots show the locations of the two global minima. (a) The sample
path of a GWL run. (b) The sample path of an MH run at t = 5. (c) The sample path of a MH run at t = .1.

For comparison, the simulated annealing algorithm was also
applied to this example with various temperature schemes as
given in Table 3. In all of the temperature schemes, the tem-
perature decreased geometrically from the highest tempera-
ture thigh to the lowest temperature tlow = .1 in a constant
rate qt; the number of iterations at the highest temperature
was nhigh = 120, and it increased geometrically in a rate of
qn = 1.05 as the temperature decreased; the proposal distri-
bution is N2((xk, yk)

′, (.15t)2I2). For each of the temperature
schemes, the simulated annealing algorithm was run for 1,000
times independently. The overall acceptance rates of these runs
varied between .22 and .32. The computational results are sum-
marized in Table 3. The comparison shows that the GWL algo-
rithm is superior to the simulated annealing algorithm for this

simple example. To get the same proportion of the successful
runs as that of the GWL algorithm, the simulated annealing al-
gorithm needs about 12 folds of CPU time for this example.

6.2 Annealing GWL, ρ-GWL, and Neural
Network Training

Because GWL (with ρ = 0) leads to a free random walk in
the energy space, a natural question is whether efficiency of
the GWL algorithm will be deteriorated due to oversampling
from high-energy regions when the range of the energy func-
tion is wide. To avoid oversampling from high-energy regions,
we make the following modification on the GWL algorithm.
We call the modified algorithm “annealing GWL.” In annealing

Table 3. Comparison of GWL and Simulated Annealing

Algorithm Mean Standard error (×10−3) Minimum Maximum Proportion Time (s)

GWL −8.12361 .03819 −8.12466 −8.11055 984 35.1

Annealing-1 −8.09763 2.70948 −8.12466 −6.64358 739 34.3
Annealing-2 −8.09579 2.80803 −8.12466 −7.14855 733 35.2
Annealing-3 −8.09018 3.68467 −8.12466 −6.26991 735 37.6

Annealing-4 −8.12216 .29299 −8.12466 −8.00916 879 125.6
Annealing-5 −8.12207 .36067 −8.12466 −7.93767 878 128.1
Annealing-6 −8.12109 .44673 −8.12466 −7.92996 872 130.7
Annealing-7 −8.11945 .86893 −8.12466 −7.70189 869 131.6

Annealing-8 −8.12443 .03289 −8.12466 −8.11187 986 446.5
Annealing-9 −8.12428 .05511 −8.12466 −8.10465 968 447.0
Annealing-10 −8.12433 .04209 −8.12466 −8.10643 982 449.9

NOTE: Let zi , i = 1, . . . ,1,000, denote the minimum energy value found in the i th run. “Mean” is the average of the zi ’s, “standard error” is the standard deviation of “mean,”
“minimum” = min1 ≤ i ≤ 1,000 zi , “maximum” = max1 ≤ i ≤ 1,000 zi , and “proportion” = #{i : zi < −8.12}. In annealing-1, annealing-2, and annealing-3, the respective (thigh, qt )’s are
(50, .8831), (20, .8995), and (10, .9120), and the number of temperature levels is 51. In annealing-4, annealing-5, annealing-6, and annealing-7, the respective (thigh, qt )’s
are (50, .9205), (20, .9318), (10, .9404), and (5, .9492); and the number of temperature levels is 76. In annealing-8, annealing-9, and annealing-10, the respective (thigh, qt )’s
are (50, .9397), (20, .9484), and (10, .9550), and the number of temperature levels is 101.
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GWL, we usually set ψ(x) = exp(−H(x)/t) because it aims
to minimize the function H(x) instead of estimating an expec-
tation. Note that for some problems (e.g., traveling salesman
problems), we can set ψ(x) = H(x) provided that

∫ |H(x)|dx <

∞ and H(x) > 0 for all x ∈ X . Suppose that the sample space
has been partitioned according to the energy function into m
subregions, E1, . . . ,Em, and that the Ei’s have been arranged in
ascending order by energy; that is, if i < j, then H(x) < H(y)

for any x ∈ Ei and y ∈ Ej. Let �(z) denote the index of the
subregion to which a sample x with energy H(x) = z belongs.
For example, if x ∈ Ej, then �(H(x)) = j. Let X (s,k) denote the
sample space at iteration k of stage s of the simulation. The an-
nealing GWL algorithm starts with X (1,1) = ⋃m

i=1 Ei and then
iteratively sets

X (s,k) =
�(Hmin+�)⋃

i=1

Ei, (18)

where Hmin is the minimum energy value obtained so far in the
run and � is a user-specified parameter that controls the sample
space of each iteration. The sample space X (s,k) shrinks itera-
tion by iteration. In this sense, we call the modified algorithm
the annealing GWL algorithm. This algorithm can be run as
the GWL algorithm except that its actual sample space needs
to be updated every iteration or every number of iterations. It
does not require that the simulation start from regions of speci-
fied energy. The performance of the annealing GWL algorithm
depends on the value of � to some extent. If � is so large that
X (s,k) =X for all iterations, then the annealing GWL algorithm
turns to the GWL algorithm. In this case, it may take a long time
to locate the global minimum. If � is too small, then X (s,k) may
contain too many disconnected regions in the later period of the
simulation. In this case there will be too many rejections for
the proposed moves, and it may also take a long time to locate
the global minimum. We note that a similar idea was given by
Lee and Cho (1994) in applying the multicanonical algorithm
to traveling salesman problems.

The shrinkage of the sample space in the annealing GWL al-
gorithm is equivalent to the following iterative modification on
the working function ψ(x). Set ψ(1,0) = ψ(x), and then update
the working function iteratively as

ψ(s,k)(x) =
{

ψ(x) if x ∈ X (s,k)

0 otherwise,

where ψ(s,k)(x) is the working function at iteration k of stage s
and X (s,k) is as defined in (18). Hence if the proposal distribu-
tion is global, then Theorem 1 is still applicable to the anneal-
ing GWL algorithm; that is, as s → ∞ and k → ∞, we have
ĝ(Ei) → cg(Ei) for i = 1, . . . ,�(Hmin + �).

The ρ-GWL algorithm (ρ > 0) has also the ability to avoid
oversampling from high-energy regions. It will bias sampling to
low-energy regions. Potentially, the ρ-GWL algorithm is supe-
rior to the annealing GWL algorithm, because it always works
on the entire sample space, whereas the annealing GWL algo-
rithm may suffer from the difficulty in crossing disconnected
regions in the latter stages of the simulation if the proposal
function is not chosen appropriately. The difference between
the ρ-GWL and annealing GWL algorithms can be summarized
simply as follows: ρ-GWL puts a soft penalty on the visiting

to high-energy regions, whereas annealing GWL uses a hard
threshold penalty to prohibit visitation to high-energy regions.
We compare these numerically through a neural network train-
ing example.

Consider a dataset of n observations, (x1, y1), (x2, y2), . . . ,

(xn, yn), where xk = (xk1, . . . , xkp) is a p-dimensional vector
and yk is a real number. Suppose that x and y are nonlinearly
related through an unknown function r(x) as

yk = r(xk) + εk, k = 1, . . . ,n,

where the εk’s are random errors. Multilayer perceptrons
(MLPs) (Rumelhart and McClelland 1986) approximate the
function r(x) in a function of the form

r̂(xk) = ϕ2

(
α0 +

M∑

i=1

αiϕ1

(
βi0 +

p∑

j=1

βijxkj

))
,

where the ϕ1(·) and ϕ(·) are activation functions, M is the num-
ber of hidden units, and α’s and β’s are the connection weights,
in the context of neural networks. In practice, ϕ1(·), ϕ2(·), and
M are specified a priori, and the α’s and β’s can be determined
by minimizing an objective function, such as

H(α,β) =
n∑

k=1

(r̂(xk) − yk)
2. (19)

So the problem of MLP training is an optimization problem.
MLP training has been a benchmark problem of optimiza-

tion because of its high nonlinearity and high dimensionality.
In this article we compare the performance of the annealing
GWL, ρ-GWL, parallel tempering, and simulated annealing
algorithm in training an MLP for a simplified two-spiral ex-
ample (Lang and Witbrock 1988), where two spirals are in-
tertwined and our task is to learn to determine which of the
120 training points (shown in Fig. 6) belong to which spi-
ral. An MLP is specified for this example with M = 20 and
ϕ1(z) = ϕ2(z) = 1/(1 + e−z). This MLP has 81 connection
weights to be determined by minimizing the energy function

Figure 6. Learned Classification Boundary in One Run of the Anneal-
ing GWL Algorithm. The black and white points show the training data
for two different spirals.
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H(α,β) defined in (19); so the sample space for this exam-
ple is X = R81. Suppose that the sample space has been par-
titioned into 300 subregions with equal energy bandwidths:
E1 = {(α,β) ∈ R81 : H(α,β) ≤ .2}, E2 = {(α,β) ∈ R81 : .2 <

H(α,β) ≤ .4}, . . . , and E300 = {(α,β) ∈ R81 : H(α,β) > 59.8}.
The annealing GWL algorithm was first applied to this ex-
ample. It was run with ψ(α,β) = exp{−H(α,β)}, n1 = 105,
ns+1 = 1.1ns, and � = 5. The proposal distribution used is
a spherical distribution. A direction was first generated uni-
formly, and then the radius was drawn from N(0,1). The sim-
ulation continues until a configuration with H(α,β) ≤ .1 has
been found or δs has been less than δend = .05. The overall ac-
ceptance rate of the GWL moves is about .23. The algorithm
was run 20 times independently. Figure 6 shows the learned
classification boundary in one run. The MLP has separated the
two spirals successfully. The numerical results are summarized
in Table 4 together with the results produced by other algo-
rithms, as we described later.

For each of the ρ values given in Table 4, the ρ-GWL al-
gorithm was run 20 times independently with the same setting
as that used by the annealing GWL algorithm. The annealing
GWL and ρ-GWL (with ρ > 1) algorithms have almost the
same performance. They all outperform the GWL and 1-GWL
algorithms, which tend to oversample from high-energy re-
gions. We note that the superiority of the 1-GWL algorithm to
the GWL algorithm is consistent with the finding of Hesselbo
and Stinchcombe (1995) that 1/k-ensemble sampling is supe-
rior to the multicanonical algorithm in optimization.

For comparison, we also applied the parallel tempering and
simulated annealing algorithms to this example. In parallel tem-
pering, we set the number of temperature levels as N = 25, the
highest temperature thigh = 1.0,5,10, the lowest temperature
tlow = .01, and the other temperatures were equally spaced be-
tween thigh and tlow in the logarithm. Let (α(i), β(i)) denote a
sample from the distribution

πi(α,β) ∝ exp

(
−H(α,β)

ti

)
, (20)

which is the trial distribution corresponding to the ith temper-
ature level. At each iteration, the algorithm consists of two
steps:

a. Update independently each (α(i), β(i)) for κ steps with the
MH algorithm. A spherical proposal distribution was used in
the MH moves. A direction was generated uniformly, and then
the radius was drawn from N(0, σ 2

i ), where σ 2
i was calibrated

such that the updates had an appropriate acceptance rate. In sim-
ulation, we set κ = 2 and σ 2

i = min{5ti,5}.
b. Try to exchange (α(i), β(i)) with (α( j), β( j)) for N pairs

with i being sampled at random from {1,2, . . . ,N} and j = i±1
with probability ω( j|i), where ω(i + 1|i) = ω(i − 1|i) = 1

2 and
ω(2|1) = ω(N − 1|N) = 1. The exchange was accepted with
probability

min

{
1, exp

[(
H(αi, βi) − H(αj, βj)

)(1

ti
− 1

tj

)]}
,

according to the MH rule.

For each value of thigh, the algorithm was run 20 times inde-
pendently. Each run consisted of 13,000 iterations. The overall
acceptance rates of the MH moves were about .24, .4, and .45;
the overall acceptance rates of the exchange moves were about
.42, .41, and .4. These findings suggest that parallel tempering
has been implemented effectively (Gelman, Roberts, and Gilks
1996). The other temperature schemes were also tried, includ-
ing thigh = 20 and tlow = .01, and thigh = .5 and tlow = .01. The
results were all similar or inferior to those reported in Table 4.

For the simulated annealing algorithm, we tried three tem-
perature schemes. In scheme 1 we set thigh = 1.0, tlow = .01,
the number of temperature levels N = 50, and the tempera-
ture decreasing factor q = .91. In scheme 2 we set thigh = 5,
tlow = .01, N = 60, and q = .9. In scheme 3 we set thigh = 10,
tlow = .01, N = 70, and q = .905. At each temperature level, the
configuration was updated with the MH algorithm for ni steps,
where n1 = 3,000 and ni+1 = 1.05ni. The proposal distribution
was the same as that used in the simulated tempering algorithm.
For each of the schemes, the algorithm was run 20 times inde-
pendently. Table 4 shows that the annealing GWL and ρ-GWL
algorithms significantly outperform the parallel tempering and
simulated annealing algorithm. Form the “proportion” column,
we can see that the ρ-GWL algorithm (ρ > 1) is able to find
the global minimum in almost all of the 20 runs, whereas the
parallel tempering algorithm is never able to find the global

Table 4. Comparison of the GWL, ρ-GWL, Annealing GWL, Parallel Tempering, and Simulated Annealing Algorithms
for the MLP Training Example

Algorithm Mean Standard error Minimum Maximum Proportion Time (s) Stage

GWL 9.53 1.08 0 19.68 1 347 5.0(5)
Annealing GWL .05 .05 0 1.00 19 347 2.4(5)
1-GWL 1.90 .61 0 11.50 9 336 3.3(4)
1.5-GWL .2 .16 0 3.01 18 336 2.3(4)
2-GWL 0 0 0 0 20 336 2.6(4)
3-GWL .07 .05 0 1.01 18 336 2.5(4)

Tempering-1 3.99 .19 2.68 5.32 0 338
Tempering-2 4.22 .16 2.61 5.50 0 338
Tempering-3 4.55 .21 2.46 6.11 0 338

Annealing-1 7.43 1.04 0 18.33 1 341
Annealing-2 16.01 1.32 5.50 29.94 0 600
Annealing-3 18.75 1.30 9.50 30.63 0 1,117

NOTE: The 1-GWL, 1.5-GWL, 2-GWL, and 3-GWL correspond to the runs of ρ-GWL with ρ = 1, 1.5, 2, and 3. “Mean,” “standard error,” “minimum,” and “maximum” are
calculated as in Table 3 except based on 20 runs. “Proportion” denotes the number of runs (out of 20) during which one global minimum configuration with H(α,β) < .1 was
located. “Time” is the CPU time (in seconds) allowed for a single run. In the “stage” column, the numbers before and in the parentheses are the average of the number of
stages used by the run and the maximum number of stages within the allowed CPU time.
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minimum under the given settings, and the simulated anneal-
ing algorithm performs even worse than parallel tempering.
For the parallel tempering and simulated annealing algorithms,
we also tried other spherical proposals, including those with
σ 2

i = min{2.5ti,2.5} and σ 2 = ti; the results were similar.
Table 4 also shows that the performance of the simulated

annealing algorithm becomes worse as thigh increases and the
running time increases. This is in contrast to our intuition of
the higher the temperature and the longer the CPU time, the
better the results. But our observation is generic to neural net-
work training. This can be explained as follows. Let (α̂, β̂)

denote a local energy minimum configuration located by the
simulated annealing algorithm. As we know, the MH algorithm
is almost equivalent to a random walk when the temperature
is high. Due to the cumulative effect of the random walk, the
magnitude of (α̂, β̂) located at high temperatures is often large.
Note that no penalty is put on the magnitude of (α̂, β̂) in (20).
For a configuration of large magnitude, if it is trapped into a
local energy minimum, then it will be less likely to escape from
the local minimum than will a configuration of small magni-
tude, because more iterations are needed for the former config-
uration to reduce the effect of the large-magnitude connection
weights by changing their values. This observation is not new
in neural computation; it has led to the approach of regulariza-
tion (Bishop 1995), which penalizes the connection weights of
large magnitude in neural network training.

Table 4 also shows that the parallel tempering algorithm is
more robust than the simulated annealing algorithm to the vari-
ation of the temperature schemes and proposal distributions. In
parallel tempering, there are multiple chains running in paral-
lel. Once a local energy minimum is located at the high temper-
ature, the corresponding configuration is exchanged to the low
temperature level, preventing the magnitude of the configura-
tion from growing any further.

7. DISCUSSION

In this article we have introduced the GWL algorithm and
showed that it can be applied to many problems of Monte Carlo
integration and optimization, including normalizing constant
estimation, Bayesian model selection, HPD interval construc-
tion, function optimization, and others. The GWL algorithm has
a number of features that conventional Monte Carlo algorithms
do not have. First, it provides a new method for Monte Carlo in-
tegration based on stochastic approximation. A rigorous theory
for the validity of the approximation is provided in this article.
Second, it is an excellent tool for Monte Carlo optimization.
With an appropriate setting, the GWL algorithm can lead to a
random walk in the energy space. Hence the GWL algorithm
has the ability sample relevant parts of the sample space, even
in the presence of many local energy minima. Third, its self-
adjusting nature makes the simulation converge very quickly.
The convergence can be checked on-line in a single run, in
contrast to the multiple-run checking required by conventional
MCMC algorithms.

In what follows we discuss how to set the free parameters
δ and ρ, the partition of the sample space, and the number of
iterations for the ρ-GWL algorithm. Let λk denote the conver-
gence rate of the ρ-GWL algorithm at iteration k of stage s.

From the proof of Theorem 1 [see (A.5)], we know that the
convergence rate of the iteration is

λs,k = 1

(1 + τ
(s,k)
0 )2

, (21)

where τ
(s,k)
0 = δs

S min1≤ j≤m
∑m

i=j ρ
i−jĝ(s,k)(Ej) and S =∑m

j=1 g(Ej). The larger the value of λs,k, the slower the conver-
gence. To simplify the discussion, we assume that the sample
space is partitioned such that

∫
E1

ψ(x)dx ≈ · · · ≈ ∫
Em

ψ(x)dx.
Under this assumption,

τ
(s,k)
0 ≈ δs∑m

j=1
∑m

i=j ρ
i−j

= (1 − ρ)2δs

ρm+1 − (m + 1)ρ + m
, (22)

where 00 = 1 is defined to accommodate the case where ρ = 0.
Figure 7 shows the curve of λk as a function of ρ and m by
substituting (22) into (21).

First, we note that λs,k is an increasing function of ρ. The
smaller the ρ, the faster the convergence. This is consistent
with our results in Section 4, which show numerically that the
1-GWL algorithm has a slower convergence than the GWL al-
gorithm. This suggests that we should set ρ = 0 if we aim to
estimate the g(Ei)’s. But if we aim for optimization, then we
may set ρ > 0 to bias the simulation to low-energy regions.

Second, we note that λs,k is an increasing function of m. The
smaller the m, the faster the convergence. This conclusion is
drawn under the assumption that the entire sample space can
be well explored with a partition of m subregions. In practice,
however, this may not be the case. If m is too small, then the
sample space may not be able to be well explored. We note
again that the GWL algorithm is reduced to the MH algorithm
within the same subregion. Hence, in partitioning the sample
space, a trade-off should be made between the number of sub-
regions and the feasibility of sampling within subregions. For
example, if the sample space is partitioned according to the en-
ergy function, then it is reasonable to partition the sample space
such that supEi

H(x) − infEi H(x) ≈ τ for 1 ≤ i ≤ m, where
supEi

H(x) − infEi H(x) is the range of energy on the subre-
gion Ei. If ψ(x) = exp{−H(x)/τ } is set in the run, then the

Figure 7. Convergence Rate of ρ-GWL Plotted as a Function of
ρ and m ( —–, m = 20; · · · ·, m = 50; - - -, m = 100). In the plot δs is
fixed to 1.
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MH moves within the same subregion will have a reasonable
acceptance rate, ranging approximately from 1/e to 1.

Third, we note that λk is a decreasing function of δs. The
larger the δs, the faster the convergence. It is shown in Corol-
lary 1 that at each stage the mean squared error of the estimates
is on the order of O(δs) as the number of iterations tends to
infinity. These observations suggest that δ should be set to a
large value in the early stages of the simulation, and it should
decrease as the simulation moves toward convergence. A large
value of δ in the early stages will force all subregions to be
visited very quickly.

Fourth, the number of iterations at each stage can be roughly
determined based on (A.7) in the Appendix, where the term (I)
measures the reminder effect of the initial estimates. For sim-
plicity, we assume that al ≡ a for each l, where a is a constant
close to 1. For a given tolerant error ε, the number of iterations
at stage s should be chosen such that (1 − a)Ks < ε or, equiva-
lently, Ks > − log(ε)/δs. Hence, roughly, we should have

Ks+1

Ks
>

δs

δs+1
.

For example, if δs decreases geometrically with rate γ , then Ks

should increase geometrically with rate 1/γ .

APPENDIX: PROOFS

Proof of Theorem 1

For simplicity, we denote g(Ei) by gi and denote ĝ(s,k)(Ei) by ĝ(k)
i

in the proof. Here the superscript s is omitted, because the calculation
is for only one stage. Without loss of generality, we assume that S =∑m

i=1 gi is known,
∑m

i=1 ĝ(k)
i = S, and the sample of the next iteration

xk+1 ∈ Ej. To make
∑m

i=1 ĝ(k+1)
i = S, we set

ĝ(k+1)
i =






ĝ(k)
i

1 + τ
(k)
j

for i = 1, . . . , j − 1

ĝ(k)
i + δsρ

i−jĝ(k)
j

1 + τ
(k)
j

for i = j, . . . ,m,

(A.1)

where τ
(k)
j = εjĝ

(k)
j /S > 0 and εj = δs

∑m
i=j ρ

i−j. The weight adjust-

ment by the multiplication factor (1+τ
(k)
j ) will not change the process

of the simulation. Given ĝ(k)
i , i = 1, . . . ,m, the acceptance of the GWL

move is guided by (7), so that

P(xk+1 ∈ Ej) = 1

Ak

∫
Ej

ψ(x)dx

ĝ(k)
j

, j = 1, . . . ,m,

where Ak = ∑m
j=1

∫
Ej

ψ(x)dx/ĝ(k)
j is the normalizing constant of this

distribution.
Let τ

(k)
0 = min1≤ j≤m τ

(k)
j , and Dk = ∑m

i=1(ĝ(k)
i − gi)

2. Then we
have the following calculation:

E
(
Dk+1

∣∣ĝ(k)
i , i = 1, . . . ,m

)

=
m∑

j=1

{ j−1∑

i=1

(
ĝ(k)

i

1 + τ
(k)
j

− gi

)2

+
m∑

i=j

( ĝ(k)
i + δsρ

i−jĝ(k)
j

1 + τ
(k)
j

− gi

)2
}

P(xk+1 ∈ Ej)

≤ 1

(1 + τ
(k)
0 )2

×
m∑

j=1

{ j−1∑

i=1

(
ĝ(k)

i − gi
)2

+
j−1∑

i=1

(
τ
(k)
j

)2g2
i − 2

j−1∑

i=1

τ
(k)
j gi

(
ĝ(k)

i − gi
)

+
m∑

i=j

(
ĝ(k)

i − gi
)2 +

m∑

i=j

(
δsρ

i−jĝ(k)
j − τ

(k)
j gi

)2

+ 2
m∑

i=j

(
ĝ(k)

i − gi
)(

δsρ
i−jĝ(k)

j − τ
(k)
j gi

)
}

× P(xk+1 ∈ Ej)

≤ Dk

(1 + τ
(k)
0 )2

+
m∑

i=1

g2
i

m∑

j=1

(
τ
(k)
j

)2P(xk+1 ∈ Ej)

− 2
m∑

i=1

gi
(
ĝ(k)

i − gi
) m∑

j=1

τ
(k)
j P(xk+1 ∈ Ej)

+ δ2
s

m∑

j=1

m∑

i=j

(
ρi−jĝ(k)

j

)2P(xk+1 ∈ Ej)

+ 2δs

m∑

j=1

m∑

i=j

(
ĝ(k)

i − gi
)
ρi−jĝ(k)

j P(xk+1 ∈ Ej). (A.2)

Because of the relations

m∑

j=1

τ
(k)
j P(xk+1 ∈ Ej)

= 1

AkS

m∑

j=1

εj

∫

Ej

ψ(x)dx = δs

AkS

m∑

j=1

m∑

i=j

ρi−j
∫

Ej

ψ(x)dx

= δs

AkS

m∑

i=1

i∑

j=1

ρi−j
∫

Ej

ψ(x) = δs

AkS

m∑

i=1

gi = δs

Ak
(A.3)

and

m∑

j=1

m∑

i=j

(
ĝ(k)

i − gi
)
ρi−jĝ(k)

j P(xk+1 ∈ Ej)

=
m∑

i=1

i∑

j=1

(
ĝ(k)

i − gi
)
ρi−j

∫
Ej

ψ(x)dx

Ak

= 1

Ak

m∑

i=1

gi
(
ĝ(k)

i − gi
)
, (A.4)

the third and fifth terms of the last inequality of (A.2) cancel each other.

Because τ
(k)
j has the same order as δs, that is, τ

(k)
j ∼ O(δs), we have

E
(
Dk+1

∣∣ĝ(k)
i , i = 1, . . . ,m

) ≤ 1

(1 + τ
(k)
0 )2

Dk + O(δ2
s ),

which implies that

E(Dk+1) ≤ 1

(1 + τ
(k)
0 )2

E(Dk) + O(δ2
s ) (A.5)
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and

E(Dk) → 0 as k → ∞ and δs → 0.

Because Dk > 0, we know that

Dk → 0 in probability, (A.6)

and then

ĝ(s,k)(Ei) → g(Ei) in probability,

as δs → 0 and k → ∞.

Proof of Corollary 1. Here we use the same notations as in the

proof of Theorem 1. Because τ
(k)
0 ∼ O(δs), that is, τ

(k)
0 and δs are in

the same order, we can write

1

(1 + τ
(k)
0 )2

≈ 1 − akδs

in a Taylor expansion, where ak > 0 and ak ∼ O(1). From the recursive
relationship given in (A.5), we have

EDk+1 ≤ (1 − akδs)EDk + O(δ2
s )

≤ (1 − akδs)[(1 − ak−1δs)EDk−1 + O(δ2
s )] + O(δ2

s )

≤ · · ·

≤
k∏

l=1

(1 − alδs)ED1 +
[

1 +
k∑

l=2

k∏

j=l

(1 − ajδs)

]
O(δ2

s )

= (I) + (II). (A.7)

For part (I), it is easy to see that

k∏

l=1

(1 − alδs) → 0, (A.8)

as k → ∞.
For part (II), let

C = 1 +
k∑

l=2

k∏

j=l

(1 − ajδs)

= 1 + (1 − akδs)

[
1 +

k−1∑

l=2

k−1∏

j=l

(1 − ajδs)

]
. (A.9)

As k → ∞, we have

C ≤ 1 + (1 − akδs)C, (A.10)

which implies that C = O( 1
δs

).
Summarizing the foregoing analysis for (I) and (II), we have

EDk ≤ 0 + O

(
1

δs

)
O(δ2

s ) = O(δs),

as k → ∞.
It follows from (A.8) that the convergence of EDk is geometric and

the convergence rate varies slightly from iteration to iteration. The

proof of the corollary is completed.

[Received October 2003. Revised February 2005.]
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