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We generalize the 1/k-ensemble algorithm so that it can be used for both discrete and continuous systems,
and show that the generalization is correct numerically and mathematically. We also compare the efficiencies
of the generalized 1/k-ensemble algorithm and the generalized Wang-Landau algorithm through a neural
network example. The numerical results favor to the generalized 1/k-ensemble algorithm.
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I. INTRODUCTION

In practice, we often need to deal with the systems with
rough energy landscapes—for example, peptides, proteins,
neural networks, traveling salesman problems, spin glasses,
etc. The energy landscapes of these systems are characterized
by a multitude of local minima separated by high-energy
barriers. At low temperatures, canonical Monte Carlo meth-
ods, such as the Metropolis-Hastings algorithm[1] and the
Gibbs sampler[2], tend to get trapped in one of these local
minima. Hence only small parts of the phase space are
sampled(in a finite number of simulation steps) and thermo-
dynamical quantities cannot be estimated accurately. To alle-
viate this difficulty, generalized ensemble methods have been
proposed, such as simulated tempering[3,4], parallel temper-
ing [5,6], the multicanonical algorithm[7,8], entropic sam-
pling [9], the 1/k-ensemble algorithm[10], the flat histogram
algorithm [11], and the Wang-Landau algorithm[12]. They
all allow a much better sampling of the phase space than the
canonical methods. Simulated tempering and parallel tem-
pering share the idea that the energy landscape can be flat-
tened by raising the temperature of the system and, hence,
the phase space can be well explored at a high temperature
by the local move based canonical methods. The other algo-
rithms [7–12] are histogram based and share the idea that a
random walk in the energy space can escape from any energy
barrier. Among the histogram-based algorithms, the multica-
nonical algorithm and entropic sampling are mathematically
identical as shown by Berget al. [13], the flat histogram and
Wang-Landau algorithms can be regarded as different imple-
mentations of the multicanonical algorithm, and the
1/k-ensemble algorithm is only slightly different from the
multicanonical algorithm. The multicanonical algorithm re-
sults in a free random walk, while the 1/k-ensemble algo-
rithm results in a random walk with more weight toward
low-energy regions. In this sense, Hesselbo and Stinchcombe
[10] claimed that the 1/k-ensemble algorithm is superior to
the multicanonical algorithm.

We note that these histogram-based algorithms are all de-
veloped for discrete systems. In this article, we generalize
the 1/k-ensemble algorithm so that it can be used for both
discrete and continuous systems, and show that the generali-

zation is correct numerically and mathematically. We also
demonstrate the efficiency of the generalized 1/k-ensemble
algorithm through a neural network example.

II. GENERALIZED 1/ k-ENSEMBLE ALGORITHM

Let VsEd denote the density of states of a system. The
1/k-ensemble algorithm seeks to sample from the distribu-
tion

p1/ksEd ~
1

ksEd
,

whereKsEd=oE8øEVsE8d—that is, the number of states with
energies up to and includingE. Hence a run of the
1/k-ensemble algorithm will produce the following distribu-
tion of energy:

P1/ksEd ~
VsEd
ksEd

=
d ln ksEd

dE
.

Since in many physical systemsksEd is a rapidly increasing
function, we have lnksEd< ln VsEd, which is called the
thermodynamic entropy of the system. For a wide range of
values of energy, the simulation will approximately produce
a free random walk in the thermodynamic entropy space. So
the simulation is able to overcome any barrier of the energy
landscape.

Although the algorithm seems very attractive,ksEd is un-
known, and it has to be estimated prior to the simulation. An
iterative procedure for estimatingksEd was given in Ref.
[10], but the complexity of the procedure has limited the use
of the algorithm. Recently, Wang and Landau[12] proposed
an innovative implementation for the multicanonical algo-
rithm. Motivated by the Wang-Landau algorithm have the
following on-line implementation for the 1/k-ensemble algo-
rithm. We state that our implementation is online, in contrast
to the off-line implementation, which first estimatesVsEjd’s
by the flat histogram or Wang-Landau algorithm, and then

estimatesksEid by k̂sEid−oEjøEi
V̂sEjd, whereV̂sEjd denotes

the estimate ofV̂sEjd.
Suppose we axe interested in inferring from the distribu-
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fsxd =
1

Zt

exph− Hsxd/tj,x P x,

where Zt is the partition function of the distribution, the
phase spacex can be discrete or continuous, and the energy
functionHsxd can also take values in a discrete or continuous
space. LetTs·→ ·d denote a proposal distribution which is
not necessarily symmetric andcsxd denote a general non-
negative function defined onx with excsxddx,`. Thecsxd
has the freedom of choice; for example, for continuous sys-
tems we can setcsxd=exph−Hsxd / tj with tùt, and for dis-
crete systems(with a finite number of states) we can set
csxd;1 for simplicity. We will return to this point later for
more discussion on the choice ofcsxd. Suppose that the
phase space is partitioned intom disjoint subregions accord-
ing to some criterion chosen by the user—for example, the
energy functionHsxd. With a slight abuse of notation, we
index the subregions byE1, . . . ,Em. For example, if the
phase space is partitioned according to the energy function,
we may index the subregions in an ascending order of en-
ergy; that is, for any xPEi and yPEi+1, we have
Hsxd,Hsyd. Let gsEid denote the weight associated with the
subregionEi for i =1, . . . ,m. The gsEid’s are determined by
our setting, as explained below. The generalized
1/k-ensemble algorithm is described as follows.

The simulation proceeds in several stages. Letĝss,kdsEid
denote the estimate ofgsEid at the kth iteration of thesth
stage of the simulation. In the first stagess=1d, the simula-
tion starts with the initial estimatesĝs0,0dsEid= i, for i
=1, . . . ,m, and a random samplex0, and then iterates as fol-
lows sk=0d.

(a) Propose a new configurationx* in the neighbor-
hood ofxk according to a prespecified proposal distribution
Ts·→ ·d.

(b) Acceptx* with probability

minH ĝss,kdsEIxk
d

ĝss,kdsEIx*
d

csx* d
csxkd

Tsx * → xkd
Tsxk → x* d

,1J , s1d

whereIz denotes the index of the subregion where
z

belongs to. If it is accepted, set

xk+1 = x * ,

ĝss,k+1dsEIxk+1
d = ĝss,kdsEIxk+1

ds1 + dsd,

and

ĝss,k+1dsEIxk+1+i
d

= ĝss,kdsEIxk+1+i
d + dsĝ

ss,kdsEIxk+1
d

for i = 1, . . . ,m− Ixk+1
.

If it is rejected, set

xk+1 = xk,ĝ
ss,k+1dsEIxk

d = ĝss,kdsEIxk
ds1 + dsd,

and

ĝss,k+1dsEIxk
+id = ĝss,kdsEIxk

+id + dsĝ
ss,kdsEIxk

d

for i = 1, . . . ,m− Ixk
.

The algorithm iterates until a stable histogram has been
produced in the space of subregions. A histogram is said
stable if its shape will not change much with more samples.
Once the histogram is stable, we will reset the histogram,
reduce the modification factords to a smaller value,s←s
+1, and restart the simulation. Thed1 is usually set to a large
number—for example, 1 or 2—which allows us to reach all
subregions very quickly even for a large system. In the fol-
lowing stages, it will be reduced monotone in a function like
ds+1=gds with g,1. The algorithm will run untilds has been
reduced to a very small value—for example, less than 10−8.

As ds→0 and a stable histogram has been produced in the
space of subregions(k is large), we have

ĝss,kdsEid → gsEid

= cE
Uj=1

i Ej

csxddx

= cSgsEi−1d +E
Ei

csxddxD , s2d

for i =1, . . . ,m, where c can be determined by putting an
additional constraint ongsEid’s; for example, one ofgsEid’s
is equal to a known number. A rigorous proof for the con-
vergence of Eq.(2) is presented in the Appendix. Intuitively,
the convergence can be argued as follows. The self-adjusting
nature of the 1/k-ensemble move will drive it to overcome
any barrier of the energy landscape and jump randomly be-
tween subregions(like a random walk with more weight to-
ward low-index subregions). The visiting frequency to each
subregion is proportional to

E
Ei

csxddx

gsEid
, i = 1, . . . ,m. s3d

By the uniqueness of thes stationary distribution of a Markov
chain (under regularity conditions), we know, asd=0, Eq.
(2) is the only solution forĝsEid to converge to so that the
simulation will, result in a random walk with the visiting
frequency to each subregion being proportional to Eq.(3).
Hence, asd→0 and a stable histogram is produced, the ra-
tios of gsEid’s will be estimated correctly.

TABLE I. The mass function of the 10-state distribution.

x 1 2 3 4 5 6 7 8 9 10

fsxd 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.15 0.15 0.2
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For discrete systems, if we setcsxd;1, the algorithm
reduces to the original 1/k-ensemble algorithm. For continu-
ous systems, we usually setcsxd=exph−Hsxd / tj with t.0.
In the limit case t→`, where each samplex is almost
equally weighted, the algorithm will work like for a discrete
system. We note that with an appropriate choice ofcsxd,
many of the thermodynamic quantities can be calculated by
runs of the generalized 1/k-ensemble algorithm. For ex-
ample, if we setcsxd=exph−Hsxd /tj, the free energy of the

system can be estimated byF̂=−t lnĝsEmd, and if we set
csxd=Hsxdexph−Hsxd /tj [assumingHsxd.0], the internal
energy can then be estimated byĝsEmd. The information en-
tropy and heat capacity can also be calculated similarly.

We also note that in the generalized 1/k-ensemble algo-
rithm, if we set

ĝss,k+1dsEIxk+1
+id = ĝss,kdsEIxk+1

+id

for i = 1, . . . ,m− Ixk+1

whenx* is accepted and set

ĝss,k+1dsEIxk
+id = ĝss,kdsEIxk

+id

for i = 1, . . . ,m− Ixk

whenx* is rejected, the algorithm turns out to be a general-
ized version of the Wang-Landau algorithm.

III. ILLUSTRATIVE EXAMPLE

We use this simple example to demonstrate the validity of
the generalized 1/k-ensemble algorithm. The distribution
consists of ten states with mass values as shown in Table I.

We chooseT to be an asymmetric stochastic matrix

T =1
0.379 0.009 0.059 0.225 0.015 0.078 0.038 0.059 0.060 0.078

0.302 0.122 0.109 0.067 0.161 0.004 0.034 0.055 0.067 0.079

0.016 0.114 0.147 0.030 0.026 0.092 0.129 0.217 0.121 0.108

0.053 0.088 0.175 0.035 0.105 0.123 0.105 0.088 0.140 0.088

0.046 0.024 0.029 0.009 0.026 0.080 0.125 0.067 0.322 0.272

0.107 0.088 0.104 0.130 0.077 0.104 0.102 0.120 0.065 0.103

0.143 0.143 0.143 0.000 0.071 0.143 0.000 0.143 0.143 0.071

0.060 0.075 0.086 0.055 0.123 0.092 0.142 0.099 0.115 0.153

0.173 0.085 0.005 0.183 0.007 0.081 0.040 0.155 0.163 0.108

0.068 0.058 0.125 0.096 0.115 0.135 0.096 0.096 0.096 0.115

2 ,

with the limiting distribution (0.145,0.076, 0.095,
0.096,0.069, 0.094, 0.08, 0.11, 0.122, 0.113). We first parti-
tion the phase space according to the mass function as fol-
lows: E1=hx: fsxd=0.2j, E2=hx: fsxd=0.15j, E3=hx: fsxd
=0.1j, andE4=hx: fsxd=0.05j. In the first simulation, we set
csxd;1, d1=1, the refine functionds+1=0.5ds, n1=500, and
ns+1=1.5ns, wherens denotes the number of iterations used
in the sth-stage simulation. The simulation proceeds till
d,2.0e−6. Here the numbers of iterations are prespecified,
as this example is very simple, and we can make sure that a
stable histogram is able to be produced within the prespeci-
fied number of iterations. The numerical results were sum-
marized in Table II. Note that in the simulation we put the
constraintgsE4d= ĝsE4d=10 such that the otherĝsEid’s can be
determined uniquely. The results show thatksEd, the cumu-
lative density of states, has been estimated accurately by the

generalized 1/k-ensemble algorithm. The consistency of the
theoretical and observed visiting frequencies to each subre-
gion shows that our implementation has achieved the goal of
the original 1/k-ensemble algorithm. In the second simula-
tion, we setcsxd= fsxd and keep the other setting the same as
that of the first simulation. The numerical results were also
summarized in Table II. They again show that the general-
ized ensemble algorithm can estimate the designedgsEid’s
accurately.

IV. NEURAL NETWORK TRAINING

Multilayer perceptronssMLPd [14] are perhaps the most
well known type of feedforward neural networks. Figure 1
illustrates a MLP with structure 4-3-1(four input units, three

GENERALIZED 1/k-ENSEMBLE ALGORITHM PHYSICAL REVIEW E69, 066701(2004)

066701-3



hidden units and one output unit). In a MLP, each unit inde-
pendently processes the values fed to it by the units in the
preceding layer and then presents its output to the units in the
next layer for further processing, and the output unit pro-
duces an approximate to the target value. Given a group of
connection weightssa ,bd, the MLP approximator can be
written as

f̂sxkua,bd = wXa0 + o
i=1

M

aiwSbi0 + o
j=1

p

bi j xkjDC ,

where p denotes the number of input units,M denotes the
number of hidden units,xk=sxk1, . . . ,xkpd is the kth input
pattern, andai’s and bi j ’s are the connection weights from
the hidden units to the output unit and from the input units to
the hidden units, respectively. Here the bias unit is treated as
a special unit with a constant input—say, 1. Thew is called
an activation function. It is set to the sigmoid function in this

article. To force f̂ to converge to the target function, it is
usually to minimize the objective or energy function

Hsa,bd = o
k=1

N

f f̂sxkua,bd − ykg2, s4d

whereyk denotes the target output corresponding to the input
patternxk. So the problem of MLP training can be stated to

choose the connection weights such that the functionHs·d is
minimized.

The MLP training has been a benchmark problem of op-
timization due to its high nonlinearity and high dimensional-
ity. In this article, we compare the Wang-Landau algorithm
and the 1/k-ensemble algorithm MLP training for a simpli-
fied two spiral example[15], where two spirals are inter-
twined and our task is to learn to tell each of the 120 training
points (shown in Fig. 2) belongs to which spiral. We used a
MLP which contains 20 hidden units and 81 connections to
accomplish this task. Here we are only interested in the per-
formance comparison for the two algorithms; the MLP used
may not be of minimum structure. In the 1/k-ensemble algo-
rithm, the phase space is partitioned into 600 subregions with
equal energy difference; that is, we set

E1 = ha,b:Hsa,bd ø 0.1j,

E2 = ha,b:0.1, Hsa,bd ø 0.2j, . . . ,

and

E600= ha,b:Hsa,bd . 59.9j.

In the first experiment, we setcsa ,bd=exph−Hsa ,bd / tj
with t=1. The simulation starts withd1=e−1 and proceeds
unti1 a configuration withHsa ,bdø0.1 has been found ords

has been less than 10−5. We set the refine functionds+1

TABLE II. Computational results for the illustrative example. ThegsEid and ĝsEid denote the true and

estimated weights of the subregionEi, respectively. TheP1/ksEid and P̂1/ksEid denote the theoretical and
observed(at the last stage) visiting frequencies to the subregionEi, respectively.

Run 1 Run 2

gsEid ĝsEid P1/ksEid P̂1/ksEid gsEid ĝsEid P1/ksEid P̂1/ksEid

E1 1 0.994 0.3896 0.3874 0.2 0.201 0.4598 0.4611

E2 3 3.000 0.2597 0.2608 0.5 0.501 0.2759 0.2752

E3 6 6.000 0.1948 0.1952 0.8 0.799 0.1724 0.1722

E4 10 10.000 0.1558 0.1567 1.0 1.000 0.0915 0.0915

FIG. 1. The structure of a MLP with four input units, three
hidden units, and one output unit. The arrows show the direction of
data feeding, where each unit independently processes the values
fed to it by the units in the preceding layer and then presents its
output to the units in the next layer for further processing.

FIG. 2. The learned classification boundary in one run of the
1/k-ensemble algorithm. The training data are shown as the black
and white points, which belong to two different spirals,
respectively.
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=Î1+ds−1, n1=10 000, andns+1=1.1ns. The algorithm was
run for 20 times independently. Figure 2 shows the learned
classification boundary in one run. It is easy to see that the
MLP has separated the two spirals successfully. The other
results were summarized in Fig. 3(a). The algorithm located
the zero training error region in 17 out of 20 runs. In the
second experiment, we setcsa ,bd=exph−Hsa ,bd / tj with t
=100, but kept all other settings unchanged. The algorithm
was also run for 20 times independently. The results are sum-
marized in Fig. 3(b). The algorithm located the zero training
error region in all 20 runs.

The performance of the generalized 1/k-ensemble algo-
rithm at different temperaturest=1 and t=100 implies that
tempering the target distribution is still a useful idea for the
generalized 1/k-ensemble algorithm in function optimiza-
tion, although it is not as critical as for the canonical meth-
ods. The reason can be explained as follows. Tempering flat-
tens the target distribution and tends to equalize the
quantitieseEi

csxddx , i =1, . . . ,m. Thus the visiting frequen-
cies to the high-energy regions will increase in general com-
pared to the corresponding frequencies in the nontempering
case.(The quantityeEi

exph−Hsxd /tjdx usually takes large
values in low-energy regions.) This will help the system
overcome high-energy barriers to transit to another low-
energy region. So the technique of tempering is able to im-

prove the performance of the generalized 1/k-ensemble al-
gorithm in function optimization, although the improvement
may be marginal. This is consistent with our numerical re-
sults. Even if the temperature ratiot /t is as large as 100, the
improvement is still not very significant. In practice, if our
target is just function optimization, a large value oft is sug-
gested to facilitate the space search of the algorithm.

For comparison, we also applied the generalized Wang-
Landau algorithm to this example. The algorithm was run
with the same setting as that of the 1/k-ensemble algorithm.
So at each stage, the two algorithms will have the same
number of energy evaluations. The results witht=1 and t
=100 are shown in Figs. 3(c) and 3(d), respectively. They
indicate that the algorithm only located the zero training er-
ror region in 3 out of 20 runs att=1 and only succeeded in 6
out of 20 runs att=100.

The comparison shows that the generalized 1/k-ensemble
algorithm outperforms the generalized Wang-Landau algo-
rithm in function optimization. This also implies that the
generalized 1/k-ensemble algorithm will be superior to the
generalized Wang-Landau algorithm in calculating the ther-
modynamic quantities of a system. We note that the less
satisfactory performance of the generalized Wang-Landau al-
gorithm in this example is partially due to a large number of
subregions we partitioned. The algorithm wastes too much
time in sampling from high-energy regions. To alleviate this

FIG. 3. Comparison of the 1/k-ensemble and Wang-Landau algorithms withcsa ,bd=exph−Hsa ,bd / tj. The dots represents the training
errors at different stages. Plots(a) and (b) show the convergence paths of the generalized 1/k-ensemble algorithm witht=1 andt=100,
respectively. Plots(c) and (d) show the convergence paths of the generalized Wang-Landau algorithm witht=1 andt=100, respectively.
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kind of time wasting, Wang and Landau[12] suggest that
sampling be done(one energy) region by(one energy) region
(the region used here should be coarser than that used in the
above simulation). For example, we can run the generalized
Wang-Landau algorithm 15 times for this example, where
each run focuses on a different energy region; say, in theith
run the region focused ishsa ,bd :4i −5øHsa ,bdø4i +1j for
i =1, . . . ,15. Note that an appropriate overlap between neigh-
boring regions is necessary for the Wang-Landau algorithm.
But one problem arises immediately from the region-by-
region sampling: if some energy region contains several
well-separated areas, sampling from all these separated areas
will pose a great challenge for the generalized Wang-Landau
algorithm. However, the generalized 1/k-ensemble algorithm
avoids this problem successfully, as it tries to sample from
the entire phase space, and each area of the phase space can
be entered through its neighboring areas.

APPENDIX

Suppose the sample space is partitioned intom subre-
gions,E1, . . . ,Em. Let gsEid denote the weight put onEi by
our setting, andĝss,kdsEid denote the estimate ofgsEid at the
kth iteration of thesth stage. For simplicity, in the following
we will denotegsEid by gi and denoteĝss,kdsEid by ĝi

skd by
omitting the superscripts in the proof, as the calculation is

only for one stage. Without loss of generality, we assume that
S=Si=1

m gi is known, Si=1
m ĝi

skd=S, and the sample of the next
iterationxk+1PEj. To makeSi=1

m ĝi
sk+1d=S, we set

ĝi
sk+1d =5

ĝi
skd

1 + t j

for i = 1, . . . ,j − 1,

ĝi
skd + dsĝj

skd

1 + t j

for i = j , . . . ,m,

sA1d

where t j =e jĝj
skd /S, and e j =sm− j +1dds The weight adjust-

ment by the multiplication factors1+t jd will not change the
simulation process. Givenĝi

skd , i =1, . . . ,m, the acceptance
of the move is guided by Eq.(1), so

Psxk+1 P Ejd =
1

Ak

eEj
csxddx

ĝj
skd

, j = 1, . . . ,m,

whereAk=S j=1
m eEj

csxddx/ ĝj
skd is the normalizing constant of

this distribution. Lett0=min1ø jømt j,andDk=Si=1
m sĝi

skd−gid2.
To show part(i), we have the following calculation:

EsuDk+1uĝi
skd, i = 1, . . . ,md = o

j=1

m Ho
i=1

j−1 S ĝi
skd

1 + t j

− giD2

+ o
i=j

m S ĝi
skd + dsĝj

skd

1 + t j

− giD2JPsxk+1 P Ejd

ø
1

s1 + t0d2
o
j=1

m Ho
i=1

j−1

sĝj
skd − gid2 + o

i=1

j−1

t j
2gi

2 − 2o
i=1

j−1

t jgisĝi
skd − gid + o

i=j

m

sĝj
skd − gid2

+ o
i=j

m

sdsĝj
skd − t jgid2 + 2o

i=j

m

sĝj
skd − gidsdsĝj

skd − t jgidJPsxk+1 P Ejd

ø
Dk

s1 + t0d2
+ o

i=1

m

gi
2o

j=1

m

t j
2Psxk+1 P Ejd − 2o

i=1

m

gisĝj
skd − gido

j=1

m

t jPsxk+1 P Ejd

+ ds
2o

j=1

m

o
i=j

m

sĝj
skdd2Psxk+1 P Ejd + 2dso

j=1

m

o
i=j

m

sĝi
skd − gidĝj

skdPsxk+1 P Ejd. sA2d

Note thatt j is in the order ofOsdsd, break

o
j=1

m

t jPsxk+1 P Ejd =
1

AkS
o
j=1

m

e jeEj
csxddx=

da

AkS
o
j=1

m

o
i=j

m

eEj
csxddx

=
ds

AkS
o
i=1

m

o
j=1

i

eEj
csxd =

ds

AkS
o
i=1

m

gi =
ds

AkS
, sA3d
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and

o
j=1

m

o
i=j

m

sĝj
skd − gidĝj

skdPsxk+1 P Ejd

= o
i=1

m

o
j=1

i

sĝj
skd − gid

eEj
csxddx

Ak

=
1

Ak
o
i=1

m

gisĝi
skd − gid. sA4d

Hence, the third and fifth terms of the last inequality of Eq.
(A2) cancel each other, and thus,

EsDk+1uĝj
skd, i = 1, . . . ,md ø

1

s1 + t0d2 Dk + Osds
2d.

It implies that

EsDk+1d ø
1

s1 + t0d2 EsDkd + Osds
2d

and

EsDkd → 0 ask → ` andds → 0.

SinceDk.0, we know

Dk → 0 in probability sA5d

and then

ĝss,kdsEid → gsEid in probability

asds→0 andk→`.
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