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We generalize the kfensemble algorithm so that it can be used for both discrete and continuous systems,
and show that the generalization is correct numerically and mathematically. We also compare the efficiencies
of the generalized ktensemble algorithm and the generalized Wang-Landau algorithm through a neural
network example. The numerical results favor to the generaliz&eetigemble algorithm.
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I. INTRODUCTION zation is correct numerically and mathematically. We also

, ) . demonstrate the efficiency of the generalize#-&nsemble
In practice, we often need to deal with the systems W'thalgorithm through a neural network example.
rough energy landscapes—for example, peptides, proteins,

neural networks, traveling salesman problems, spin glasses,

etc. The energy landscapes of these systems are characterized 1l. GENERALIZED 1/ k-ENSEMBLE ALGORITHM

by a multitude of local minima separated by high-energy .

barriers. At low temperatures, canonical Monte Carlo meth- L€t (E) denote the density of states of a system. The
ods, such as the Metropolis-Hastings algoritfith and the 1]k—ensemb|e algorithm seeks to sample from the distribu-
Gibbs samplef2], tend to get trapped in one of these local tion

minima. Hence only small parts of the phase space are

sampled(in a finite number of simulation stepand thermo- lE) o 1

dynamical quantities cannot be estimated accurately. To alle- 1k k(E)’

viate this difficulty, generalized ensemble methods have been

proposed, such as simulated tempefidg], parallel temper-  whereK(E)=2g -Q(E')—that is, the number of states with
ing [5,6], the multicanonical algorithnji7,8], entropic sam- energies up to and includindge. Hence a run of the
pling [9], the 1 k-ensemble algorithrfil0], the flat histogram  1/k-ensemble algorithm will produce the following distribu-
algorithm[11], and the Wang-Landau algorithfd2]. They tion of energy:

all allow a much better sampling of the phase space than the

canonical methods. Simulated tempering and parallel tem- Q(E) dInk(E)

pering share the idea that the energy landscape can be flat- P1(E) = @ = T 4E

tened by raising the temperature of the system and, hence,

e s Space can b el oXplre at 2 G0 PSS co i mary physcl systeke) s ey inceasing
y ' 9 nction, we have Ik(E)=In Q(E), which is called the

rithms [7—12 are histogram based and share the idea that . )
ermodynamic entropy of the system. For a wide range of

random walk in the energy space can escape from any ener d ) : .
alues of energy, the simulation will approximately produce

barrier. Among the histogram-based algorithms, the multica- ¢ d Ik in the th d : S
nonical algorithm and entropic sampling are mathematicallf‘ ree random walk in the thermodynamic entropy space. S0

identical as shown by Beret al. [13], the flat histogram and the simulation is able to overcome any barrier of the energy

: : - dscape.
Wang-Landau algorithms can be regarded as different |mplelf’In . . :
mentations of the multicanonical algorithm, and the Although the algorithm seems very attractike) is un-

1/k-ensemble algorithm is only slightly different from the XnoWn, and it has to be estimated prior to the simulation. An
multicanonical algorithm. The multicanonical algorithm re- iterative procedure for estimating(E) was given in Ref.
sults in a free random walk, while the K-nsemble algo- [10], but the_ complexity of the procedure has limited the use
rithm results in a random walk with more weight toward ©f the algorithm. Recently, Wang and LanddL2] proposed
low-energy regions. In this sense, Hesselbo and Stinchcom[¥! innovative implementation for the multicanonical algo-

[10] claimed that the 14-ensemble algorithm is superior to fithm. Motivated by the Wang-Landau algorithm have the
the multicanonical algorithm. following on-line implementation for the kfensemble algo-

We note that these histogram-based algorithms are all gdithm. We state that our implementation is online, in contrast
veloped for discrete systems. In this article, we generaliz&® the off-line implementation, which first estimat@sg;)'s

the 1k-ensemble algorithm so that it can be used for botHPy the flat histogram or Wang-Landau algorithm, and then
discrete and continuous systems, and show that the generatistimate(E;) by k(Ei)—EEngiQ(Ej), where()(E;) denotes

the estimate ofl(Ej).
Suppose we axe interested in inferring from the distribu-
*Electronic address: fliang@stat.tamu.edu tion
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TABLE |I. The mass function of the 10-state distribution.

1
f(x) = Z—exp{— H(x)/7},x € x,
T X 1 2 3 4 5 6 7 8 9 10

where Z, is the partition function of the distribution, the t) 005 005 005 005 01 01 01 015 015 0.2
phase spacg can be discrete or continuous, and the energy
functionH(x) can also take values in a discrete or continuous

space. LetT(-— ) denote a proposal distribution which is et = X 0K D(E, ) = §SR(E, (1 + 6y,
not necessarily symmetric anflx) denote a general non- *e X«
negative function defined op with [, #(x)dx <e. The y(x)

has the freedom of choice; for example, for continuous sys-
tems we can sef(x) =exp{—-H(x)/t} with t= 7, and for dis-
crete systemgwith a finite number of stat¢swe can set

GU(E, 1) = GN(E, ) + 0GN(E, )

gb(x)zl_ for simplicity. We WiII.return to this point later for for i=1,...m-1,.
more discussion on the choice @fx). Suppose that the k
phase space is partitioned imodisjoint subregions accord- The algorithm iterates until a stable histogram has been

ing to some criterion chosen by the user—for example, th@roduced in the space of subregions. A histogram is said
energy functionH(x). With a slight abuse of notation, we stable if its shape will not change much with more samples.
index the subregions b¥,, ... ,E, For example, if the Once the histogram is stable, we will reset the histogram,
phase space is partitioned according to the energy functiomgduce the modification factof, to a smaller values«—s

we may index the subregions in an ascending order of ent1, and restart the simulation. Tlégis usually set to a large
ergy; that is, for anyxeE, and yeE.,;, we have number—for example, 1 or 2—which allows us to reach all
H(x) <H(y). Let g(E;) denote the weight associated with the subregions very quickly even for a large system. In the fol-
subregionE; for i=1,... m. Theg(E))’s are determined by lowing stages, it will be reduced monotone in a function like
our setting, as explained below. The generalizedds1=7YdsWith y<<1. The algorithm will run untils; has been

1/k-ensemble a|g0rithm is described as follows. reduced to a very small value—for example, less tha‘ﬁ’lO
The simulation proceeds in several stages. §&¥(E,) As 65— 0 and a stable histogram has been produced in the
denote the estimate @f(E;) at thekth iteration of thesth ~ SPace of subregion is large, we have
stage of the simulation. In the first stafe=1), the simula- A (5K
tion starts with the initial estimate§®9(E)=i, for i 9> (E) — 9(E)
=1,... m, and a random samplg, and then iterates as fol-
lows (k=0). = cf i P(x)dx
Uj=18

(a) Propose a new configuratiod in the neighbor-
hood ofx, according to a prespecified proposal distribution
T(-— ). =c|l9(Ei-) + | ¢(x)dx |, 2
(b) Acceptx* with probability 5
~ (K for i=1,... m, wherec can be determined by putting an
g (Elxk) PXF)T(X* — %) additional constraint og(E;)’s; for example, one of(E;)’s
GN(E, ) tx) Toxe—x*) """ D) is equal to a known number. A rigorous proof for the con-
xe k K vergence of Eq(2) is presented in the Appendix. Intuitively,
the convergence can be argued as follows. The self-adjusting
nature of the 1k-ensemble move will drive it to overcome

wherel, denotes the index of the subregion where

- z any barrier of the energy landscape and jump randomly be-
belongs to. If it is accepted, set tween subregiondike a random walk with more weight to-
. ward low-index subregionsThe visiting frequency to each
Xe1 = X7, subregion is proportional to
A(sk+1) — A(sk)
g (Elxm) 9 (Elxk+1)(1 ¥ 55)’ JE lﬁ(X)dX
——, i=1,...m. 3
and 9(E) m 3)
ge*DE, ) By the uniqueness of thes stationary distribution of a Markov
Mot chain (under regularity conditionswe know, asé=0, Eq.
=g®9E, )+ 55@(S~")(E,x ) (2) is the only solution for§(E;) to converge to so that the
' ket et simulation will, result in a random walk with the visiting
for i=1,...m- Iy frequency to each subregion being proportional to €.
Hence, ass— 0 and a stable histogram is produced, the ra-
If it is rejected, set tios of g(E;)’s will be estimated correctly.
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For discrete systems, if we s@i(x)=1, the algorithm whenx* is accepted and set
reduces to the original kfensemble algorithm. For continu-
ous systems, we usually se¢tx)=exg-H(x)/t} with t>0.
In the limit caset—«, where each sampl& is almost
equally weighted, the algorithm will work like for a discrete

system. We note that with an appropriate choiceysx), G UE ) =GH(E W)
many of the thermodynamic quantities can be calculated by “ . “
runs of the generalized kiensemble algorithm. For ex- for i=1,... m-=ly

ample, if we set/(x)=exg—H(x)/ 7}, the free energy of the

system can be estimated lﬁn—rln@(Em), and if we set
P(x)=H(x)exp{—H(x)/ 7} [assumingH(x)>0], the internal
energy can then be estimated §E,,). The information en-
tropy and heat capacity can also be calculated similarly.

We also note that in the generalizedkignsemble algo-
rithm, if we set

whenx* is rejected, the algorithm turns out to be a general-
ized version of the Wang-Landau algorithm.

. ILLUSTRATIVE EXAMPLE

We use this simple example to demonstrate the validity of

A(sk+1 — AlsK . . L .
g )(Elxmﬂ) =g¢ )(EIXMH) the generalized krensemble algorithm. The distribution
¢ . consists of ten states with mass values as shown in Table I.
or i=1...m=ly, We chooseT to be an asymmetric stochastic matrix

0.379 0.009 0.059 0.225 0.015 0.078 0.038 0.059 0.060
0.302 0.122 0.109 0.067 0.161 0.004 0.034 0.055 0.067
0.016 0.114 0.147 0.030 0.026 0.092 0.129 0.217 0.121
0.053 0.088 0.175 0.035 0.105 0.123 0.105 0.088 0.140
0.046 0.024 0.029 0.009 0.026 0.080 0.125 0.067 0.322
0.107 0.088 0.104 0.130 0.077 0.104 0.102 0.120 0.065
0.143 0.143 0.143 0.000 0.071 0.143 0.000 0.143 0.143
0.060 0.075 0.086 0.055 0.123 0.092 0.142 0.099 0.115
0.173 0.085 0.005 0.183 0.007 0.081 0.040 0.155 0.163
0.068 0.058 0.125 0.096 0.115 0.135 0.096 0.096 0.096

with the limiting distribution (0.145,0.076, 0.095, generalized 1{-ensemble algorithm. The consistency of the
0.096,0.069, 0.094, 0.08, 0.11, 0.122, 0)1Me first parti-  theoretical and observed visiting frequencies to each subre-
tion the phase space according to the mass function as fofion shows that our implementation has achieved the goal of
lows: E;={x:f(x)=0.2, E,={x:f(x)=0.18, Ez={x:f(X)  the original 1k-ensemble algorithm. In the second simula-
=0.1}, andE,={x:f(x)=0.03. In the first simulation, we set tion, we set/(x)=f(x) and keep the other setting the same as
$(x)=1, 6,=1, the refine functionds,;=0.53, n; =500, and  that of the first simulation. The numerical results were also
Ns+1=1.5ns, whereng denotes the number of iterations used summarized in Table IIl. They again show that the general-

in the Sth—stage simulation. The simulation proceeds till ized ensemble a|gorithm can estimate the desigg'(ﬁ'ij)’s
6<2.0e-6. Here the numbers of iterations are presDECiﬁEdaccurately.

as this example is very simple, and we can make sure that a

stable histogram is able to be produced within the prespeci-

fied number of iterations. The numerical results were sum-

marized in Table Il. Note that in the simulation we put the

constraing(E,;) =g(E,) =10 such that the oth§(E;)'s can be Multilayer perceptron§MLP) [14] are perhaps the most
determined uniquely. The results show tkéE), the cumu-  well known type of feedforward neural networks. Figure 1
lative density of states, has been estimated accurately by thiustrates a MLP with structure 4-3{four input units, three

IV. NEURAL NETWORK TRAINING
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TABLE Il. Computational results for the illustrative example. Téi&;) and §(E;) denote the true and

estimated weights of the subregi@h, respectively. TheP,(E;) and Isl/k(Ei) denote the theoretical and
observedat the last stagevisiting frequencies to the subregid, respectively.

Run 1 Run 2

9(Ej) 9(g) P1x(Ej) Pu(E) a(E) 9(E) =) P1(E)

E; 1 0.994 0.3896 0.3874 0.2 0.201 0.4598 0.4611
E, 3 3.000 0.2597 0.2608 0.5 0.501 0.2759 0.2752
Es 6 6.000 0.1948 0.1952 0.8 0.799 0.1724 0.1722
E4 10 10.000 0.1558 0.1567 1.0 1.000 0.0915 0.0915

hidden units and one output unitn a MLP, each unit inde- choose the connection weights such that the fundton is
pendently processes the values fed to it by the units in theninimized.

preceding layer and then presents its output to the units in the The MLP training has been a benchmark problem of op-
next layer for further processing, and the output unit protimization due to its high nonlinearity and high dimensional-
duces an approximate to the target value. Given a group qfy. In this article, we compare the Wang-Landau algorithm
connection weightde, ), the MLP approximator can be and the 1k-ensemble algorithm MLP training for a simpli-

written as fied two spiral examplg15], where two spirals are inter-
M p twined and our task is to learn to tell each of the 120 training

f(xk|a,,8) = Qo(ao + aﬁP(ﬂio + Bijxkj))’ points(shown in Fig. 2 belongs to which spiral. We used a
i=1 j=1 MLP which contains 20 hidden units and 81 connections to

accomplish this task. Here we are only interested in the per-
. L . ; formance comparison for the two algorithms; the MLP used
number of h"?de“ un"fSXk_(X‘;]l’ - Xip) IS the k_thh'nprt may not be of minimum structure. In thekkénsemble algo-

pattern, andx,’s and §;'s are the connection weights from rithm, the phase space is partitioned into 600 subregions with

the hidden units to the output unit and from the input units toequal energy difference; that is, we set

the hidden units, respectively. Here the bias unit is treated as

where p denotes the number of input units] denotes the

a special unit with a constant input—say, 1. Thés called E;={a,B:H(a,B) < 0.1,
an activation function. It is set to the sigmoid function in this
article. To forcef to converge to the target function, it is E,={a,3:0.1<H(a,) <0.2, ...,
usually to minimize the objective or energy function
N and
H(a B) = X, [f(xe. B) = Vi, 4
(a 18) g-[ ( k|aﬁ) yk] ( ) EGOO:{a!B:H(anB)>59'9'

wherey, denotes the target output corresponding to the inputn the first experiment, we se#(a,B)=exp-H(«,B)/t}
patternx,. So the problem of MLP training can be stated towith t=1. The simulation starts witd;=e-1 and proceeds
until a configuration withd(«, 8) <0.1 has been found ai;

_ has been less than 70 We set the refine functiom,,,
Output Unit

Hidden Units

Bias Unit

Input Units

FIG. 1. The structure of a MLP with four input units, three
hidden units, and one output unit. The arrows show the direction of FIG. 2. The learned classification boundary in one run of the
data feeding, where each unit independently processes the valuggk-ensemble algorithm. The training data are shown as the black
fed to it by the units in the preceding layer and then presents iteand white points, which belong to two different spirals,
output to the units in the next layer for further processing. respectively.
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FIG. 3. Comparison of the kfensemble and Wang-Landau algorithms wiile, 8) =expg-H(a, 8)/t}. The dots represents the training
errors at different stages. Plotg) and (b) show the convergence paths of the generalizddehsemble algorithm withh=1 andt=100,
respectively. Plotgc) and(d) show the convergence paths of the generalized Wang-Landau algorithn=gitandt=100, respectively.

:\s“lTﬁs—l, n,;=10 000, anchg,;=1.1n,. The algorithm was prove the performance of the generalizek-ehsemble al-
run for 20 times independently. Figure 2 shows the learneg@orithm in function optimization, although the improvement
classification boundary in one run. It is easy to see that th&ay be marginal. This is consistent with our numerical re-
MLP has separated the two spirals successfully. The othegults. Even if the temperature ratiér is as large as 100, the
results were summarized in Fig(@3. The algorithm located improvement is still not very significant. In practice, if our
the zero training error region in 17 out of 20 runs. In thetarget is just function optimization, a large valueta$ sug-
second experiment, we séta, 8)=exp-H(a, B)/t} with t gested to faC|I|_tate the space search of the algorl_thm.

=100, but kept all other settings unchanged. The algorithm FOr comparison, we also applied the generalized Wang-

was also run for 20 times independently. The results are su w?[r;]dt?]lé g‘g’rﬂgtzgﬂ% tglsstr?;ta(r)?%eék;rdmesearlr?k?lgtglrgo\piﬁsmwn
marized in Fig. &). The algorithm located the zero training So at each stage, the two algorithms will have the séme
error region in all 20 runs. '

The performance of the generalizedkignsemble algo- number of energy evaluations. The results withl andt

. . a N =100 are shown in Figs.(8 and 3d), respectively. They
rithm at different temperatures=1 andt=100 implies that  jygicate that the algorithm only located the zero training er-

tempering the target distribution is still a useful idea for the,q, region in 3 out of 20 runs at1 and only succeeded in 6
generalized 1K-ensemble algorithm in function optimiza- oyt of 20 runs at=100.

tion, although it is not as critical as for the canonical meth-  The comparison shows that the generalizek-drisemble
ods. The reason can be explained as follows. Tempering flagigorithm outperforms the generalized Wang-Landau algo-
tens the target distribution and tends to equalize thithm in function optimization. This also implies that the
quantities[g y(x)dx,i=1, ... m. Thus the visiting frequen- generalized 1¥-ensemble algorithm will be superior to the
cies to the high-energy regions will increase in general comgeneralized Wang-Landau algorithm in calculating the ther-
pared to the corresponding frequencies in the nontemperingiodynamic quantities of a system. We note that the less
case.(The quantity [¢exp{~H(x)/7}dx usually takes large satisfactory performance of the generalized Wang-Landau al-
values in low-energy regionsThis will help the system gorithm in this example is partially due to a large number of
overcome high-energy barriers to transit to another lowsubregions we partitioned. The algorithm wastes too much
energy region. So the technique of tempering is able to imtime in sampling from high-energy regions. To alleviate this
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kind of time wasting, Wang and Landdd2] suggest that only for one stage. Wlthout loss of generality, we assume that
sampling be don¢one energyregion by(one energyregion  S=3T,g; is known, z[f‘lg =S, and the sample of the next
(the region used here should be coarser than that used in therationx,, , E;. To makeX" 1g,<k+l)—3 we set

above simulation For example, we can run the generalized

Wang-Landau algorithm 15 times for this example, where

each run focuses on a different energy region; say, iritthe [ w0

run the region focused {$«, 8) : 4i —5<H(a, B) <4i+1} for G fori=1,...j-1,
i=1,...,15. Note that an appropriate overlap between neigh- ~ (D) 1+

boring regions is necessary for the Wang-Landau algorithm. g =) a® + 5.0 (A1)
But one problem arises immediately from the region-by- 9 i for i = j m

region sampling: if some energy region contains several | 147, B

well-separated areas, sampling from all these separated areas
will pose a great challenge for the generalized Wang-Landau
algorithm. However, the generalizedkténsemble algorithm where 7,= ejgjk)ls, and ¢;=(m-j+1)3, The weight adjust-

avoids this problem successfully, as it tries to sample from
the entire phase space, and each area of the phase space E‘a‘?{“ by the multlphcatlon faCtoﬁJrTJ) will not change the

be entered through its neighboring areas. simulation process. leegI ,i=1,... m, the acceptance
of the move is guided by Eq1), so

1 Jg ¢x)dx

APPENDIX P(Xyey € E) "
Ak g]

j=1,...m,
Suppose the sample space is partitioned imaubre-
gions,E4, ... ,E,. Letg(E;) denote the weight put oR; by
our setting, andy¥(E;) denote the estimate @fE;) at the ® .
kth iteration of thesth stage. For simplicity, in the following WhereA=3L,[e #(x)dx/gj" is the normalizing constant of
we will denoteg(E;) by g, and denotelS¥(E;) by g(k) this distr|but|on Letro=min;<j<m7,and D=3 1(gfk)—g,)z.
omitting the superscrips in the proof, as the calculatlon is To show part(i), we have the following calculation:

N o6 ’ g + o9 ?
E(Dyald, i=1,... m=2> -g | + E — 0| (PXu1€E)
i=j

i=1 | i=1 1+Tj 1+Tj
1 -1 -1
E 2<g<k>—g)2+279.—ZET,g(g.”—gwE(gJ -g)?
(1+T0) j=1 i=j

m
+ E (08 = 71902+ 22 @9 - g) (6" - r,g.)} P(X1 € E))

i=j i=j

D m
< + 2 gFE #P(Xe1 € Ej) = 22 G0 - )X 7P(Xe1 € Ej)
1+ 7'0)2 =1 j=1 j=1
+ 622 E @)2P(xr1 € Ej) + 26, 2 2 @Y - g)3 P(Xe1 € E)). (A2)
j=1i=j j=1i=j

Note thatz; is in the order ofO(5y), break

m 1 m
gl TiP(X+1 € Ej) = A_S§:: ejij P(X)dx= AKSJEI I}} fE P(x)dx
m 55
AkS.El,zleW) Akslzigi "AS (A3)
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d
" E(Dier) < ——— E(DY + O(&D)

m m 1+ 70)2
2 2 (8- 0)8 P € E)
=1 = and
D g0
=>>@9-9) —J—A E(DY) -0 ask— » andd;— 0.
i=1 j=1 K
1 SinceD, >0, we know
e 2 (@Y - g). (A4)
ki=1 Dy — O in probability (A5)
Hence, the third and fifth terms of the last inequality of Eq.
(A2) cancel each other, and thus, and then
1 N . -
EDwd¥,i=1,.. . m<——D+0(&). gM(E) — g(E;) in probability
(1+70)
It implies that as 6;— 0 andk— <.
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