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Annealing contour Monte Carlo algorithm for structure optimization
in an off-lattice protein model

Faming Liang®
Department of Statistics, Texas A&M University, College Station, Texas 77843-3143
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We present a space annealing version for a contour Monte Carlo algorithm and show that it can be
applied successfully to finding the ground states for an off-lattice protein model. The comparison
shows that the algorithm has made a significant improvement over the pruned-enriched-Rosenbluth
method and the Metropolis Monte Carlo method in finding the ground states for AB models. For all
sequences, the algorithm has renewed the putative ground energy values in the two-dimensional AB
model and set the putative ground energy values in the three-dimensional AB mod@004
American Institute of Physics[DOI: 10.1063/1.1665529

I. INTRODUCTION algorithm very promising for finding the ground states of
proteins.
Predicting the native structure of a protein from its se-
guence is one of the most challenging problems in biophys-
ics. The difficulty of the problem comes from two aspects:!l- MODELS

First, the dimension of the system is usually high. It is in the The AB model consists of only two types of monomers

same order with the number of atoms involved in the systeMa and B. which behave as hydrophobia; & +1) and hy- '
. 1 I

Hence, the phase space of the system is usually huge. Segphjlic (o, = — 1) monomers, respectively. The monomers

ond, the energy landscape of the system is complex. Thgee |inked by rigid bonds of unit length to form linear chains
energy landscape can be characterized by a multitude of '%siding in two- or three-dimensional space.

cal minima separated by high-energy barriers. At low tem-

peratures, conventional Monte Carlo and molecular dynami@- Two-dimensional AB model

simulations tend to get trapped in local minima, rendering  |n the two-dimensional2D) AB model, the shape of
the simulation ineffective. Given the complexity of the prob- N-mer is either specified by the—1 bond vectorss; or by
lem, there has been an increasing interest in understanding—2 bond anglest,,...,0y_;. The energy functiofy:1?

the relevant mechanics of the protein folding process byonsists of two types of contributions: bond angle and
studying simplified models in recent years. For example, th@ ennard-Jones. It can be written as

HP modet treats each amino acid as a point particle and N—2 N—2 N
restricts the model to fold on a reguléquadratic or cubic Hu.o) = V(i) + Vi (T o o 1
lattice. Even for this highly simplified model it is far from (U.o) Z’l o) 2'1 j;rz Ly orop). (D)

trivial to predict the native structure for a given sequefice.
We note that the algorithms proposed for the HP mode

may not be able to extend to an off-lattice protein model.  V,(i)=3(1—u;-Uj,1),

Even if some of them are able to do so, they may not be 1 6

efficient. In fact, in today’s literature there are very few  Via(fij,0i,09)=4[r; == Ca(ai,0o)r;;"].

simple off-lattice models with known lowest-energy statesHereuy; is the unit-length bond vector joining monomnieto

that can be used as benchmarks for efficient algorithms, agonomeri + 1, r;; denotes the distance between mononiers

noted by Hstet al® In this paper we propose the annealing andj, andC,(oy,07) is +1, +1 and -1, respectively, for

contour Monte CarldACMC) algorithm for an off-lattice  AA, BB, and AB pairs, giving strong attraction between AA

model, so called the AB mode?:** The contour Monte Carlo  pairs, weak attraction between BB pairs, and weak repulsion
(CMC) algorithm'? is a generalization of the Wang—Landau petween A and B.

algorithnt® and the 1¢-ensemble algorithrt* It can be used

for both continuous and discrete systems. The self-adjusting
nature of the algorithm makes it be able to overcome anyB. Three-dimensional AB model

barrier of the energy landscape, so it is an excellent tool for In the three-dimensiondBD) AB model, the shape of
Monte Carlo optimization. The ACMC algorithm is an accel- N-mer is either specified by tHe—1 bond vectors; or by
erated version of the CMC algorithm for optimization prob- \_ 5 pond angless, ,.
lems. Our numerical results show that the ACMC is 75

i/vhere

..,0n—1 and N—3 torsional angles
,...,Tn—1. The energy functiol? consists of three types of
contributions: bond angle, torsional angle, and Lennard-
3Electronic mail: fliang@stat.tamu.edu Jones. It can be written as
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N-2 N-3 o(E;) is determined by our parameter setting and phase-
H(u,0)= E Vy(i)+ E V(i) space partition as described below. The CMC simulation pro-
=1 =1 ceeds in several stages.

N-2 N Let x5, and ¥ (E;) denote the sample and the esti-
+ 2 > Vi o0, (2)  mate ofg(E;), respectively, at théth iteration of thesth
=1 j=it2 stage of the simulation. In the first stage=(1), the sim-
where ulation starts with the initial estimateg(®9(E,)="--

=g9®9%E,)=1 and a random samplg (k=0), and then
iterates as follows.

(a) Propose a new configuratiotf in the neighborhood
of xg x according to a prespecified distributidrf- — - ).
Vis(rij,oi,09) =4C( oy, o) (1 = 1;°). (b) Acceptx* with probability

Vo(i)=Uj-Ujyq,

VA(i)== 30U,

Herer;; denotes the distance between mononensdj, and GO, ) . .
Cs(0y,0) is +1 for AA pairs and+3 for BB and AB pairs. min xol W(XT) T(X* —Xs )
So in the 3D AB model, all nonbonded interactions are at- geR(E, L) P(Xs k) T(Xs—X*)"" |’
tractive, but with AA interactions carrying the highest *
weight. Since all nonadjacent monomer pairs attract eacfyherel, denotes the index of the subregion whetgelongs
other, the model’s tendency to form compact globular structo, If it is accepted, sekg 1 =X* and gk I(E, )
tures is further enhanced by this energy function. A i | skl
The AB model has been studied in several_g(S'k)(E'xS,m“H53plg(s’k)(E'xs,k+1) f?r 1=0,...m
papers101115-18The methods used to find the low-energy —Ix,,,,; Otherwise, sei;.1=Xsx and g (g, i)
states include neural networkd Metropolis Monte Carlo =gER(E, L)+ gEK(E, ) fori=0,..m—I, _5‘
simulationst!  simulated  tempering,  multicanonial Xsik sk sk
method!>*® biologically motivated method¥ and chain
growth algorithm’ For the 2D case, the putative groun
states are given in Refs. 7, 10, 11, and 18 for various A

()

The algorithm iterates until a stable histogram has been
d produced in the space of subregions. A histogram is said to
Bbe stable if its shape will not change much with more

. . mplega statistic is defined below to measure the stability
sequences and for various sequence lengths, while for the 3 : : . ;

. ; of the histogram Once the histogram is stable, we will reset
case, the putative ground states were not given at all or fof

verv short sequences onl the histogram, reduce the modification factrto a smaller
y q Y- value, ses«<s+1, and proceed to the next stage simulation.

In the new stage simulation, we SBL 0= Xs- 1k, , and

SSO(E ) — a(s-1Ks- D(E.) for i — i
IIl. ANNEALING CONTOUR MONTE CARLO g™ o(E) =g "e-r(E) fori=1,...m, whereK,_, is the
ALGORITHM total number of iterations performed in stagre 1. Note that

the settingxs o= Xs—1K, , will not affect the simulation
In this section we first describe the general CMC algo-much. Theoretically, we can sefoto a random sample as in
rithm and then present its space annealing version for optithe first stage. The parametgr0 is a user set parameter.
mization problems. Suppose that we want to make an inferThe modification factos, is usually set to a large number—

ence for the Boltzmann distribution for example, 1 or 2—which allows us to reach all subregions
1 very quickly even for a large system. In the followed stages,
f(X)=zsexg{—H(x)/7}, xedX, it will be reduced monotone in a function liké, ;= yds
z

with y<1, or 85, 1=+ 1+ 65— 1. The algorithm will run until
where 7 is called the temperature of the systeiiijs called &5 has been reduced to a very small value—for example, less
the phase space, add= [ , exp{—H(x)/7}dx is the partition  than 108 In this paper, we sets;=e—1 and &,
function. The CMC algorithm works in the style of impor- =1+ 5;—1 in all simulations.
tance sampling; that is, it may work directly on any non-  About the convergence of the algorithm, we have the
negative functiony(x) defined on the phase spatginstead following theorem, of which proof is presented in the Appen-
on f(x) necessarily, although we often se#/(x) dix as a supporting document.
=exp{—H(x)/ 7} for convenience. For the functiof(x), we As 6,—0 and k— oo, for any non-negative functio#(x)
usually require thatf yy(x)dx<<oe. Let T(-—-) denote a with [ yi(X)dx<<co, we have
proposal distribution which is not necessarily symmetric. _
Suppose that the phase space has been partitionedninto ~(sK) B : -
mutually nonoverlapped subregions according to some crite- 9 (Ei)ﬁg(Ei)_CJZl P fE_¢(X)dX
rion chosen by the user. For example, in all simulations of :
this paper we partition the phase space according to the en-
ergy function and index the subregions by, ... E,, in as-
cending order of energy; that is, for ary: E; andye E;, if
i<j, thenH(X)<H(y). Here we emphasize that theBgs  in probability for i=1,...m, where c is a constant which can
are nonoverlapping divisions of the phase space.g(&t) be determined by an additional constraint oiiEg)’s; for
denote the weight associated with the subredgipn The  example, one of @;)'s is equal to a known number

=C

: 4

| voodx poce
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This theorem implies that the ratios g{E;)’s can be the Wang—Landau algorithth to the continuous system.
estimated correctly a§;,—0 andk—ce. It can also help us From the viewpoint of importance sampling, the CMC algo-
understand the weight updating procedure intuitively: Torithm samples from the trial density

make the recursive relationshig) invariant with respect to m
the weight updating, once one weight was updated, the 7(X)= 2 P(x )l(XEE)
weights of all the above levels should also be updated pro- a(Ej)

portionally. Of course, this only happens fer-0. The con-
vergence in Eq(4) can be intuitively argued as follows. If
the g converges to a distribution, the visiting frequency to
each subregion must be proportional to

as 6,—0. If the phase space is partitioned according to the
energy function, it is easy to imagine thafx) is actually a
function defined on a contour plot; a different weighitas-
sociates with a different energy level. In this sense, we call

e ¢(x)dx the algorithm a contour-based Monte Carlo algorithm. If we
i(—E)’ fori=1,..m, (5) let g(x)=exp{—H(x)/}, the importance weight will be
9(E;
. f(x) 9(Ej)
because of the acceptance r(8¢ By the uniqueness of the w(X)= (X =21 7
1= T

stationary distribution of the Markov chatf,we know as
5s=0, Eq.(4) is the only solution fog(E;) to converge to
such that the simulation will result in the visiting frequency ocz g(Ep)l(xeE)),
(5). The convergence can be checked on line in a single run. =1
For example, we can define the statistic which is bounded above by maxE;) <.
m oA If p>0, the CMC algorithm will also result in a random
2 P Fiktnb ‘ walk in the space of subregions, but with more weight to-
= pI kb ward low-indexed regions. If we code the subregions appro-
priately such that the subregion we want to sample from
to measure the stability of the histogram, whéres the  most intensively is coded &, and therE,, E5, and so on,
batch size andP; ,, is the normalized visiting frequency to a choicep>0 will result in an efficient run. This typically
subregionE; calculated at thekb)th iteration of a stage. happens in Monte Carlo optimization runs, where we set
Note that we define 0/1 in S, to accommodate the empty p>0 to bias the random walk to the low-energy region.
E;'s. The E;'s are set according to our knowledge of the The CMC algorithm is so general that it includes several
energy function prior to the run, so probably we may oversebther algorithms as special cases. If we §dx)=1, X is
the maximum or underset the minimum valuesigk). This  finite, T(- —-) is a symmetric function, and=0, the algo-
will cause some empty subregions. rithm reduces to the Wang—Landau algorithhin this case
The decreasing speed 6f may affect the convergence g estimates the density of states of the system. If we let
of the algorithm. As we know, the preceding stage simulationy(x)=1, X is finite, andp=1, the algorithm gives a Wang—
aims at providing a good estimate @fE;)’s for the follow-  Landau-style implementation for the kiénsemble
ing stage simulation, or in other words, the following stagealgorithm* In this casej estimates the cumulative density
simulation aims at making a fine-tuning of the estimate ofof states of the system.
g(E;)’s obtained in the preceding stage. Intuitively, the Since now we are only interested in minimizikt(x),
should be chosen such that the errors of the preceding stage propose the following space annealing version of the
estimate should be able to be corrected by the followed stageMC algorithm to accelerate the optimization process. Sup-
simulation with a reasonable number of iterations. Since th@ose the phase space has been partitioned according to the
self-adjusting ability of the CMC moves depends on theenergy function intan subregions,,...,E,,, whereE;’s are
value of &, if &5 decreases too fast, the following stage mayarranged in ascending order by energy. Letdenote the
need to take an extremely long time to correct the errors oindex of the subregion to which a samptewith energy
the preceding stage estimate: otherwise, it may cause soniy(x)=z belongs. LetM® denote the number of subre-
waste of CPU time. Either case is not what we want. Hencegions we search from at theh iteration of thesth stage of
we suggests; should decrease gradually. Our experienceihe simulation; that is, we search from!'; E; at thekth
shows that the geometric scherig, = yds (with y<1) or jteration of thesth stage of the simulation. THA (% starts
the log-geometric schem&,, ;= 1+ d;—1 works well for  ith M@Y=m and then evolves as
a variety of problems.
Following from Egs.(4) and(5), we know that ifp=0, ME0=1, minTA
the resulting visiting frequency to each subregion will be

1
S,

whereH i, is the minimum energy value sampled so far in

P,_o(E)const, i=1,.m. the run andA is a user set parameter which controls the
search space of each iteration. Sirtdg;, decreases mono-

Hence, the CMC algorithm will result in a free random walk tonically, the search space shrinks iteration by iteration. In

in the space of subregions. But within the same subregiorthis sense we call the modified CMC algorithm the annealing

P(X)(xe E;) will be simulated from by the Metropolis— CMC algorithm. Of course, the performance of the ACMC
Hastings algorithn?° wherel () is the indicator function. So algorithm depends on the value Af If A is too large, the

the CMC algorithm can be regarded as a generalization adlgorithm may take a long time to locate the global mini-
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TABLE |. Comparison of the ACMC algorithm with the pruned-enriched-Rosenbluth meéfPERM) and the
conventional Metropolis Monte Carlo method for the 2D AB models. The sequences tested are as follows:
13-mer: ABBABBABABBAB; 21-mer: BABABBABABBABBABABBAB; 34-mer: ABBABBABABBAB-
BABABBABABBABBABABBAB; 55-mer: BABABBABABBABBABABBABABBABBABABBABBA-

BABBABABBABBABABBAB.
ACMC
N  Putative ground enerdy PERM  Metropoli$ Averagd Besf Post
13 —3.2939 —3.2167 —3.2235 —3.2743(.0063 —3.2892 —3.2941
21 —6.1976 —5.7501 —5.2881 —6.1573(.0032 —6.1689 —6.1979
34 —10.7001 —9.2195 —8.9749 —9.8389(.1325 —10.7556 —10.8060
55 —18.5154 —14.9050 —14.4089 —16.8572(.0737% —17.9900 —18.7407

#The putative ground energy value is reported in Ref. 7. They are obtained by the conjugate gradient method
with initial configurations sampled by PERM.

®The minimum energy value sampled by PERM in all runs in Ref. 7.

“The minimum energy value sampled by the conventional Metropolis Monte Carlo in all runs in Ref. 11.

9The averaged minimum energy value sampled by the ACMC algorithm and the standard error of the average.
They were computed over 20 runs for the 13-mer, 21-mer, and 34-mer sequences and over 50 runs for the
55-mer sequence.

€The minimum energy sampled by the ACMC algorithm in all the runs.

The minimum energy obtained by the post Metropolis moves.

mum. If A is too small, the algorithm may miss the global different step sizes\H(x) —Hg for different states. For
minimum forever if our proposed distribution is not very high-energy states, the step size is large, and for low-energy
spread. We note that a similar idea has appeared in Ref. 21 ijates, the step size is small. This allows the sampler to move
applying the multicanonical algorittftto traveling sales-  through the high-energy region fast and explore the low-

man problems. energy region in detail. The type-ll move is the same with
the type-l move, except for which two components are
IV. NUMERICAL RESULTS picked up at random to undergo the modifications. In the

. . type-lll move, a spherical proposal distribution is used: A
In this paper we restricted ourselves to the AB models;.” = . . : o
with Fibonacci sequences studied in Refs. 7 and 11. Thglrectlon is generated uniformly, and then the radius is drawn

. . ) ! . rom N(0,25[H(x,) —Ho]). The parametes is calibrated
Fibonacci sequence is defined recursively by such that the overall acceptance rate of the three types of

So=A, S;=B, S.,;=S_,8S, moves is about 0.2, as suggested by Gelmiaal > For the

where @ is the concatenation operator. The lengths of thel3-Mer sequence, we set0.15.

sequences are given by the Fibonacci numbgrs =N, ; As ACMC_resuIts in a random walk among §ubregions,
+N;. Following Ref. 7, we considered sequences withE1:-:-Emi, it may be easy for the Markov chain to reach
lengths 13, 21, 34, and 55 in this paper. For sequences witthe attraction basin of the global minimum, but it may not be

length less than 13, our minimum energies agree perfecti§@sy for it to locate the global minimum exactly. So we sug-
with that reported in Ref. 11. gest the minimum energy configuration sampled by the

First we consider the 2D AB model. For the 13-mer ACMC algorithm be further subject to a post-minimization

sequence, we partitioned the phase space Hto..,Eq; procedure—say, conjugate gradient minimization or just a
with an equal energy bandwidth of 0.1; that is, we Egt few hundred steps of Metropolis movest a very low tem-
={xe X'H(x)<—-19.9, E,={Xe X:—19.9<H(x)< perature. In this paper, the Metropolis moves were imple-
—19.8,..., andE,y={xe X:H(x)>0.0}. Later, we realize mented with temperaturée=1.0e—7. For the 13-mer se-
that E,,...,Eq; are all empty sets, as the putative groundduence, the ACMC algorithm was run for 20 times
energy we found is-3.2941. In simulations, we set=1, independently. The CPU time cost by each run is bout 15
A=5,n,=2.5%+86, andng, ;=1.1ng, wheren, denotes the Min on a 2.8 GHz computefall computations reported in
number of iterations performed in tisth stage of the simu- this paper were run on this computefhe computational
lation. The simulation proceeds unéil<0.01. Here we set a results are summarized in Table | together with those for the
high terminal value fos, as our target is minimizing (x), other sequences.

instead of simulating fronfi(x). We had three types of local For the 21-mer and 34-mer sequences, we had the ex-
moves (described beloyy which happen equally likely at actly same parameter setting as for the 13-mer sequence. For
each iteration. Lex,=(6,,...,0y_1) denote the current state the 21-mer sequence, the ACMC algorithm was run 20 times
of the inhomogeneous Markov chain. In the type-lI move, andependently. Each run costs about 36 min CPU time. For
component ofk, is picked up at random to undergo a modi- the 34-mer sequence, the ACMC algorithm was also run 20
fication by a Gaussian random variabée-N(0,s%[ H(x,) times independently. Each run costs about 76 min CPU time.
—Hg]), wheresis a user tunable parameter adrg is a user For the 55-mer sequence, we partitioned the phase space
guessed lower bound féi(x,). We setHy=—20 for all 2D  with an equal energy bandwidth of 0.2, sé&=10 ands
cases considered in the paper. The variance sifiggests a =0.1, and kept the setting of other parameters the same with
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(a) (b) (@) ()

FIG. 1. Local minimum energy configurations obtained by the ACMC al- FIG. 2. Local minimum energy configurations obtained by the ACMC al-
gorithm (subject to post Metropolis movegor the 13-mer, 21-mer, and gorithm (subject to post Metropolis movefor the 55-mer sequence in the
34-mer sequences in the 2D AB model. The solid and open circles indicatdD AB model. The solid and open circles indicate the hydrophobic and
the hydrophobic and hydrophilic monomers, respectivi@yA configura- hydrophilic monomers, respectivelya) A configuration with energy
tion of the 13-mer protein with energy3.2941.(b) A configuration of the ~ —18.7407.(b) A configuration with energy-18.5645.(c) A configuration
21-mer protein with energy-6.1979.(c) A configuration of the 34-mer  with energy—18.2219.(d) A configuration with energy-18.2028.

protein with energy—10.8060.(d) A configuration of the 34-mer protein

with energy—10.5934.

figurations found by the ACMC algorithrfsubject to post
Metropolis moves for the 13-mer, 21-mer, and 34-mer se-

that used for the 13-mer sequence. The ACMC algorithngquences. The two 34-mer configurations reported here are
was run for 50 times independently. Each run costs abouboth different from the one reported in Ref. 7. Figure 2
180 min CPU time. For comparison, the results appearing ishows four of the local minimum energy configurations
the literature for the 2D AB model are also given in Table I.found by the ACMC algorithm for the 55-mer sequence. The
The comparison shows that the ACMC algorithm has made &ur configurations are all different from the one reported in
significant improvement over the pruned-enriched-Ref. 7, but configuratioiib) is quite similar to it. From Figs.
Rosenbluth methoPERM) and the conventional Metropo- 1 and 2, it is easy to see that the hydrophdBic monomers
lis Monte Carlo method in locating the putative ground stategend to form a hydrophobic cof@ the 13-mer sequenger
for the 2D AB model. For all four sequences, the averagedlusters of typically 4—5 monomef# other sequencgsn
minimum energy sampled by the ACMC algorithm is betterthe 2D AB model. This can be explained by the fact that
than the minimum energy sampled by the PERM and Mehydrophobic monomers are always flanked by the hydro-
tropolis Monte Carlo methods in all runs. Also, the ACMC philic monomers along the sequence.
algorithm has renewed the putative ground energies for all The ACMC algorithm was also applied to the 3D AB
four sequences. Note that the 13-mer and 21-mer putativenodel. For the 13-mer sequence, we partitioned the phase
ground configurations we found are almost the same witlspace with an equal energy bandwidth of 1.0 andAsep5,
that found by the PERM, except for some folding anglesn;=2.5%e+6, ng,;=1.1ng, Hy=—30, and s=0.05. The
The differences of the energy values come from the minoACMC algorithm was run for 20 times independently. The
differences of the folding angles. The CPU times used by th&€€PU time cost by each run was about 20 min. The compu-
ACMC algorithm should be less than or comparable to thatational results are summarized in Table Il together with the
used by the PERM. Reference 7 did not give the exact CPUWesults for the other three sequences. For the 21-mer and
times of their runs. They just mentioned that their results34-mer sequences, we used the exactly same setting as that
were obtained on their Unix or Linux workstations with up used for the 13-mer sequence, except that weHget — 60
to 2 days CPU time. and Hy= —100, respectively. For the 55-mer sequence, we

Figure 1 shows some of the local minimum energy con-partitioned the phase space with an equal energy bandwidth
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TABLE Il. Computational results of the ACMC algorithm for the 3D AB

model. e T
N Averagé Besf Post oS
13 —25.7385(.07559 —26.3632 —26.5066
21 —49.1333(.0937 —50.8601 —51.7175
34 —86.2818(.3473 —92.7458 —94.0431
55 —137.4785.6884 —149.4810 —154.5050

#The averaged minimum energy sampled by the ACMC algorithm and the
standard error of the average. They were computed over 20 runs for the
13-mer sequence and 50 runs for the other sequences.

5The minimum energy sampled by the ACMC algorithm in all the runs.
“The minimum energy found by the post Metropolis moves.

of 2.0, setA=50 andH,= — 160, and kept the setting of the
other parameters the same with that used for the 13-mer se-
quence. The ACMC algorithm was run 50 times for each of
the three long sequences. The CPU times cost by each run
were about 45, 93, and 216 min, respectively. Since there
exist no published ground-state energies for the 3D AB
model with energy functiori2) in the literature, we are un- ' 05 2
able to compare the ACMC algorithm with other methods.
We note that Ref. 7 also considered the 3D AB model, buf!G. 4. A local minimum energy configL_Jrat_ion of the 21-mer sequence with
with energy function(l). The resulting Ipcal minimum en- Sﬂﬁi?ﬁ;it;gi‘ ;Zzesgtliﬁ;and dot indicate the hydrophobic and hydro-
ergy configurations are not very realistic compared to those
we present below.

Figures 3—6 show some of the local minimum energyV. DISCUSSION
configurations found by the ACMC algorithr{subject to
post Metropolis movesfor the four sequences. We can see
that all four sequences fold into compact globular structure
with single hydrophobic cores. Compared to the 2D AB
model, the 3D AB model is more realistic for Fibonacci
sequences.

We have applied successfully the ACMC algorithm to
the 2D and 3D AB models. The numerical results show that
the ACMC algorithm is a very promising algorithm for a
general optimization task. Note that in the simulation we did
not use any moves or proposal functions which are specific
to AB models. In other words, if we can incorporate some

-15

FIG. 3. Alocal minimum energy configuration of the 13-mer sequence withFIG. 5. A local minimum energy configuration of the 34-mer sequence with
energy—26.5066. The square and dot indicate the hydrophobic and hydroenergy—94.0431. The square and dot indicate the hydrophobic and hydro-
philic monomers, respectively. philic monomers, respectively.
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2:2:1 9(E)).

The g(E,,) is the partition function of the distribution trun-
cated on the highest-energy subregigp, and it can be
estimated easily using the conventional Monte Carlo method,
as the simulation is restricted only to the highest-energy re-
gion. In a CMC run, if we confing(E,,) =9 (E,), the
estimate ofg(E,,) obtaineda priori, then the other estimates
g(E;)’s can be determined according to the theorem. This
use of the CMC algorithm will be further explored else-
where.

APPENDIX: PROOF OF THE THEOREM

For simplicity, in the proof we will denotg(E;) by g;
and denotg®¥(E;) by g by omitting the superscriptas
the calculation is only for one stage. L&,=3M",[g

—gi|. Without loss of generality, we assume th&
m oAk _

=3M,g; is known,=2" ;g;' =S, and the sample of the next
iteration, ., ; € E; . To make=",g*" =5, we set
FIG. 6. Alocal minimum energy configuration of the 55-mer sequence with @,(k)
energy—154.5050. The square and dot indicate the hydrophobic and hydro- : , for i= 1,.__'1' -1,
philic monomers, respectively. ~ (k1) 1+ T
9 7 Ak i—ja(k
67+ 0 ‘g}) for i=j,....m
147 ' Joeoeam,

specific moves, which are designed based on some specific
properties of the protein model, into the ACMC algorithm, \;here 7,=€,0M/S, where ¢;=5,(1—p™ 1" 1)/(1-p) for

. . ] 1
the performance of the ACMC algonthm' may be further im- 1 ande;=(m—j+1)3, for p=1. The weight adjustment
proved. The success of the ACMC algorithm in the AB mod-by the multiplication factor (% T]_) will not change the pro-

els suggests that the ACMC algorithm may also perform welkass of the simulation. F®,.,, we have the calculation
for all-atom models with realistic potentials, at least for some

small proteins. E(Dys1/0,i
About the effect of the parameterin the ACMC algo- )

. . . m j—1

rithm, we have the following comments. In this paper we set

p=1 in all simulations. This is not necessary. In fact, our :1""m):j:1 =]

simulations indicate that a setting pfranging from 0.5 to

~(k
g

1+7'j_gi

m

1.5 will produce almost the same results. However, a setting
of p=0 or p>3 usually performs less well, especially for
long sequences. The reason is obvious. The setting=df
will result in a free random walk among all subregions, and
hence, the simulation will waste too much time in the high-
energy region, while the setting with a large valuepa#ill
bias the simulation too much to the low-energy region, and
hence, the simulation will tend to get trapped in a local en-
ergy minimum. This is also consistent with the result re-
ported in Ref. 14, where the author claimed that the
1/k-ensemble algorithm is more efficient than the multica-
nonical algorithm in estimating the density of states for a
discrete system.

At last, we would like to mention one potential applica-

A (k i—ja(k
g+ o' g}
l+7'j

m
XP(Xk+lEEj):j:1 [

X P(Xk+1E EJ)

22|

k i—ja(k
R
1+Tj :

=1 | 5
A (K
G
1+7'j

—gim P(Xr1eEp)=()+(D).

tion of the CMC algorithm. It can be used to estimate theGiven §, i=1,..m, the acceptance of a CMC move is
partition function of a model. Although it is not the focus of guided by the Metropolis—Hastings rule, so we have
this paper, it may be of interest to physicists or chemists, as

1 ij P(x)dx

the behavior of a model can be described by its partition _
)= A g](k) '

P(Xes1eE j=1,..m,

function. For example, if we setp=0 and ¥(X)
=exp{—HX)/7} and assume that g(E.)
=&, exp{—H(x)/7}x has been estimateal priori, then the ~ whereA=3[",[¢ P(x)dx/g( is the normalizing constant

partition function of the model can be estimated by of this distribution. Hence,
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.
L

9 —g;

m
1+ 7 Zl g'] P(X¢+1€ Ej)

m gk
J
Dt 2, 7 —P(Xc1€E)

X (use the relationshipsj@](k)
=TjS)

1 O € p(x)dx
Dt >, ———
I+m & Al+T)

=

_ 1, a6
\1+7'0 K

where To=minj<m7; and G= [ yy(x)dx<<ee. Similarly,
we have

m m i—jak)
5spl ]gj(
< ———  P(x E;
(I J_El[iEj 177, | POwacE)
m 2 (K) m
€9 955G i—1
sj§=:1 1+ Tj P(XkJrlEE])g(l-i-To)Ai:l p ’
From (I) and(ll), we have
E(Dys 1|0 ,i=1,..m)=< Dy +0O(8y).

1+ To

It implies that
1
E(Dk+1) < [ E(Dy)+0O(3)

and
E(Dy)—0,
SinceD >0, we know
D—0

and then

as k—o and §;—0.

in probability
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g (E;)—g(E;) in probability
as d;—0 andk— . O
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