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We present a space annealing version for a contour Monte Carlo algorithm and show that it can be
applied successfully to finding the ground states for an off-lattice protein model. The comparison
shows that the algorithm has made a significant improvement over the pruned-enriched-Rosenbluth
method and the Metropolis Monte Carlo method in finding the ground states for AB models. For all
sequences, the algorithm has renewed the putative ground energy values in the two-dimensional AB
model and set the putative ground energy values in the three-dimensional AB model. ©2004
American Institute of Physics.@DOI: 10.1063/1.1665529#

I. INTRODUCTION

Predicting the native structure of a protein from its se-
quence is one of the most challenging problems in biophys-
ics. The difficulty of the problem comes from two aspects:
First, the dimension of the system is usually high. It is in the
same order with the number of atoms involved in the system.
Hence, the phase space of the system is usually huge. Sec-
ond, the energy landscape of the system is complex. The
energy landscape can be characterized by a multitude of lo-
cal minima separated by high-energy barriers. At low tem-
peratures, conventional Monte Carlo and molecular dynamic
simulations tend to get trapped in local minima, rendering
the simulation ineffective. Given the complexity of the prob-
lem, there has been an increasing interest in understanding
the relevant mechanics of the protein folding process by
studying simplified models in recent years. For example, the
HP model1 treats each amino acid as a point particle and
restricts the model to fold on a regular~quadratic or cubic!
lattice. Even for this highly simplified model it is far from
trivial to predict the native structure for a given sequence.2–8

We note that the algorithms proposed for the HP model
may not be able to extend to an off-lattice protein model.
Even if some of them are able to do so, they may not be
efficient. In fact, in today’s literature there are very few
simple off-lattice models with known lowest-energy states
that can be used as benchmarks for efficient algorithms, as
noted by Hsuet al.9 In this paper we propose the annealing
contour Monte Carlo~ACMC! algorithm for an off-lattice
model, so called the AB model.10,11The contour Monte Carlo
~CMC! algorithm12 is a generalization of the Wang–Landau
algorithm13 and the 1/k-ensemble algorithm.14 It can be used
for both continuous and discrete systems. The self-adjusting
nature of the algorithm makes it be able to overcome any
barrier of the energy landscape, so it is an excellent tool for
Monte Carlo optimization. The ACMC algorithm is an accel-
erated version of the CMC algorithm for optimization prob-
lems. Our numerical results show that the ACMC is

algorithm very promising for finding the ground states of
proteins.

II. MODELS

The AB model consists of only two types of monomers,
A and B, which behave as hydrophobic (s i511) and hy-
drophilic (s i521) monomers, respectively. The monomers
are linked by rigid bonds of unit length to form linear chains
residing in two- or three-dimensional space.

A. Two-dimensional AB model

In the two-dimensional~2D! AB model, the shape of
N-mer is either specified by theN21 bond vectorsui or by
N22 bond anglesu2 ,...,uN21 . The energy function10,11

consists of two types of contributions: bond angle and
Lennard-Jones. It can be written as

H~u,s!5 (
i 51

N22
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i 51

N22
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j 5 i 12

N

VLJ~r i j ,s i ,s j !, ~1!
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VLJ~r i j ,s i ,s j !54@r i j
2122C2~s i ,s j !r i j
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Hereui is the unit-length bond vector joining monomeri to
monomeri 11, r i j denotes the distance between monomersi
and j, and C2(s i ,s j ) is 11, 11

2, and 21
2, respectively, for

AA, BB, and AB pairs, giving strong attraction between AA
pairs, weak attraction between BB pairs, and weak repulsion
between A and B.

B. Three-dimensional AB model

In the three-dimensional~3D! AB model, the shape of
N-mer is either specified by theN21 bond vectorsui or by
N22 bond anglesu2 ,...,uN21 and N23 torsional angles
t3 ,...,tN21 . The energy function15 consists of three types of
contributions: bond angle, torsional angle, and Lennard-
Jones. It can be written asa!Electronic mail: fliang@stat.tamu.edu
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Herer i j denotes the distance between monomersi andj, and
C3(s i ,s j ) is 11 for AA pairs and11

2 for BB and AB pairs.
So in the 3D AB model, all nonbonded interactions are at-
tractive, but with AA interactions carrying the highest
weight. Since all nonadjacent monomer pairs attract each
other, the model’s tendency to form compact globular struc-
tures is further enhanced by this energy function.

The AB model has been studied in several
papers.7,10,11,15–18The methods used to find the low-energy
states include neural networks,10 Metropolis Monte Carlo
simulations,11 simulated tempering,17 multicanonial
method,15,16 biologically motivated methods,18 and chain
growth algorithm.7 For the 2D case, the putative ground
states are given in Refs. 7, 10, 11, and 18 for various AB
sequences and for various sequence lengths, while for the 3D
case, the putative ground states were not given at all or for
very short sequences only.

III. ANNEALING CONTOUR MONTE CARLO
ALGORITHM

In this section we first describe the general CMC algo-
rithm and then present its space annealing version for opti-
mization problems. Suppose that we want to make an infer-
ence for the Boltzmann distribution

f ~x!5
1

Z
exp$2H~x!/t%, xPX,

wheret is called the temperature of the system,X is called
the phase space, andZ5*X exp$2H(x)/t%dx is the partition
function. The CMC algorithm works in the style of impor-
tance sampling; that is, it may work directly on any non-
negative functionc(x) defined on the phase spaceX, instead
on f (x) necessarily, although we often setc(x)
5exp$2H(x)/t% for convenience. For the functionc(x), we
usually require that*Xc(x)dx,`. Let T(•→•) denote a
proposal distribution which is not necessarily symmetric.
Suppose that the phase space has been partitioned intom
mutually nonoverlapped subregions according to some crite-
rion chosen by the user. For example, in all simulations of
this paper we partition the phase space according to the en-
ergy function and index the subregions byE1 ,...,Em in as-
cending order of energy; that is, for anyxPEi andyPEj , if
i , j , thenH(x),H(y). Here we emphasize that theseEi ’s
are nonoverlapping divisions of the phase space. Letg(Ei)
denote the weight associated with the subregionEi . The

g(Ei) is determined by our parameter setting and phase-
space partition as described below. The CMC simulation pro-
ceeds in several stages.

Let xs,k and ĝ(s,k)(Ei) denote the sample and the esti-
mate of g(Ei), respectively, at thekth iteration of thesth
stage of the simulation. In the first stage (s51), the sim-
ulation starts with the initial estimatesĝ(0,0)(E1)5¯

5ĝ(0,0)(Em)51 and a random samplex0,0(k50), and then
iterates as follows.

~a! Propose a new configurationx* in the neighborhood
of xs,k according to a prespecified distributionT(•→•).

~b! Acceptx* with probability

minH ĝ~s,k!~EI xs,k
!

ĝ~s,k!~EI x*
!

c~x* !

c~xs,k!

T~x* →xs,k!

T~xs,k→x* !
,1J , ~3!

whereI z denotes the index of the subregion wherez belongs
to. If it is accepted, setxs,k115x* and ĝ(s,k11)(EI xs,k11

1 i)

5ĝ(s,k)(EI xs,k11
1 i)1dsr

i ĝ(s,k)(EI xs,k11
) for i 50,...,m

2I xs,k11
; otherwise, setxs,k115xs,k and ĝ(s,k11)(EI xs,k

1 i)

5ĝ(s,k)(EI xs,k
1 i)1dsr

i ĝ(s,k)(EI xs,k
) for i 50,...,m2I xs,k

.

The algorithm iterates until a stable histogram has been
produced in the space of subregions. A histogram is said to
be stable if its shape will not change much with more
samples~a statistic is defined below to measure the stability
of the histogram!. Once the histogram is stable, we will reset
the histogram, reduce the modification factords to a smaller
value, sets←s11, and proceed to the next stage simulation.
In the new stage simulation, we setxs,05xs21,Ks21

and
ĝ(s,0)(Ei)5ĝ(s21,Ks21)(Ei) for i 51,...,m, whereKs21 is the
total number of iterations performed in stages21. Note that
the setting xs,05xs21,Ks21

will not affect the simulation
much. Theoretically, we can setxs,0 to a random sample as in
the first stage. The parameterr>0 is a user set parameter.
The modification factord1 is usually set to a large number—
for example, 1 or 2—which allows us to reach all subregions
very quickly even for a large system. In the followed stages,
it will be reduced monotone in a function likeds115gds

with g,1, ords115A11ds21. The algorithm will run until
ds has been reduced to a very small value—for example, less
than 1028. In this paper, we setd15e21 and ds11

5A11ds21 in all simulations.
About the convergence of the algorithm, we have the

following theorem, of which proof is presented in the Appen-
dix as a supporting document.

Asds→0 and k→`, for any non-negative functionc(x)
with *Xc(x)dx,`, we have

ĝ~s,k!~Ei !→g~Ei !5c(
j 51

i

r i 2 jE
Ej

c~x!dx

5cF E
Ei

c~x!dx1rg~Ei 21!G , ~4!

in probability for i51,...,m, where c is a constant which can
be determined by an additional constraint on g(Ei) ’s; for
example, one of g(Ei) ’s is equal to a known number.

6757J. Chem. Phys., Vol. 120, No. 14, 8 April 2004 Structure optimization in an off-lattice protein model

Downloaded 23 Apr 2004 to 165.91.112.101. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



This theorem implies that the ratios ofg(Ei)’s can be
estimated correctly asds→0 andk→`. It can also help us
understand the weight updating procedure intuitively: To
make the recursive relationship~4! invariant with respect to
the weight updating, once one weight was updated, the
weights of all the above levels should also be updated pro-
portionally. Of course, this only happens forr.0. The con-
vergence in Eq.~4! can be intuitively argued as follows. If
the ĝ converges to a distribution, the visiting frequency to
each subregion must be proportional to

*Ei
c~x!dx

g~Ei !
, for i 51,...,m, ~5!

because of the acceptance rule~3!. By the uniqueness of the
stationary distribution of the Markov chain,19 we know as
ds50, Eq. ~4! is the only solution forĝ(Ei) to converge to
such that the simulation will result in the visiting frequency
~5!. The convergence can be checked on line in a single run.
For example, we can define the statistic

Sk5
1

m (
i 51

m U P̂i ,~k11!b

P̂i ,kb

21U
to measure the stability of the histogram, whereb is the
batch size andP̂i ,kb is the normalized visiting frequency to
subregionEi calculated at the (kb)th iteration of a stage.
Note that we define 0/051 in Sk to accommodate the empty
Ei ’s. The Ei ’s are set according to our knowledge of the
energy function prior to the run, so probably we may overset
the maximum or underset the minimum values ofH(x). This
will cause some empty subregions.

The decreasing speed ofds may affect the convergence
of the algorithm. As we know, the preceding stage simulation
aims at providing a good estimate ofĝ(Ei)’s for the follow-
ing stage simulation, or in other words, the following stage
simulation aims at making a fine-tuning of the estimate of
ĝ(Ei)’s obtained in the preceding stage. Intuitively, thed’s
should be chosen such that the errors of the preceding stage
estimate should be able to be corrected by the followed stage
simulation with a reasonable number of iterations. Since the
self-adjusting ability of the CMC moves depends on the
value ofds , if ds decreases too fast, the following stage may
need to take an extremely long time to correct the errors of
the preceding stage estimate: otherwise, it may cause some
waste of CPU time. Either case is not what we want. Hence,
we suggestds should decrease gradually. Our experience
shows that the geometric schemeds115gds ~with g,1! or
the log-geometric schemeds115A11ds21 works well for
a variety of problems.

Following from Eqs.~4! and ~5!, we know that ifr50,
the resulting visiting frequency to each subregion will be

Pr50~Ei !}const, i 51,...,m.

Hence, the CMC algorithm will result in a free random walk
in the space of subregions. But within the same subregion,
c(x)I (xPEi) will be simulated from by the Metropolis–
Hastings algorithm,20 whereI (•) is the indicator function. So
the CMC algorithm can be regarded as a generalization of

the Wang–Landau algorithm13 to the continuous system.
From the viewpoint of importance sampling, the CMC algo-
rithm samples from the trial density

p~x!5(
i 51

m
c~x!

g~Ei !
I ~xPEi !,

as ds→0. If the phase space is partitioned according to the
energy function, it is easy to imagine thatp(x) is actually a
function defined on a contour plot; a different weightgi as-
sociates with a different energy level. In this sense, we call
the algorithm a contour-based Monte Carlo algorithm. If we
let c(x)5exp$2H(x)/t%, the importance weight will be

w~x!5
f ~x!

p~x!
5(

i 51

m
g~Ei !

Zt
I ~xPEi !

}(
i 51

m

g~Ei !I ~xPEi !,

which is bounded above by maxi g(Ei),`.
If r.0, the CMC algorithm will also result in a random

walk in the space of subregions, but with more weight to-
ward low-indexed regions. If we code the subregions appro-
priately such that the subregion we want to sample from
most intensively is coded asE1 , and thenE2 , E3 , and so on,
a choicer.0 will result in an efficient run. This typically
happens in Monte Carlo optimization runs, where we set
r.0 to bias the random walk to the low-energy region.

The CMC algorithm is so general that it includes several
other algorithms as special cases. If we letc(x)[1, X is
finite, T(•→•) is a symmetric function, andr50, the algo-
rithm reduces to the Wang–Landau algorithm.13 In this case
ĝ estimates the density of states of the system. If we let
c(x)[1, X is finite, andr51, the algorithm gives a Wang–
Landau-style implementation for the 1/k-ensemble
algorithm.14 In this caseĝ estimates the cumulative density
of states of the system.

Since now we are only interested in minimizingH(x),
we propose the following space annealing version of the
CMC algorithm to accelerate the optimization process. Sup-
pose the phase space has been partitioned according to the
energy function intom subregionsE1 ,...,Em , whereEi ’s are
arranged in ascending order by energy. LetI z denote the
index of the subregion to which a samplex with energy
H(x)5z belongs. LetM (s,k) denote the number of subre-
gions we search from at thekth iteration of thesth stage of

the simulation; that is, we search fromø i 51
M (s,k)

Ei at thekth
iteration of thesth stage of the simulation. TheM (s,k) starts
with M (1,1)5m and then evolves as

M ~s,k!5I Hmin1D ,

whereHmin is the minimum energy value sampled so far in
the run andD is a user set parameter which controls the
search space of each iteration. SinceHmin decreases mono-
tonically, the search space shrinks iteration by iteration. In
this sense we call the modified CMC algorithm the annealing
CMC algorithm. Of course, the performance of the ACMC
algorithm depends on the value ofD. If D is too large, the
algorithm may take a long time to locate the global mini-
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mum. If D is too small, the algorithm may miss the global
minimum forever if our proposed distribution is not very
spread. We note that a similar idea has appeared in Ref. 21 in
applying the multicanonical algorithm22 to traveling sales-
man problems.

IV. NUMERICAL RESULTS

In this paper we restricted ourselves to the AB models
with Fibonacci sequences studied in Refs. 7 and 11. The
Fibonacci sequence is defined recursively by

S05A, S15B, Si 115Si 21% Si ,

where % is the concatenation operator. The lengths of the
sequences are given by the Fibonacci numbersNi 115Ni 21

1Ni . Following Ref. 7, we considered sequences with
lengths 13, 21, 34, and 55 in this paper. For sequences with
length less than 13, our minimum energies agree perfectly
with that reported in Ref. 11.

First we consider the 2D AB model. For the 13-mer
sequence, we partitioned the phase space intoE1 ,...,E201

with an equal energy bandwidth of 0.1; that is, we setE1

5$xPX:H(x)<219.9%, E25$xPX:219.9,H(x)<
219.8%,..., andE2015$xPX:H(x).0.0%. Later, we realize
that E1 ,...,E167 are all empty sets, as the putative ground
energy we found is23.2941. In simulations, we setr51,
D55, n152.5e16, andns1151.1ns , wherens denotes the
number of iterations performed in thesth stage of the simu-
lation. The simulation proceeds untilds,0.01. Here we set a
high terminal value ford, as our target is minimizingH(x),
instead of simulating fromf (x). We had three types of local
moves ~described below!, which happen equally likely at
each iteration. Letxk5(u2 ,...,uN21) denote the current state
of the inhomogeneous Markov chain. In the type-I move, a
component ofxk is picked up at random to undergo a modi-
fication by a Gaussian random variablee;N„0,s2@H(xk)
2H0#…, wheres is a user tunable parameter andH0 is a user
guessed lower bound forH(xk). We setH05220 for all 2D
cases considered in the paper. The variance ofe suggests a

different step sizesAH(xk)2H0 for different states. For
high-energy states, the step size is large, and for low-energy
states, the step size is small. This allows the sampler to move
through the high-energy region fast and explore the low-
energy region in detail. The type-II move is the same with
the type-I move, except for which two components are
picked up at random to undergo the modifications. In the
type-III move, a spherical proposal distribution is used: A
direction is generated uniformly, and then the radius is drawn
from N„0,2s2@H(xk)2H0#…. The parameters is calibrated
such that the overall acceptance rate of the three types of
moves is about 0.2, as suggested by Gelmanet al.23 For the
13-mer sequence, we sets50.15.

As ACMC results in a random walk among subregions,
E1 ,...,EM (s,k), it may be easy for the Markov chain to reach
the attraction basin of the global minimum, but it may not be
easy for it to locate the global minimum exactly. So we sug-
gest the minimum energy configuration sampled by the
ACMC algorithm be further subject to a post-minimization
procedure—say, conjugate gradient minimization or just a
few hundred steps of Metropolis moves20 at a very low tem-
perature. In this paper, the Metropolis moves were imple-
mented with temperaturet51.0e27. For the 13-mer se-
quence, the ACMC algorithm was run for 20 times
independently. The CPU time cost by each run is bout 15
min on a 2.8 GHz computer~all computations reported in
this paper were run on this computer!. The computational
results are summarized in Table I together with those for the
other sequences.

For the 21-mer and 34-mer sequences, we had the ex-
actly same parameter setting as for the 13-mer sequence. For
the 21-mer sequence, the ACMC algorithm was run 20 times
independently. Each run costs about 36 min CPU time. For
the 34-mer sequence, the ACMC algorithm was also run 20
times independently. Each run costs about 76 min CPU time.
For the 55-mer sequence, we partitioned the phase space
with an equal energy bandwidth of 0.2, setD510 and s
50.1, and kept the setting of other parameters the same with

TABLE I. Comparison of the ACMC algorithm with the pruned-enriched-Rosenbluth method~PERM! and the
conventional Metropolis Monte Carlo method for the 2D AB models. The sequences tested are as follows:
13-mer: ABBABBABABBAB; 21-mer: BABABBABABBABBABABBAB; 34-mer: ABBABBABABBAB-
BABABBABABBABBABABBAB; 55-mer: BABABBABABBABBABABBABABBABBABABBABBA-
BABBABABBABBABABBAB.

N Putative ground energya PERMb Metropolisc

ACMC

Averaged Beste Postf

13 23.2939 23.2167 23.2235 23.2743~.0063! 23.2892 23.2941
21 26.1976 25.7501 25.2881 26.1573~.0032! 26.1689 26.1979
34 210.7001 29.2195 28.9749 29.8389~.1325! 210.7556 210.8060
55 218.5154 214.9050 214.4089 216.8572~.0737! 217.9900 218.7407

aThe putative ground energy value is reported in Ref. 7. They are obtained by the conjugate gradient method
with initial configurations sampled by PERM.

bThe minimum energy value sampled by PERM in all runs in Ref. 7.
cThe minimum energy value sampled by the conventional Metropolis Monte Carlo in all runs in Ref. 11.
dThe averaged minimum energy value sampled by the ACMC algorithm and the standard error of the average.
They were computed over 20 runs for the 13-mer, 21-mer, and 34-mer sequences and over 50 runs for the
55-mer sequence.

eThe minimum energy sampled by the ACMC algorithm in all the runs.
fThe minimum energy obtained by the post Metropolis moves.

6759J. Chem. Phys., Vol. 120, No. 14, 8 April 2004 Structure optimization in an off-lattice protein model

Downloaded 23 Apr 2004 to 165.91.112.101. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



that used for the 13-mer sequence. The ACMC algorithm
was run for 50 times independently. Each run costs about
180 min CPU time. For comparison, the results appearing in
the literature for the 2D AB model are also given in Table I.
The comparison shows that the ACMC algorithm has made a
significant improvement over the pruned-enriched-
Rosenbluth method~PERM! and the conventional Metropo-
lis Monte Carlo method in locating the putative ground states
for the 2D AB model. For all four sequences, the averaged
minimum energy sampled by the ACMC algorithm is better
than the minimum energy sampled by the PERM and Me-
tropolis Monte Carlo methods in all runs. Also, the ACMC
algorithm has renewed the putative ground energies for all
four sequences. Note that the 13-mer and 21-mer putative
ground configurations we found are almost the same with
that found by the PERM, except for some folding angles.
The differences of the energy values come from the minor
differences of the folding angles. The CPU times used by the
ACMC algorithm should be less than or comparable to that
used by the PERM. Reference 7 did not give the exact CPU
times of their runs. They just mentioned that their results
were obtained on their Unix or Linux workstations with up
to 2 days CPU time.

Figure 1 shows some of the local minimum energy con-

figurations found by the ACMC algorithm~subject to post
Metropolis moves! for the 13-mer, 21-mer, and 34-mer se-
quences. The two 34-mer configurations reported here are
both different from the one reported in Ref. 7. Figure 2
shows four of the local minimum energy configurations
found by the ACMC algorithm for the 55-mer sequence. The
four configurations are all different from the one reported in
Ref. 7, but configuration~b! is quite similar to it. From Figs.
1 and 2, it is easy to see that the hydrophobic~A! monomers
tend to form a hydrophobic core~in the 13-mer sequence! or
clusters of typically 4–5 monomers~in other sequences! in
the 2D AB model. This can be explained by the fact that
hydrophobic monomers are always flanked by the hydro-
philic monomers along the sequence.

The ACMC algorithm was also applied to the 3D AB
model. For the 13-mer sequence, we partitioned the phase
space with an equal energy bandwidth of 1.0 and setD525,
n152.5e16, ns1151.1ns , H05230, and s50.05. The
ACMC algorithm was run for 20 times independently. The
CPU time cost by each run was about 20 min. The compu-
tational results are summarized in Table II together with the
results for the other three sequences. For the 21-mer and
34-mer sequences, we used the exactly same setting as that
used for the 13-mer sequence, except that we setH05260
and H052100, respectively. For the 55-mer sequence, we
partitioned the phase space with an equal energy bandwidth

FIG. 1. Local minimum energy configurations obtained by the ACMC al-
gorithm ~subject to post Metropolis moves! for the 13-mer, 21-mer, and
34-mer sequences in the 2D AB model. The solid and open circles indicate
the hydrophobic and hydrophilic monomers, respectively.~a! A configura-
tion of the 13-mer protein with energy23.2941.~b! A configuration of the
21-mer protein with energy26.1979. ~c! A configuration of the 34-mer
protein with energy210.8060.~d! A configuration of the 34-mer protein
with energy210.5934.

FIG. 2. Local minimum energy configurations obtained by the ACMC al-
gorithm ~subject to post Metropolis moves! for the 55-mer sequence in the
2D AB model. The solid and open circles indicate the hydrophobic and
hydrophilic monomers, respectively.~a! A configuration with energy
218.7407.~b! A configuration with energy218.5645.~c! A configuration
with energy218.2219.~d! A configuration with energy218.2028.
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of 2.0, setD550 andH052160, and kept the setting of the
other parameters the same with that used for the 13-mer se-
quence. The ACMC algorithm was run 50 times for each of
the three long sequences. The CPU times cost by each run
were about 45, 93, and 216 min, respectively. Since there
exist no published ground-state energies for the 3D AB
model with energy function~2! in the literature, we are un-
able to compare the ACMC algorithm with other methods.
We note that Ref. 7 also considered the 3D AB model, but
with energy function~1!. The resulting local minimum en-
ergy configurations are not very realistic compared to those
we present below.

Figures 3–6 show some of the local minimum energy
configurations found by the ACMC algorithm~subject to
post Metropolis moves! for the four sequences. We can see
that all four sequences fold into compact globular structures
with single hydrophobic cores. Compared to the 2D AB
model, the 3D AB model is more realistic for Fibonacci
sequences.

V. DISCUSSION

We have applied successfully the ACMC algorithm to
the 2D and 3D AB models. The numerical results show that
the ACMC algorithm is a very promising algorithm for a
general optimization task. Note that in the simulation we did
not use any moves or proposal functions which are specific
to AB models. In other words, if we can incorporate some

TABLE II. Computational results of the ACMC algorithm for the 3D AB
model.

N Averagea Bestb Postc

13 225.7385~.0755! 226.3632 226.5066
21 249.1333~.0937! 250.8601 251.7175
34 286.2818~.3473! 292.7458 294.0431
55 2137.4785~.6884! 2149.4810 2154.5050

aThe averaged minimum energy sampled by the ACMC algorithm and the
standard error of the average. They were computed over 20 runs for the
13-mer sequence and 50 runs for the other sequences.

bThe minimum energy sampled by the ACMC algorithm in all the runs.
cThe minimum energy found by the post Metropolis moves.

FIG. 3. A local minimum energy configuration of the 13-mer sequence with
energy226.5066. The square and dot indicate the hydrophobic and hydro-
philic monomers, respectively.

FIG. 4. A local minimum energy configuration of the 21-mer sequence with
energy251.7175. The square and dot indicate the hydrophobic and hydro-
philic monomers, respectively.

FIG. 5. A local minimum energy configuration of the 34-mer sequence with
energy294.0431. The square and dot indicate the hydrophobic and hydro-
philic monomers, respectively.
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specific moves, which are designed based on some specific
properties of the protein model, into the ACMC algorithm,
the performance of the ACMC algorithm may be further im-
proved. The success of the ACMC algorithm in the AB mod-
els suggests that the ACMC algorithm may also perform well
for all-atom models with realistic potentials, at least for some
small proteins.

About the effect of the parameterr in the ACMC algo-
rithm, we have the following comments. In this paper we set
r51 in all simulations. This is not necessary. In fact, our
simulations indicate that a setting ofr ranging from 0.5 to
1.5 will produce almost the same results. However, a setting
of r50 or r.3 usually performs less well, especially for
long sequences. The reason is obvious. The setting ofr50
will result in a free random walk among all subregions, and
hence, the simulation will waste too much time in the high-
energy region, while the setting with a large value ofr will
bias the simulation too much to the low-energy region, and
hence, the simulation will tend to get trapped in a local en-
ergy minimum. This is also consistent with the result re-
ported in Ref. 14, where the author claimed that the
1/k-ensemble algorithm is more efficient than the multica-
nonical algorithm in estimating the density of states for a
discrete system.

At last, we would like to mention one potential applica-
tion of the CMC algorithm. It can be used to estimate the
partition function of a model. Although it is not the focus of
this paper, it may be of interest to physicists or chemists, as
the behavior of a model can be described by its partition
function. For example, if we setr50 and c(x)
5exp$2H(x)/t% and assume that g(Em)
5*Em

exp$2H(x)/t%x has been estimateda priori, then the
partition function of the model can be estimated by

Ẑ5(
i 51

m

ĝ~Ei !.

The g(Em) is the partition function of the distribution trun-
cated on the highest-energy subregionEm , and it can be
estimated easily using the conventional Monte Carlo method,
as the simulation is restricted only to the highest-energy re-
gion. In a CMC run, if we confineĝ(Em)5ĝ(0)(Em), the
estimate ofg(Em) obtaineda priori, then the other estimates
ĝ(Ei)’s can be determined according to the theorem. This
use of the CMC algorithm will be further explored else-
where.

APPENDIX: PROOF OF THE THEOREM

For simplicity, in the proof we will denoteg(Ei) by gi

and denoteĝ(s,k)(Ei) by ĝi
(k) by omitting the superscripts as

the calculation is only for one stage. LetDk5( i 51
m uĝi

(k)

2gi u. Without loss of generality, we assume thatS
5( i 51

m gi is known,( i 51
m ĝi

(k)5S, and the sample of the next
iteration,xk11PEj . To make( i 51

m ĝi
(k11)5S, we set

ĝi
~k11!55

ĝi
~k!

11t j
, for i 51,...,j 21,

ĝi
~k!1dsr

i 2 j ĝ j
~k!

11t j
, for i 5 j ,...,m,

where t j5e j ĝ j
(k)/S, where e j5ds(12rm2 j 11)/(12r) for

rÞ1 ande j5(m2 j 11)ds for r51. The weight adjustment
by the multiplication factor (11t j ) will not change the pro-
cess of the simulation. ForDk11 , we have the calculation

E~Dk11uĝi
~k! ,i

51,...,m)5(
j 51

m H (
i 51

j 21 U ĝi
~k!

11t j
2giU

1(
i 5 j

m Uĝi
~k!1dsr

i 2 j ĝ j
~k!

11t j
2giUJ

3P~xk11PEj !5(
j 51

m H (
i 51

m U ĝi
~k!

11t j
2giUJ

3P~xk11PEj !

1(
j 51

m H(
i 5 j

m FUĝi
~k!1dsr

i 2 j ĝ j
~k!

11t j
2giU

2U ĝi
~k!

11t j
2giUG J P~xk11PEj !5~ I!1~ II !.

Given ĝi
(k) , i 51,...,m, the acceptance of a CMC move is

guided by the Metropolis–Hastings rule, so we have

P~xk11PEj !5
1

A

*Ej
c~x!dx

ĝ j
~k!

, j 51,...,m,

where A5( j 51
m *Ej

c(x)dx/ĝ j
(k) is the normalizing constant

of this distribution. Hence,

FIG. 6. A local minimum energy configuration of the 55-mer sequence with
energy2154.5050. The square and dot indicate the hydrophobic and hydro-
philic monomers, respectively.

6762 J. Chem. Phys., Vol. 120, No. 14, 8 April 2004 Faming Liang

Downloaded 23 Apr 2004 to 165.91.112.101. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



~ I!<(
j 51

m H 1

11t j
(
i 51

m Uĝi
~k!2giU1 t j

11t j
(
i 51

m

giJ P~xk11PEj !

<
1

11t0
Dk1(

j 51

m e j ĝ j
~k!

11t j
P~xk11PEj !

3~use the relationshipe j ĝ j
~k!

5t jS!

<
1

11t0
Dk1(

j 51

m e j*Ej
c~x!dx

A~11t j !

<
1

11t0
Dk1

dsG

~11t0!A (
i 51

m

r i 21,

where t05min1<j<mtj and G5*Xc(x)dx,`. Similarly,
we have

~ II !<(
j 51

m H(
i 5 j

m dsr
i 2 j ĝ j

~k!

11t j
J P~xk11PEj !

<(
j 51

m e j ĝ j
~k!

11t j
P~xk11PEj !<

dsG

~11t0!A (
i 51

m

r i 21.

From ~I! and ~II !, we have

E~Dk11uĝi
~k! ,i 51,...,m!<

1

11t0
Dk1O~ds!.

It implies that

E~Dk11!<
1

11t0
E~Dk!1O~ds!

and

E~Dk!→0, as k→` and ds→0.

SinceDk.0, we know

Dk→0 in probability

and then

ĝ~s,k!~Ei !→g~Ei ! in probability

asds→0 andk→`. h
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