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Use of sequential structure in simulation from high-dimensional systems
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Sampling from high-dimensional systems often suffers from the curse of dimensionality. In this paper, we
explored the use of sequential structures in sampling from high-dimensional systems with an aim at eliminating
the curse of dimensionality, and proposed an algorithm, so-called sequential parallel tempering as an extension
of parallel tempering. The algorithm was tested with the witch’s hat distribution and Ising model. Numerical
results suggest that it is a promising tool for sampling from high-dimensional systems. The efficiency of the
algorithm was argued theoretically based on the Rao-Blackwellization theorem.
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I. INTRODUCTION increases exponentially with dimension. For this kind of
problems, although the difficulty of slow convergence can be
With the development of science and technology, weresolved by the tempering or the importance weights based
more and more need to deal with high-dimensional systemglgorithms to some extent, the curse of dimensionality can-
For example, we need to align a group of protein or DNANot be eliminated significantly, as these samplers always
sequences to infer their homolodg], predict the tertiary ~Work in the same sample space.
structure of a protein to understand its funct[@}, estimate In this paper, we provide a different treatment for the
the volatility of asset returns to understand the price trend oproblem based on the sequential structure of the systems,
the option markef3], simulate from spin systems to under- With an aim at eliminating the curse of dimensionality suf-
stand their physical properti¢4—7], etc. In these problems, fered by the conventional MCMC methods in simulation
the dimensions of the systems often range from several huftom them. As an extension of PT, sequential parallel tem-
dreds to several thousands or even higher. Their solutiofering (SPT) works by simulating from a sequence of sys-
spaces are so huge that sampling has been an indispensatigs of different dimensions. The idea is to use the informa-
tool for an inference for them. How to sample from thesetion provided by the simulation from low-dimensional
high-dimensional systems efficiently puts a great challeng8ystems as a clue for the simulation from high-dimensional
on the existing Markov chain Monte CarlMCMC) meth- ~ Systems, and, thus, to eliminate the curse of dimensionality
ods. significantly. Although this idea is very interesting, it is not
The conventional MCMC algorithms, such as thecompletely new in computational physics; similar ideas, for
Metropolis-HastinggMH) algorithm[8] and the Gibbs sam- example, the multigrid methd@1] and inverse renormaliza-
pler[9], often suffer from a severe difficulty in convergence. tion group method(22], have appeared before. SPT was
One reason is multimodality: on the energy landscape of théested with the witch’s hat distribution and Ising model. The
system, there are many local minima that are separated Bjumerical results suggest that our method is a promising tool
high barriers. In simulation, the Markov chain may get stuckfor simulation from high-dimensional systems.
in a local energy minimum indefinitely, rendering the simu-

lation ineffective. To alleviate this difficulty, many tech- Il. SEQUENTIAL EXCHANGE MONTE CARLO

nigues have been proposed, such as simulated tempering _ )

[5,10,, parallel tempering(PT) [6,11-13, evolutionary A. Buildup ladder construction

Monte Carlo[14], dynamic weighting/15], multicanonical A buildup ladde 15,23 comprises a sequence of systems

weighting [7], and its variantd16-19. In the tempering of different dimensions. Typically, we have
algorithms and evolutionary Monte Carlo, the energy barriers
are flattened by increasing the “temperature” of the systems dim( ;) <dim(5) < - - <dim(Ay,),
such that the samplers can move across them freely. In mul-
ticanonical and dynamic weighting, the samplers arewhereX; denotes the sample space of itiesystem, with an
equipped with an importance weight such that they can movassociated density or mass functiaf(z)/Z; and partition
across the energy barriers freely. functionZ; . The principle of the buildup ladder construction
However, for many problems the slow convergence is nots to approximate the original system by a system with a
due to the multimodality, but the curse of dimensionality,reduced dimension, the reduced system is again approxi-
that is, the number of samples increase exponentially wittmated by a system with a further reduced dimension, until
dimension to maintain a given level of accuracy. For ex-one reaches a system of a manageable dimension, that is, the
ample, the witch’s hat distributiof20] has only one single corresponding system is able to be sampled from easily by a
mode, but the convergence time of the Gibbs sampler on ibcal updating algorithm, such as the MH algorithm or the
Gibbs sampler. The solution of the reduced system is then
extrapolated level by level until the target system is reached.
*Email address: fliang@stat.tamu.edu For many problems, the buildup ladder can be constructed
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easily. For example, in the witch’s hat and Ising model ex-whered is dimension andC denotes the oped-dimensional
amples, the ladders were constructed by marginalization dsypercube (0,1 In the case ofd=2, the density shapes
shown in this paper. like a witch's hat with a broad flat brim and a high conical
We note that the temperature ladder used in the temperingeak, so the distribution is called the witch’s hat distribution.
algorithms can be regarded as a special kind of buildup ladmatthews[20] constructed this distribution as a counterex-
der, with m(z) being defined a$m(zn)/Zy]'™", where  ample to the Gibbs sampler, and showed that the mixing time
Tm(Zn)/Zm is the target distribution to be sampled from. of the Gibbs sampler on it increases exponentially with di-
Along the temperature laddeg> - - ->tq,, the complexity mensjon. He argued for the slow convergence as follows:

of the systems increases monotonically. Those coordinates must be lined up with the peak before a
Gibbs step can move from the brim to the peak, and this has
B. Sequential parallel tempering exponentially small probability. Intuitively, we can under-
As an extension of PT, SPT also works by simulatingstand the slow mixing as follows: As dimension increases,
from the joint distribution the volume of the peak decreases exponentially, hence, the

. time for the Gibbs sampler to locate the peak will also in-
1 crease exponentially. For example, whdr100 and §
"P(Z):iﬂl Zwi(z‘)' =0.05, 95% mass of the distribution is contained in a hy-
percube of volume 3e+ 19, and the remaining 5% mass is
where z denotes a sample froma;, and z almost uniformly distributed in the part o outside the
={7,2, ... zy,}. Simulation consists of two steps, local hypercube. Hence, sampling from such a distribution is like
updating and between-level transitions. In the local updatingearching for a needle in a haysta@kote the Gibbs sampler
step, eachm; is simulated by a local updating algorithm, will be reduced to a random walk in a region where the
such as the MH algorithm or the Gibbs sampler. Thedensity is uniform; searching for such a peak will take it an
between-level transitions involve two operations, namelyextremely long time, approximately proportional to the in-
projection and extrapolation. This is different from that of verse of the volume of the peakWe notice that the other
parallel tempering, where only the swapping operations argdvanced Gibbs techniques, such as grouping, collapsing

involved. Two levels, say, andj, are proposed to make the [24], and reparametrizatior&5], also fail for this example,
between-level transition. Without loss of generality, we as-as they all try to sample frorfiy(-) directly.

sume that¥;C &;. The transition is to extrapola® (e &) However, SPT works well for this example with the use
to z (e4&)), and simultaneously to projet (e &j) to Z of a buildup ladder. For example, we are interested in sam-
(e &j). The extrapolation and projection operators are chopling from f4(x), with §=0.05, ¢=0.05, 6;=-- =64
sen such that the pairwise movg &) to (z ,z) is revers-  =0.5, andd=10. The buildup ladder is constructed by set-
ible. The transition is accepted with probability ting m=f;(-) for i=1,2,...d, where f,(-) is the
i-dimensional witch’s hat distribution, which has the same
mi(Z)7(Z) Te(Z —2)Tp(Z —7) parameter ad4(-) except for the dimension. Thus, SPT
n 1'7Ti(Zi)7Tj(Zj) Te(Za—>Zj')Tp(Zj—>2i') ' (1) simulates frormd witch’s hat distributiond 1(x;), . . . ,fg(Xg)

simultaneously. In the local updating step, eagcts updated

where Te( -—-) and Tp( -—-) denote the transition prob- iteratively by the MH algorithm for steps. At gach MH step,
abilities corresponding to the extrapolation and projectiorone coordinate is randomly chosen and it is proposed to be
operations, respectively. In this paper, the between-leveleplaced by a random number drawn from unifal@) in-
transitions are only performed on the neighboring levels, i.e.dependently, and the proposal is accepted or rejected accord-
||_]|:1 In summary, each iteration of SPT proceeds ag'ng to the MH rule. For this example, the MH algorithm is

follows. equivalent to the Gibbs sampler in mixing, but it is easier to
(1) Update eacl‘xi independent'y by a local updating al- implement. The between-level transition, say, the transition
gorithm for a few steps. between theth and { + 1)th levels, proceeds as followd)

(2) Try the between-level transitions far pairs of neigh- ~ Extrapolation: drawu~uniform(0,1) and sex/, ;=(X;,u).
boring levels {,j), with i being sampled uniformly on (2) Projection: sek/ to be the firsi coordinates ok;, ;. The
{1,2,...m} and j=i=1 with probability p(j|i), where corresponding extrapolation and projection probabilities are

p(i+1]i)=p(i—1]i)=0.5 andp(2|1)=p(m—1|m)=1. Te(-—)=Tp(-—-)=1.
For d=10, SPT was run for ten times independently.
IIl. TWO ILLUSTRATIVE EXAMPLES Each run consists of 2.4 6 iterations. The fist 10 000 it-
erations were discarded for the burn-in process, and the sub-
A. The witch’s hat distribution sequent iterations were used for inference. The overall ac-

The witch's hat distribution has the following density: ~ ceptance rate of the local updating moves is 0.2 and the
overall acceptance rates of the between-level transitions are

d ) given in Table I. The independence of the acceptance rates
1 \¢ Z (X —6)) on the complexity levels suggests that the simulation can be
fy(x)=(1— 5)( ) exp| — ! - +6lec, extended to a very large value dfTo characterize the mix-
V2o 20 ing of the simulation, we estimated the probabilities of the
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TABLE |. Computational results for the witch’s hat distributions
with d=1-10. The columns Ex{—d—1) and Ex@<d+1)
record the acceptance rates of the transitions between ldaisl
d—1 and that between leveld and d+1, respectively, for each

value ofd. The “estimate”a and the “standard deviation of the
estimate were computed based on ten independent runs& Let

20000 40000 60000 80000 100000

)
©
denote the estimate af from theith run, anda=31°, /10 and §
T=N izl(ai_a) 2190. ®
£
d Ex(d—d—1) Ex(d—d+1) o a(x107%
1 NA 0.1764 0.6539 3.57
2 0.1764 0.1718 0.6539 3.09
3 0.1718 0.1706 0.6537 2.74 1 y ‘ i i .
4 0.1706 0.1703 0.6535 3.09 6 8 Dim;gsion 12 14
5 0.1703 0.1702 0.6535 2.01
6 0.1702 0.1701 0.6531 2.19 FIG. 1. The estimated running tim@¢SPTd) (solid line) and
7 0.1701 0.1702 0.6534 2.91 T(PT,d) (dotted ling for d=5,6, . . .,15.
8 0.1702 0.1701 0.6532 1.92
9 0.1701 0.1699 0.6535 1.76 devition of the estimate obtained from th#h run, respec-
10 0.1699 NA 0.6533 2.73 tively. The computational results are summarized in Table II.
In PT, we set the number of temperature levels-d, the
target temperaturé,,=1, and the highest temperatute
first coordinate ok; lying in the interval ¢,— o, 6,+¢) for ~ =d, by noticing that the major part of lia(x) is a linear
eachi, i= . d. Let @ denote the true value of the prob- function of d. The temperature; is so high that the local

ability. It is easy to computex=0.6536 under the above updating sampler almost did a random work in the space
setting. Table | summarizes the computational results. [0,1)" at that level. The intermediate temperatures were set
shows that the estimates are equally accurate for all levels guch that their inverses are equally spaced betwegrafd
the buildup ladder. 14, . Inthe local updating step, the sample of each level was
To compare SPT and PT, we have the following experi-updated iteratively by the MH algorithm fdr steps as in
ments. Ford=5,6, ...,15, we ran SPT and PT ten times SPT. Each run of PT consists of 2é046 iterations ford
independently. Each run of SPT consists of 288 itera- =5, ...,10 and5.0le+6 iterations ford=11,...,15. In
tions. As in the above experiment, we discarded the firsthese runs, the first 10 000 iterations were discarded for the
10000 iterations, and used the subsequent iterations for ifurn-in process, and the others were used for estimation.
ference. The standard deviations of the estimates were conihe computational results are also summarized in Table II.
puted using the batch mean metH@$] with batch number Figure 1 compares the estimated CPU tinT€A,d)

50. Leta; ando; denote the estimate of and the standard =Time(A,d)/72.5x [;(A,d)/8.5e—4]2, which denotes the

TABLE II. Comparison of the results of SPT and PT for the witch’s hat distributions it —15. The
“Time” is the CPU time(in secondsof one run used by a workstation. The * ‘estimate’and the * ‘averaged
standard deviation- were computed based on ten runs, wheFeE 0.a/10 ando= =10 gi/10.

SPT PT

d Time (s) o~ ; (1074 Time (s) o~ ; (1074

5 72.5 0.6546 8.5 58.8 0.6529 9.7

6 94.9 0.6540 9.1 84.7 0.6530 10.5
7 118.6 0.6541 9.2 115.6 0.6525 11.2
8 145.8 0.6530 9.3 152.4 0.6530 13.2
9 174.6 0.6534 9.2 190.8 0.6538 15.8
10 206.0 0.6533 9.4 236.7 0.6517 20.5
11 239.3 0.6528 9.3 711.7 0.6531 17.7
12 2755 0.6525 9.9 847.7 0.6530 21.3
13 3129 0.6532 9.7 996.1 0.6527 33.8
14 353.7 0.6531 10.0 1156.4 0.6506 47.5
15 397.4 0.6532 10.4 1338.0 0.6450 84.5
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CPU time needed on a workstation for algoriti#&rand di- b

mensiond to attain an estimate of with o=8.5%e—4. The [rp————" I -
plot shows that SPT has significantly eliminated the curse of

dimensionality suffered by the Gibbs sampler in this ex- &

ample, but PT has not. A linear fitting on the logarithms of

T(-,-) and d shows thatT(SPTd)~d'"® and T(PT,d) s ©

~d®%0 Later, SPT was applied to simulate frofgy(X). i

With 13 730 s on the same workstation, SPT got one estimate

of a with standard deviation 2e3-3. Note that with the 2

same computational time, PT can only attain one estimate 0 *

about the same accuracy fdr=15. Different temperature - st ot et
ladders were also tried for PT, for exampies \/d, but the 3 .
resulting CPU time scale against dimensions is about the 0 2000 4000 6000 8000 10000
same as reported above after adjusting the standard devie time

tion.

The efficiency of SPT in the example can be argued as FIG. 2. The time plot of the spontaneous magnetization obtained
follows: Suppose thaft(x;) has been mixed well by SPT and by dynamic weighting in a typical run for the Ising model with
a samplex; has been drawn from the peak ff -) with an =128 and8=0.5, where time is measured in the number of itera-
approximate probability + 8. With the extrapolation opera- tons.
tion, a sample/,; from f;, 1(-) can be easily obtained by

augmenting tox, an independent random number drawn curse of dimensionality in simulation from Ising models.
| . . .
from uniform (0,1). The sample will be located in the peak of Simulated tempering and parallel tempering also suffer from

f..,(-) with probability (1— 8)a. However, a sampler that some difficulty in traversing freely between the two energy

samples fromf;_ ; directly will only have probabilitya' ** wells for the models of largel as suggested in Ref29].

to locate the peak in one trial. This analysis shows theTyp|caIIy, they need many levels near the critical point to

samples from the preceding levels provide a clue for Samz_acconémod?teéhe dl\{ergencrcla .Of tge _spe_cl:llf;‘c heat of tg.? Sys-
pling in the latter levels. tem. Even for dynamic weightinpl5], it still has some dif-

ficulty in mixing the two energy wells. Figure @adopted
_ from Ref.[28]) shows a time plot of the spontaneous mag-
B. Ising model netization M =3;_,x;; /L?) obtained by dynamic weight-
Let X={x;}, i,j=1,...L denote a two-dimensional ing in a typical run for the mode_I with =128 andﬁ=0.5_. It
array of random variables that take values from the seshows that the system can mix very slowly even with dy-

{+1,—1}, whereL is called the linear size of the model. The hamic weighting. For details of the run, refer to REZ8].
probability mass function oX can be written as We note that the multicanonical methpd| and its variants

[16—19 all claim that they can mix the two energy wells for
this model. Here we would provide a method that can work
Pg(X)= Tﬂ)eml ,3,2 Xij (Xi v 1+ Xij+1) [ well for this model without the use of importance weights.
Mt SPT was also applied to simulate from the same Ising
model withL =128 andB=0.5. The buildup ladder is com-
wherex;; e {—1,1} is called a sping is the inverse tempera- prised of the Ising models with =3,4, ... 128. At each
ture, andZ(pB) is the partition function. To avoid asymme- complexity level, it is simulated by the Gibbs sampler ac-
tries at edges of the array, we follow RE27] to assume that cording to the conditional distribution
X has a toroidal shape, that i, 1 1=X; 1, X_+1;=Xy, and
X +1+1=X11. When the temperature is at or below the P(Xij:+1|xifl,j Xis1j Xij—1.Xij+1)
critical point (8=0.4407), the system is known to have two

L

oppositely magnetized statéwith all spins being+1 or _ 1

—1) separated by a very steep energy barrier. The symmetry ~ 1+exp— 2B(Xi—1jtXip1jtXijo1t X j+1)}
of the magnetized states makes this model more amenable to

theoretical physics. However, for a sampling algorithm that P(Xi = —1X 1) Xi1) X 1,Xj+1)

does not rely on the symmetry of the states, this is a very

diffcult problem. When the temperature is below the critical =1-P(xj= +1|xi_1,j Xig 1) Xij—1:Xij+1)-

point, the Gibbs sampler is almost never able to move to the

opposite state from that it started with for a large valué.of The extrapolation and projection operators are illustrated by
However, for a small value dof, sayL=3 or 4, the Gibbs Fig. 3 (the transition between the levels &f=3 and L
sampler is able to mix the two energy states well even at &4). For generality, we denote the two levels lyandk,,
temperature below the critical point. In fact, when the tem-respectively. Let)(klz{xilj} and szz{xﬁ-} denote the cur-
perature is below the critical point, the mixing time of the
Gibbs sampler is approximately proportional to e3ipy )
Hence, we claim that the Gibbs sampler also suffers from thand X{(zz{xizj + denote the new samples at levklsandk,,

rent samples at levelk; and k,, respectively;Xi’(lz{xilj/}
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respectively. The projection operation is to copy the valuesSThe extrapolation operation is first to copy the valueé(plf
of Xy, at the black and white points to the correspondingo the solid and empty circles o, accordingly, and then to
points of Xy, . The projection probability is then impute the values ok;_at the number-labeled points in the

order of the numbers. The values are imputed with the fol-

Top(Xig= Xy, ) =1 lowing proposal distribution:

1
:1+exp[—2 (Y My X2 X2 X2 X3 Y
B YioWk, T Ri—1 i+, ij-1T A+

P(Xi'=+1)

@

P(x2'=-1)=1-P(x3 = +1),

kg

where M == 1Xilj/ki is the spontaneous magnetization differently labeled points andiA| denotes the number of

o points in A. The new configurations, and X, will be

of X, x,zv" is set to zero if it is not yet imputed, ang, is q ) q i he M i
a user specified parameter called the magnetization facto‘?‘ccepte or rejected according to E@), the Metropolis-

The laraer the more likelv that the imputed value has the Hastings rule, which will force the between-level transition
9€ryi, y P to satisfy the detailed balance condition. In fact, the extrapo-

same sign as that dfl, . Note that we will keep the same |ation and projection operations are arbitrary and one can
labeled point sharing the same proposed value in the extrapehoose the most desirable ones just as the proposal function
lation process. The extrapolation probability is then of the conventional Metropolis-Hastings algorithm. In our
simulations, we sef, = 0.5/128, a linear function ok. The
acceptance rates of the between-level transitions are between
Te(Xi,— X)) =1x T PO, 0.2 and 0.6 for all levels. The use of the magnetization factor
=t makes the acceptance rate of the between-level transitions
uch more controllable.
SPT was run for 50000 iterations, and 10000 samples
were collected for the model df=128 with an equal time
space along the run. The time plot of the spontaneous mag-
(@) (b) netization of the collected samples is shown in Fig. 4. It
shows that the system is able to traverse freely between the

|A]

where 1 denotes the proposal probability for the nonlabeleg1
points, copying froka1 to X&z; A denotes the set of all

i T 7 ? two energy wells. Comparing to Fig. 2, it is easy to see that

SPT has made a drastic improvement in mixing for Ising

models over dynamic weighting, and thus the tempering al-

o N . o I\ 6 i )t gorithms and the Gibbs sampler. The improvement is again
) I =
[ 4 L 4 L 4 D *—@ 4 ) 0
(=]
[ v ® ) *—+o 3 ) =3
s
3

[ L 4 L 4 s *—O D
FIG. 3. lllustration of the extrapolation and projection operators

by the transition between thex3 (a) and 4x4 (b) Ising models. S
Extrapolation: the values at the solid and empty circles are copied
from (@) to (b) accordingly, and the values at the number labeled
points are imputed with the proposal distributi@. Projection: the FIG. 4. The time plot of the spontaneous magnetization of the
values at the solid and empty circles are copied frdmnto (a) configurations sampled by SPT for the Ising model wlith 128
accordingly. and 8=0.5, where time is measured in the number of iterations.

0 2000 4000 6000 8000 10000
time
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TABLE Ill. The CPU time (Time), number of energy well 0

switches (g,), and mixing time ¢) of SPT for the Ising models

with d=10,2Q . . .,60. 20110
o 50/10

d Time (s) Now 7(10°%s) o 100

10 23.0 12044 1.91 S

20 161.3 9517 16.95 3

30 537.7 8209 65.50 S

40 1336.9 7498 178.30 E 2

50 2790.9 6823 409.04

60 5025.0 6068 828.11 °
o

due to the use of the buildup ladder. The extrapolation op-

eration extrapolates a sample from the low-dimensional 0.96 0.98 1.00 1.02 1.04

space to a sample of the high-dimensional space, but keepiny e

the spontaneous magnetization of the sample almost un- FiG. 5. Analysis of the cumulants for the two-dimensional Ising
changed in magnitude and sign. The mixing of the system ifnodel. The horizontal axisT(T,) is the ratio of temperature and
the low-dimensional space provides a substantial help for theritical temperature and the vertical axis is the ratio of cumulants
mixing in the high-dimensional space. Hence, the curse ofuU, /U, /). The values ol andL’ of each curve are shown in the
dimensionality suffered by the Gibbs sampler for the modelpper-right box.

can be partially eliminated by SPT.

In order to investigate the relationship of mixing time where B, denotes the analytic critical value of the two-
against system size, SPT was run for the models yith dimensional Ising model. Each run consists of 21 000 itera-
=0.5 andL=10,2Q .. .,60. Each run consists of 51000 it- tions and the first 1000 iterations were used for the burn-in
erations, and the first 1000 iterations were used for therocess. The samples were collected at the levels Wwith
burn-in process. Table 11l shows the CPU time and the num= 10, 40, and 50. Figure 5 plots the ratios of the cumulants.
ber of switches of the two energy wells of each run. TheThe cumulant of the Ising model is calculated in the formula
theory of regenerative approaf80] suggests that the num- U, =1— ((|M|*))/(3(|M|?)2). A theory of the Ising model
ber of independent samples obtained in each run should kshows that the critical point is the fixed point where we have
proportional to the number of switches of the energy wellsu, =U,, for any pair of models. Hence, if the ratio of
Based on that, we define the mixing timeof SPT as the U /U, is plotted against temperatuter 3), then for all
averaged CPU time cost by one energy well switch. A lineapairs there will be a unique crossing at one particular tem-
fitting on the logarithms of- andL shows thatr~L3% Al-  perature. This is the critical point. Figure 5 shows that the
though this result is less favorable to that of L?8, ob- critical point can be estimated by SPT accurately. Although it
tained by both the transition matrix Monte Carlo metdd] is slightly higher than the true value, this is reasonable as we
and the multicanonical methd@®2], SPT is still attractive in  are working on finite-size models.
some applications. For example, if we want to conduct a
finite-size scaling analysis, SPT will be an ideal method. SPT
is able to simulate the models of different sizes in one single
run and so it will create some computational saving. This paper explores the use of sequential structures for

This experiment shows one application of SPT, estimatingliminating the curse of dimensionality in sampling from
the critical point of the Ising model. SPT was run with  high-dimensional systems. Theoretically, SPT implements
=50 and a series oB’s ranging from 0.9B8, to 1.053,, the following distribution decomposition:

IV. DISCUSSION

f(X0,Xo, - oo Xa) = F(X) F(XalX1) - - - F(XilXq, o oo Xi—g) - - F(XalXq, oo Xg—1)

in sampling. It avoids sampling directly in the high-
dimensional space and, thus, avoids the curse of dimension-
ality possibly suffered from. The efficiency of SPT can be
argued in the Rao-Blackwellization procedyi&s] as fol-
lows: Suppose we are interested in estimating one integraf X can be decomposed into two paris (x,) and the con-

| =E;h(x) with respect to a distributiori(x). The simple ditional expectatiorE[h(x)|x,] can be carried out analyti-
sampling method is to first draw independent sampleally, thenl can be estimated alternatively by a mixture es-
xI) . x(M from f(x), and then estimateby timator

1= %{h(x(l)Jr oo h(xM)L,
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1 The latter equation implies that

[=—{E[h()|x5"]+ - - +E[h(x)x§™1}.
- 1 1 ~

. 5 5 var(l)= —var{h(x)}=—var{E[h(x)|x,]} =van(l).

It is easy to see that bothand| are unbiased, but has a m m

smaller variance because of the simple facts SPT implements a sequential Monte Carlo integration for

_ E[h(x)|x4] along the buildup ladder and, thus, is more effi-

Eh() =EAE{h()[x2}], cient than the sampler that tries to sample from

and f(Xq1, ....Xq) directly. Hence, SPT is useful for sampling
from the high-dimensional systems where the analytical in-
varfh(x)}=varE[h(x)|x,]} + E{vaf h(x)|x,]}. tegration is intractable.
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