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Use of sequential structure in simulation from high-dimensional systems

Faming Liang*
Department of Statistics, Texas A&M University, College Station, Texas 77843-3143
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Sampling from high-dimensional systems often suffers from the curse of dimensionality. In this paper, we
explored the use of sequential structures in sampling from high-dimensional systems with an aim at eliminating
the curse of dimensionality, and proposed an algorithm, so-called sequential parallel tempering as an extension
of parallel tempering. The algorithm was tested with the witch’s hat distribution and Ising model. Numerical
results suggest that it is a promising tool for sampling from high-dimensional systems. The efficiency of the
algorithm was argued theoretically based on the Rao-Blackwellization theorem.
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I. INTRODUCTION

With the development of science and technology,
more and more need to deal with high-dimensional syste
For example, we need to align a group of protein or DN
sequences to infer their homology@1#, predict the tertiary
structure of a protein to understand its function@2#, estimate
the volatility of asset returns to understand the price trend
the option market@3#, simulate from spin systems to unde
stand their physical properties@4–7#, etc. In these problems
the dimensions of the systems often range from several h
dreds to several thousands or even higher. Their solu
spaces are so huge that sampling has been an indispen
tool for an inference for them. How to sample from the
high-dimensional systems efficiently puts a great challe
on the existing Markov chain Monte Carlo~MCMC! meth-
ods.

The conventional MCMC algorithms, such as t
Metropolis-Hastings~MH! algorithm@8# and the Gibbs sam
pler @9#, often suffer from a severe difficulty in convergenc
One reason is multimodality: on the energy landscape of
system, there are many local minima that are separate
high barriers. In simulation, the Markov chain may get stu
in a local energy minimum indefinitely, rendering the sim
lation ineffective. To alleviate this difficulty, many tech
niques have been proposed, such as simulated temp
@5,10#, parallel tempering ~PT! @6,11–13#, evolutionary
Monte Carlo@14#, dynamic weighting@15#, multicanonical
weighting @7#, and its variants@16–19#. In the tempering
algorithms and evolutionary Monte Carlo, the energy barri
are flattened by increasing the ‘‘temperature’’ of the syste
such that the samplers can move across them freely. In m
ticanonical and dynamic weighting, the samplers
equipped with an importance weight such that they can m
across the energy barriers freely.

However, for many problems the slow convergence is
due to the multimodality, but the curse of dimensionali
that is, the number of samples increase exponentially w
dimension to maintain a given level of accuracy. For e
ample, the witch’s hat distribution@20# has only one single
mode, but the convergence time of the Gibbs sampler o
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increases exponentially with dimension. For this kind
problems, although the difficulty of slow convergence can
resolved by the tempering or the importance weights ba
algorithms to some extent, the curse of dimensionality c
not be eliminated significantly, as these samplers alw
work in the same sample space.

In this paper, we provide a different treatment for t
problem based on the sequential structure of the syste
with an aim at eliminating the curse of dimensionality su
fered by the conventional MCMC methods in simulatio
from them. As an extension of PT, sequential parallel te
pering ~SPT! works by simulating from a sequence of sy
tems of different dimensions. The idea is to use the inform
tion provided by the simulation from low-dimension
systems as a clue for the simulation from high-dimensio
systems, and, thus, to eliminate the curse of dimensiona
significantly. Although this idea is very interesting, it is n
completely new in computational physics; similar ideas,
example, the multigrid method@21# and inverse renormaliza
tion group method@22#, have appeared before. SPT w
tested with the witch’s hat distribution and Ising model. T
numerical results suggest that our method is a promising
for simulation from high-dimensional systems.

II. SEQUENTIAL EXCHANGE MONTE CARLO

A. Buildup ladder construction

A buildup ladder@15,23# comprises a sequence of system
of different dimensions. Typically, we have

dim~X1!,dim~X2!,•••,dim~Xm!,

whereXi denotes the sample space of thei th system, with an
associated density or mass functionp i(zi)/Zi and partition
functionZi . The principle of the buildup ladder constructio
is to approximate the original system by a system with
reduced dimension, the reduced system is again appr
mated by a system with a further reduced dimension, u
one reaches a system of a manageable dimension, that is
corresponding system is able to be sampled from easily b
local updating algorithm, such as the MH algorithm or t
Gibbs sampler. The solution of the reduced system is t
extrapolated level by level until the target system is reach
For many problems, the buildup ladder can be construc
©2003 The American Physical Society01-1
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easily. For example, in the witch’s hat and Ising model e
amples, the ladders were constructed by marginalization
shown in this paper.

We note that the temperature ladder used in the tempe
algorithms can be regarded as a special kind of buildup
der, with p i(zi) being defined as@pm(zm)/Zm# tm /t i, where
pm(zm)/Zm is the target distribution to be sampled from
Along the temperature laddert1.•••.tm , the complexity
of the systems increases monotonically.

B. Sequential parallel tempering

As an extension of PT, SPT also works by simulati
from the joint distribution

pp~z!5)
i 51

m
1

Zi
p i~zi !,

where zi denotes a sample from p i , and z
5$z1 ,z2 , . . . ,zm%. Simulation consists of two steps, loc
updating and between-level transitions. In the local upda
step, eachp i is simulated by a local updating algorithm
such as the MH algorithm or the Gibbs sampler. T
between-level transitions involve two operations, name
projection and extrapolation. This is different from that
parallel tempering, where only the swapping operations
involved. Two levels, say,i and j, are proposed to make th
between-level transition. Without loss of generality, we
sume thatXi,Xj . The transition is to extrapolatezi (PXi)
to zj8 (PXj ), and simultaneously to projectzj (PXj ) to zi8
(PXi). The extrapolation and projection operators are c
sen such that the pairwise move (zi ,zj ) to (zi8 ,zj8) is revers-
ible. The transition is accepted with probability

minH 1,
p i~zi8!p j~zj8!

p i~zi !p j~zj !

Te~zi8→zj !Tp~zj8→zi !

Te~zi→zj8!Tp~zj→zi8!J , ~1!

where Te(•→•) and Tp(•→•) denote the transition prob
abilities corresponding to the extrapolation and project
operations, respectively. In this paper, the between-le
transitions are only performed on the neighboring levels,
u i 2 j u51. In summary, each iteration of SPT proceeds
follows.

~1! Update eachxi independently by a local updating a
gorithm for a few steps.

~2! Try the between-level transitions form pairs of neigh-
boring levels (i , j ), with i being sampled uniformly on
$1,2, . . . ,m% and j 5 i 61 with probability p( j u i ), where
p( i 11u i )5p( i 21u i )50.5 andp(2u1)5p(m21um)51.

III. TWO ILLUSTRATIVE EXAMPLES

A. The witch’s hat distribution

The witch’s hat distribution has the following density:

f d~x!5~12d!S 1

A2ps
D d

expH 2

(
i 51

d

~xi2u i !
2

2s2
J 1dI xPC ,
05610
-
as

ng
d-

g

e
,

re

-

-

n
el
.,
s

whered is dimension andC denotes the opend-dimensional
hypercube (0,1)d. In the case ofd52, the density shape
like a witch’s hat with a broad flat brim and a high conic
peak, so the distribution is called the witch’s hat distributio
Matthews@20# constructed this distribution as a countere
ample to the Gibbs sampler, and showed that the mixing t
of the Gibbs sampler on it increases exponentially with
mension. He argued for the slow convergence as follo
Those coordinates must be lined up with the peak befor
Gibbs step can move from the brim to the peak, and this
exponentially small probability. Intuitively, we can unde
stand the slow mixing as follows: As dimension increas
the volume of the peak decreases exponentially, hence
time for the Gibbs sampler to locate the peak will also
crease exponentially. For example, whend5100 and d
50.05, 95% mass of the distribution is contained in a h
percube of volume 3.4e219, and the remaining 5% mass
almost uniformly distributed in the part ofC outside the
hypercube. Hence, sampling from such a distribution is l
searching for a needle in a haystack.~Note the Gibbs sample
will be reduced to a random walk in a region where t
density is uniform; searching for such a peak will take it
extremely long time, approximately proportional to the i
verse of the volume of the peak.! We notice that the othe
advanced Gibbs techniques, such as grouping, collap
@24#, and reparametrizations@25#, also fail for this example,
as they all try to sample fromf d(•) directly.

However, SPT works well for this example with the u
of a buildup ladder. For example, we are interested in sa
pling from f d(x), with d50.05, s50.05, u15•••5ud
50.5, andd510. The buildup ladder is constructed by se
ting p i5 f i(•) for i 51,2, . . . ,d, where f i(•) is the
i-dimensional witch’s hat distribution, which has the sam
parameter asf d(•) except for the dimension. Thus, SP
simulates fromd witch’s hat distributionsf 1(x1), . . . ,f d(xd)
simultaneously. In the local updating step, eachxi is updated
iteratively by the MH algorithm fori steps. At each MH step
one coordinate is randomly chosen and it is proposed to
replaced by a random number drawn from uniform~0,1! in-
dependently, and the proposal is accepted or rejected acc
ing to the MH rule. For this example, the MH algorithm
equivalent to the Gibbs sampler in mixing, but it is easier
implement. The between-level transition, say, the transit
between thei th and (i 11)th levels, proceeds as follows.~1!
Extrapolation: drawu;uniform(0,1) and setxi 118 5(xi ,u).
~2! Projection: setxi8 to be the firsti coordinates ofxi 11. The
corresponding extrapolation and projection probabilities
Te(•→•)5Tp(•→•)51.

For d510, SPT was run for ten times independent
Each run consists of 2.01e16 iterations. The fist 10 000 it-
erations were discarded for the burn-in process, and the
sequent iterations were used for inference. The overall
ceptance rate of the local updating moves is 0.2 and
overall acceptance rates of the between-level transitions
given in Table I. The independence of the acceptance r
on the complexity levels suggests that the simulation can
extended to a very large value ofd. To characterize the mix-
ing of the simulation, we estimated the probabilities of t
1-2
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USE OF SEQUENTIAL STRUCTURE IN SIMULATION . . . PHYSICAL REVIEW E67, 056101 ~2003!
first coordinate ofxi lying in the interval (u12s,u11s) for
eachi, i 51, . . . ,d. Let a denote the true value of the prob
ability. It is easy to compute;a50.6536 under the abov
setting. Table I summarizes the computational results
shows that the estimates are equally accurate for all leve
the buildup ladder.

To compare SPT and PT, we have the following expe
ments. Ford55,6, . . .,15, we ran SPT and PT ten time
independently. Each run of SPT consists of 2.01e16 itera-
tions. As in the above experiment, we discarded the fi
10 000 iterations, and used the subsequent iterations fo
ference. The standard deviations of the estimates were c
puted using the batch mean method@26# with batch number
50. Let â i and ŝ i denote the estimate ofa and the standard

TABLE I. Computational results for the witch’s hat distribution
with d51 –10. The columns Ex(d↔d21) and Ex(d↔d11)
record the acceptance rates of the transitions between levelsd and
d21 and that between levelsd and d11, respectively, for each

value ofd. The ‘‘estimate’’â̄ and the ‘‘standard deviation’’ŝ of the

estimate were computed based on ten independent runs. Leâ i

denote the estimate ofa from the i th run, andâ̄5( i 51
10 â i /10 and

ŝ5A( i 51
10 (â i2â)2/90.

d Ex(d↔d21) Ex(d↔d11) â̄ ŝ(31024)

1 NA 0.1764 0.6539 3.57
2 0.1764 0.1718 0.6539 3.09
3 0.1718 0.1706 0.6537 2.74
4 0.1706 0.1703 0.6535 3.09
5 0.1703 0.1702 0.6535 2.01
6 0.1702 0.1701 0.6531 2.19
7 0.1701 0.1702 0.6534 2.91
8 0.1702 0.1701 0.6532 1.92
9 0.1701 0.1699 0.6535 1.76
10 0.1699 NA 0.6533 2.73
05610
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devition of the estimate obtained from thei th run, respec-
tively. The computational results are summarized in Table
In PT, we set the number of temperature levelsm5d, the
target temperaturetm51, and the highest temperaturet1
5d, by noticing that the major part of lnfd(x) is a linear
function of d. The temperaturet1 is so high that the loca
updating sampler almost did a random work in the sp
(0,1)d at that level. The intermediate temperatures were
such that their inverses are equally spaced between 1/t1 and
1/tm . In the local updating step, the sample of each level w
updated iteratively by the MH algorithm fori steps as in
SPT. Each run of PT consists of 2.01e16 iterations ford
55, . . . ,10 and5.01e16 iterations ford511, . . .,15. In
these runs, the first 10 000 iterations were discarded for
burn-in process, and the others were used for estimat
The computational results are also summarized in Table
Figure 1 compares the estimated CPU timeT(A,d)

5Time(A,d)/72.53@ s̄̂(A,d)/8.5e24#2, which denotes the

FIG. 1. The estimated running timesT(SPT,d) ~solid line! and
T(PT,d) ~dotted line! for d55,6, . . .,15.
TABLE II. Comparison of the results of SPT and PT for the witch’s hat distributions withd55 –15. The

‘‘Time’’ is the CPU time ~in seconds! of one run used by a workstation. The ‘‘estimate’’â̄ and the ‘‘averaged

standard deviation’’ŝ̄ were computed based on ten runs, whereâ̄5( i 51
10 â i /10 andŝ̄5( i 51

10 ŝ i /10.

SPT PT

d Time ~s! â̄ ŝ̄ (1024) Time ~s! â̄ ŝ̄ (1024)

5 72.5 0.6546 8.5 58.8 0.6529 9.7
6 94.9 0.6540 9.1 84.7 0.6530 10.5
7 118.6 0.6541 9.2 115.6 0.6525 11.2
8 145.8 0.6530 9.3 152.4 0.6530 13.2
9 174.6 0.6534 9.2 190.8 0.6538 15.8
10 206.0 0.6533 9.4 236.7 0.6517 20.5
11 239.3 0.6528 9.3 711.7 0.6531 17.7
12 275.5 0.6525 9.9 847.7 0.6530 21.3
13 312.9 0.6532 9.7 996.1 0.6527 33.8
14 353.7 0.6531 10.0 1156.4 0.6506 47.5
15 397.4 0.6532 10.4 1338.0 0.6450 84.5
1-3
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FAMING LIANG PHYSICAL REVIEW E 67, 056101 ~2003!
CPU time needed on a workstation for algorithmA and di-

mensiond to attain an estimate ofa with s̄̂58.5e24. The
plot shows that SPT has significantly eliminated the curse
dimensionality suffered by the Gibbs sampler in this e
ample, but PT has not. A linear fitting on the logarithms
T(•,•) and d shows thatT(SPT,d);d1.76 and T(PT,d)
;d6.50. Later, SPT was applied to simulate fromf 100(x).
With 13 730 s on the same workstation, SPT got one estim
of a with standard deviation 2.3e23. Note that with the
same computational time, PT can only attain one estimat
about the same accuracy ford515. Different temperature
ladders were also tried for PT, for example,m}Ad, but the
resulting CPU time scale against dimensions is about
same as reported above after adjusting the standard d
tion.

The efficiency of SPT in the example can be argued
follows: Suppose thatf i(xi) has been mixed well by SPT an
a samplexi has been drawn from the peak off i(•) with an
approximate probability 12d. With the extrapolation opera
tion, a samplexi 118 from f i 11(•) can be easily obtained b
augmenting toxi an independent random number draw
from uniform~0,1!. The sample will be located in the peak
f i 11(•) with probability (12d)a. However, a sampler tha
samples fromf i 11 directly will only have probabilitya i 11

to locate the peak in one trial. This analysis shows
samples from the preceding levels provide a clue for sa
pling in the latter levels.

B. Ising model

Let X5$xi j %, i , j 51, . . . ,L denote a two-dimensiona
array of random variables that take values from the
$11,21%, whereL is called the linear size of the model. Th
probability mass function ofX can be written as

Pd~X!5
1

Z~b!
expH b (

i , j 51

L

xi j ~xi 11,j1xi , j 11!J ,

wherexi j P$21,1% is called a spin,b is the inverse tempera
ture, andZ(b) is the partition function. To avoid asymme
tries at edges of the array, we follow Ref.@27# to assume tha
X has a toroidal shape, that is,xi ,L115xi ,1 , xL11,j5x1,j , and
xL11,L115x1,1. When the temperature is at or below th
critical point (b50.4407), the system is known to have tw
oppositely magnetized states~with all spins being11 or
21) separated by a very steep energy barrier. The symm
of the magnetized states makes this model more amenab
theoretical physics. However, for a sampling algorithm t
does not rely on the symmetry of the states, this is a v
diffcult problem. When the temperature is below the critic
point, the Gibbs sampler is almost never able to move to
opposite state from that it started with for a large value ofL.
However, for a small value ofL, sayL53 or 4, the Gibbs
sampler is able to mix the two energy states well even a
temperature below the critical point. In fact, when the te
perature is below the critical point, the mixing time of th
Gibbs sampler is approximately proportional to exp(bL).
Hence, we claim that the Gibbs sampler also suffers from
05610
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curse of dimensionality in simulation from Ising model
Simulated tempering and parallel tempering also suffer fr
some difficulty in traversing freely between the two ener
wells for the models of larged as suggested in Ref.@29#.
Typically, they need many levels near the critical point
accommodate the divergence of the specific heat of the
tem. Even for dynamic weighting@15#, it still has some dif-
ficulty in mixing the two energy wells. Figure 2~adopted
from Ref. @28#! shows a time plot of the spontaneous ma
netization (M5( i , j 51

L xi j /L2) obtained by dynamic weight
ing in a typical run for the model withL5128 andb50.5. It
shows that the system can mix very slowly even with d
namic weighting. For details of the run, refer to Ref.@28#.
We note that the multicanonical method@7# and its variants
@16–19# all claim that they can mix the two energy wells fo
this model. Here we would provide a method that can wo
well for this model without the use of importance weights

SPT was also applied to simulate from the same Is
model withL5128 andb50.5. The buildup ladder is com
prised of the Ising models withL53,4, . . . ,128. At each
complexity level, it is simulated by the Gibbs sampler a
cording to the conditional distribution

P~xi j 511uxi 21,j ,xi 11,j ,xi , j 21 ,xi , j 11!

5
1

11exp$22b~xi 21,j1xi 11,j1xi , j 211xi , j 11!%
,

P~xi j 521uxi 21,j ,xi 11,j ,xi , j 21 ,xi , j 11!

512P~xi j 511uxi 21,j ,xi 11,j ,xi , j 21 ,xi , j 11!.

The extrapolation and projection operators are illustrated
Fig. 3 ~the transition between the levels ofL53 and L
54). For generality, we denote the two levels byk1 andk2,
respectively. LetXk1

5$xi j
1 % and Xk2

5$xi j
2 % denote the cur-

rent samples at levelsk1 and k2, respectively;Xk1
8 5$xi j

18%

andXk2
8 5$xi j

28% denote the new samples at levelsk1 andk2,

FIG. 2. The time plot of the spontaneous magnetization obtai
by dynamic weighting in a typical run for the Ising model withL
5128 andb50.5, where time is measured in the number of ite
tions.
1-4
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respectively. The projection operation is to copy the valu
of Xk2

at the black and white points to the correspond

points ofXk1
. The projection probability is then

Tp~Xk2
→Xk1

8 !51.
n

ct
he

e
ap

le
l

or

pie
le

05610
sThe extrapolation operation is first to copy the values ofXk1

to the solid and empty circles ofXk2
8 accordingly, and then to

impute the values ofXk2
8 at the number-labeled points in th

order of the numbers. The values are imputed with the
lowing proposal distribution:
P~xi j
28511!5

1

11exp$22b~gk2
Mk1

1xi 21,j
28 1xi 11,j

28 1xi , j 21
28 1xi , j 11

28 !%
, ~2!

P~xi j
28521!512P~xi j

28511!,
f

n
po-
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where Mk1
5( i , j 51

k1 xi j
1 /k1

2 is the spontaneous magnetizatio

of Xk1
, x

•,•
28 is set to zero if it is not yet imputed, andgk2

is
a user specified parameter called the magnetization fa
The largergk2

, the more likely that the imputed value has t

same sign as that ofMk1
. Note that we will keep the sam

labeled point sharing the same proposed value in the extr
lation process. The extrapolation probability is then

Te~Xk1
→XK2

8 !513)
l 51

uAu

P~xi j
28!,

where 1 denotes the proposal probability for the nonlabe
points, copying fromXk1

to Xk2
8 ; A denotes the set of al

FIG. 3. Illustration of the extrapolation and projection operat
by the transition between the 333 ~a! and 434 ~b! Ising models.
Extrapolation: the values at the solid and empty circles are co
from ~a! to ~b! accordingly, and the values at the number labe
points are imputed with the proposal distribution~2!. Projection: the
values at the solid and empty circles are copied from~b! to ~a!
accordingly.
or.

o-

d

differently labeled points anduAu denotes the number o
points in A. The new configurationsXk1

8 and Xk2
8 will be

accepted or rejected according to Eq.~1!, the Metropolis-
Hastings rule, which will force the between-level transitio
to satisfy the detailed balance condition. In fact, the extra
lation and projection operations are arbitrary and one
choose the most desirable ones just as the proposal fun
of the conventional Metropolis-Hastings algorithm. In o
simulations, we setgk50.5k/128, a linear function ofk. The
acceptance rates of the between-level transitions are betw
0.2 and 0.6 for all levels. The use of the magnetization fac
makes the acceptance rate of the between-level transit
much more controllable.

SPT was run for 50 000 iterations, and 10 000 samp
were collected for the model ofL5128 with an equal time
space along the run. The time plot of the spontaneous m
netization of the collected samples is shown in Fig. 4.
shows that the system is able to traverse freely between
two energy wells. Comparing to Fig. 2, it is easy to see t
SPT has made a drastic improvement in mixing for Isi
models over dynamic weighting, and thus the tempering
gorithms and the Gibbs sampler. The improvement is ag

s

d
d

FIG. 4. The time plot of the spontaneous magnetization of
configurations sampled by SPT for the Ising model withL5128
andb50.5, where time is measured in the number of iterations
1-5
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FAMING LIANG PHYSICAL REVIEW E 67, 056101 ~2003!
due to the use of the buildup ladder. The extrapolation
eration extrapolates a sample from the low-dimensio
space to a sample of the high-dimensional space, but kee
the spontaneous magnetization of the sample almost
changed in magnitude and sign. The mixing of the system
the low-dimensional space provides a substantial help for
mixing in the high-dimensional space. Hence, the curse
dimensionality suffered by the Gibbs sampler for the mo
can be partially eliminated by SPT.

In order to investigate the relationship of mixing tim
against system size, SPT was run for the models withb
50.5 andL510,20, . . . ,60. Each run consists of 51 000 i
erations, and the first 1000 iterations were used for
burn-in process. Table III shows the CPU time and the nu
ber of switches of the two energy wells of each run. T
theory of regenerative approach@30# suggests that the num
ber of independent samples obtained in each run shoul
proportional to the number of switches of the energy we
Based on that, we define the mixing timet of SPT as the
averaged CPU time cost by one energy well switch. A lin
fitting on the logarithms oft andL shows thatt;L3.4. Al-
though this result is less favorable to that oft;L2.8, ob-
tained by both the transition matrix Monte Carlo method@31#
and the multicanonical method@32#, SPT is still attractive in
some applications. For example, if we want to conduc
finite-size scaling analysis, SPT will be an ideal method. S
is able to simulate the models of different sizes in one sin
run and so it will create some computational saving.

This experiment shows one application of SPT, estimat
the critical point of the Ising model. SPT was run withL
550 and a series ofb ’s ranging from 0.95b0 to 1.05b0,

TABLE III. The CPU time ~Time!, number of energy well
switches (Nsw), and mixing time (t) of SPT for the Ising models
with d510,20, . . . ,60.

d Time ~s! Nsw t (1023 s)

10 23.0 12044 1.91
20 161.3 9517 16.95
30 537.7 8209 65.50
40 1336.9 7498 178.30
50 2790.9 6823 409.04
60 5025.0 6068 828.11
-
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where b0 denotes the analytic critical value of the two
dimensional Ising model. Each run consists of 21 000 ite
tions and the first 1000 iterations were used for the burn
process. The samples were collected at the levels witL
510, 40, and 50. Figure 5 plots the ratios of the cumulan
The cumulant of the Ising model is calculated in the formu
UL512(^uM u4&L)/(3^uM u2&L

2). A theory of the Ising model
shows that the critical point is the fixed point where we ha
UL5UL8 for any pair of models. Hence, if the ratio o
UL /UL8 is plotted against temperature~or b), then for all
pairs there will be a unique crossing at one particular te
perature. This is the critical point. Figure 5 shows that
critical point can be estimated by SPT accurately. Althoug
is slightly higher than the true value, this is reasonable as
are working on finite-size models.

IV. DISCUSSION

This paper explores the use of sequential structures
eliminating the curse of dimensionality in sampling fro
high-dimensional systems. Theoretically, SPT impleme
the following distribution decomposition:

FIG. 5. Analysis of the cumulants for the two-dimensional Isi
model. The horizontal axis (T/Tc) is the ratio of temperature an
critical temperature and the vertical axis is the ratio of cumula
(UL /UL8). The values ofL andL8 of each curve are shown in th
upper-right box.
f ~x1 ,x2 , . . . ,xd!5 f ~x1! f ~x2ux1!••• f ~xi ux1 , . . . ,xi 21!••• f ~xdux1 , . . . ,xd21!
-
s-
in sampling. It avoids sampling directly in the high
dimensional space and, thus, avoids the curse of dimens
ality possibly suffered from. The efficiency of SPT can
argued in the Rao-Blackwellization procedure@33# as fol-
lows: Suppose we are interested in estimating one inte
I 5Efh(x) with respect to a distributionf (x). The simple
sampling method is to first draw independent samp
x(1), . . . ,x(m) from f (x), and then estimateI by
n-

al

s

Î 5
1

m
$h~x(1)1•••1h~x(m)!%.

If x can be decomposed into two parts (x1 ,x2) and the con-
ditional expectationE@h(x)ux2# can be carried out analyti
cally, thenI can be estimated alternatively by a mixture e
timator
1-6
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Ĩ 5
1

m
$E@h~x!ux2

(1)#1•••1E@h~x!ux2
(m)#%.

It is easy to see that bothÎ and Ĩ are unbiased, butĨ has a
smaller variance because of the simple facts

Efh~x!5Ef@E$h~x!ux2%#,

and

var$h~x!%5var$E@h~x!ux2#%1E$var@h~x!ux2#%.
nd
e,

.

c

er

.G
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The latter equation implies that

var~ Î !5
1

m
var$h~x!%>

1

m
var$E@h~x!ux2#%5var~ Ĩ !.

SPT implements a sequential Monte Carlo integration
E@h(x)uxd# along the buildup ladder and, thus, is more ef
cient than the sampler that tries to sample fro
f (x1 , . . . ,xd) directly. Hence, SPT is useful for samplin
from the high-dimensional systems where the analytical
tegration is intractable.
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