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We propose an evolutionary Monte Carlo algorithm to sample from a target distribution with real-valued parameters. The attractive
features of the algorithm include the ability to learn from the samples obtained in previous steps and the ability to improve the mixing
of a system by sampling along a temperature ladder. The effectiveness of the algorithm is examined through three multimodal examples
and Bayesian neural networks. The numerical results confirm that the real-coded evolutionary algorithm is a promising general approach

for simulation and optimization.
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1. INTRODUCTION

Markov chain Monte Carlo (MCMC) methods have played
an important role in the development of science and technol-
ogy. This method originated in statistical physics (Hastings
1970; Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller
1953) and in recent years has been widely used in Bayesian
statistical computations. (For a recent overview, see Chen,
Shao, and Ibrahim 2000.) Several general promising ideas
have been found in the design of effective Monte Carlo meth-
ods. The idea of a temperature ladder has been used in par-
allel tempering (Geyer 1991), simulated tempering (Geyer
and Thompson 1995; Marinari and Parisi 1992), exchange
Monte Carlo (Hukushima and Nemoto 1996), and dynamic
weighting (Wong and Liang 1997). This idea works by sim-
ulating a sequence of distributions along a temperature lad-
der. Simulation at the high temperature levels help the system
overcome barriers of the energy landscape. The methods have
been applied successfully in the simulation of spin-glass mod-
els (Hukushima and Nemoto 1996; Liang and Wong 1999;
Marinari and Parisi 1992) and statistical inference (Geyer and
Thompson 1995).

The idea of importance sampling has been used to design
new MCMC methods. In the multicanonical method (Berg
and Neuhaus 1991), the MCMC method is designed to sam-
ple a microcanonical distribution, and importance weights are
used to obtain the correct expectation. In dynamic weighting
{(Wong and Liang 1997), the importance weight itself becomes
a dynamic variable and helps the system overcome the high
energy barriers.

The third general idea is the use of population. Parallel
tempering (Geyer 1991) can be viewed as a semi-population
method. It evolves a population of samples, with each sample
of the population updated individually. An early example of a
true population method is adaptive direction sampling (Gilks,
Roberts, and George 1994), in which a population of sam-
ples is simulated in parallel; at each iteration, one sample is
randomly selected from the current population to update by
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a line sampling step performed along a direction pointing to
another sample randomly selected from the current population.
This method was improved by Liu, Liang, and Wong (2000},
who suggested that the line sampling be performed along a
direction pointing to a local mode found by a local optimiza-
tion procedure initialized at another sample randomly selected
from the current population. Local optimization can be accom-
plished by a few steps of conjugate gradient iterations, and
thus the method is called conjugate gradient Monte Carlo
(CGMQ).

Recently, a population and temperature ladder based new
Monte Carlo method, the so-called evolutionary Monte Carlo
(EMC) method (Liang and Wong 2000), was proposed to sam-
ple from a distribution defined on a space of finite binary
sequence. This method works by simulating a population of
samples in parallel, with a different temperature attached to
each sample. The population is updated by mutation, crossover
and exchange operations with a high similarity with a genetic
algorithm (Goldberg 1989; Holland 1975). EMC has the learn-
ing ability of the genetic algorithm as well as the fast mixing
ability of parallel tempering (simulated tempering).

But EMC encounters the same difficulty as genetic algo-
rithms in applications to real parameter problems; namely, the
usual crossover operators for binary-coded chromosomes are
not as effective in the case that the chromosomes are coded
by real parameters. If one starts with a population, then the
crossover operator allows one to reach only a finite number of
points in the parameter space—those points whose parameter
components are selected from the corresponding components
of population members. In recent years, several crossover
operators have been proposed for the real-coded chromosomes
in the context of genetic algorithms, including linear crossover
(Wright 1991), BLX-a crossover (Eshelman and Schaffer
1993), and UNDX crossover (Ono and Kobayashi 1997). All
of these operators need some modifications for applications in
MCMC to satisfy the invariance or reversibility property of
the Markov chain transitions, however.

In this article we extend EMC to sample from a distribu-
tion defined on a real space. We propose a snooker crossover
operator for the real-coded chromosomes in the framework of
MCMC. We illustrate the algorithm through three multimodal
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examples and Bayesian neural networks. Numerical studies
demonstrate that the real-coded EMC algorithm offers a sub-
stantial improvement over parallel tempering in simulation and
optimization.

The article is organized as follows. The binary-coded EMC
algorithm is briefly reviewed in Section 2, and the real-
coded EMC algorithm and the snooker crossover operator are
described in Section 3. The use of the real-coded EMC algo-
rithm is illustrated through three examples in Section 4. The
applications of the algorithm in Bayesian neural networks are
given in Section 5. A brief discussion in Section 6 concludes
the article.

2. EVOLUTIONARY MONTE CARLO

Here we briefly review EMC (Liang and Wong 2000). Sup-
pose that we want to sample from a distribution defined on a
space of finite binary sequence,

J(x) ccexp{=H(x)/7}. (n

where x is a d-dimensional binary vector x = (8,, 3,
... B,;) with B, € {0,1} and 7 is a scale parameter (a so-
called temperature, which can be any value in which we are
interested); H(x) is called a “fitness” function in terms of
genetic algorithms. In general, x is often a sample from a
high-dimensional space and H(x) is the negative of the log-
density (up to an additive constant) of x.

First, a sequence of distributions f,(x),..., fy(x) is con-
structed as follows:

1
Z(1)

filx) = exp{—H(x)/1;}.

for i=1,....N, where Z(1;) = ¥, exp{—~H(x;)/t;}. The
temperatures ¢,,...,¢y form a ladder with the ordering
t, > --- > t,. For convenience, we denote the ladder by ¢t =
{z,.....ty}. Note that we always set 7, = 7 and that f,,(x) =
f(x) corresponds to the target distribution from which to sam-
ple. Let x = {x,,...,xy} denote a population of samples,
where x; is a sample from f;(x) and is called a chromosome
or an individual in terms of the genetic algorithm, and N is
called a population size. In EMC, the Markov chain state is
augmented as the population x instead of a single sample x,,
and the Boltzmann distribution of the population is

N
1= 5| = THG, @
2T
where Z(t) =[]Y, Z(t;). The population is updated by muta-
tion, crossover, and exchange operators (described later).

In the mutation operator, a chromosome, say x,,
is uniformly chosen from the current population x =
{x/,..., % ..., Xy}, then mutated to a new chromosome
¥, by reversing the values of some bits that are also
chosen randomly. A new population is proposed as y =
{x/..os ¥ ... Xy}, and it is accepted or rejected according
to the Metropolis—Hastings rule.

In the crossover operator, one chromosome pair, say x; and
x;, is selected from the current population x according to
some selection procedure, such as random selection or roulette
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wheel selection. In random selection, a chromosome is uni-
formly selected from the current population. In roulette wheel
selection, a chromosome is selected with a probability propor-
tional its Boltzmann weight w(x;) & exp(—H(x,)/t,), where
t, is a selection temperature that takes a value the same as
or close to 7. Two new “offspring.” y, and y;, are generated
by one-point, k-point, uniform, or adaptive crossovers. A new
population is proposed as y = {x;,..., ;... R I L
and it is accepted or rejected according to the Metropolis—
Hastings rule. In the one-point crossover, y; and y, are gen-
erated as follows. First, an integer crossover point is drawn
uniformly on {1,2,...,d}; then y; and y; are constructed
by swapping the gene to the right of the crossover point
between parents. The following graph illustrates the one-point
crossover operator:

B, ..

B B BB, ..

——
(Bl )

. Ba)

(Bl BL B By,

where ¢ is called a crossover point. If there are k crossover
points, then it is called a k-point crossover. One extreme case
is the uniform crossover, in which the value of each position
(i.e., the genotype) of v, is randomly chosen from the two
parental genotypes and the corresponding genotype of y; is
assigned to the parental genotype not chosen by y;. The adap-
tive crossover is more complicated, (see Liang and Wong 2000
for details).

The exchange operator is similar to that used in parallel
tempering and EMC.

3. REAL-CODED EVOLUTIONARY MONTE CARLO

Now we extend EMC to sample from a distribution defined
on a real space with real-coded chromosomes, that is, x =
{By.B,,...,B,} with B, € R. We define the corresponding
mutation, crossover, and exchange operators.

3.1 Mutation

We define the mutation operator as an additive Metropolis—
Hastings move. One chromosome, say x,, is uniformly chosen
from the current population x. A new chromosome is gener-
ated by adding a random vector e, so that

Yo =X teg, (3)

where e, is usually chosen for the mutation operation to have a
moderate acceptance probability, (e.g., .2-.5), as suggested by
Gelman, Roberts, and Gilks (1996). The new population y =
{x/,... ., Xy} is accepted with probability min(l.r,,)
according to the Metropolis—Hastings rule,

IO TG
"= F @) TO)

=exp{—(H(y,) — H(x:))/1;}

» Vs -

T(x|y)
T(ylx)’

where T(-|-) denotes the transition probability between
populations.

“4)
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3.2 Crossover

One chromosome pair, say x; and x; (i # j), is selected from
the current population x through roulette wheel or random
selection. Two “offspring,” y; and y,, are generated accord-
ing to some crossover operator (described later). A new pop-
ulation y is proposed as y = {Xx|,..., V. .\ V.5 Xyl
and it is accepted with probability min(1,r.) according to the
Metropolis—Hastings rule,

. S Txly)
L fx0) T(ylx)

:mq—uum—Humm

T(xly)
T(ylx)’

where T'(y|x) = P((x,. x)[x) P((y; ¥ )|(x; X)), P((x;, x))|x)
denotes the selection probablhty of (‘c,, x;) from the popula-
tion x, and P((v;, ¥;){(x;, x;)) denotes the generating proba-
bility of (v, ¥,) from the parental chromosomes (x;, x;).

3.2.1 One type of crossover operator
used in this article is the so called “real crossover,” which
includes one-point, k-point, and uniform crossover operators.
They are the same as that used in EMC. Wright (1991) called
this the “real crossover” to indicate that they are applied to the
real-coded chromosomes. One feature common to all of them
is symmetry; that is, P((v;, v)|(x;, x;)) = P((x;, x;)[(vi ¥;))-

—(HO) = HO)/ 22, (9)

Real Crossover.

3.2.2  Snooker Crossover. The snooker crossover opera-
tor is based on the snooker algorithm (Gilks et al. 1994;
Roberts and Gilks 1994). In the snooker algorithm, a popula-
tion of iid samples is simulated in parallel. At each iteration,
one sample, called a current point, is selected uniformly from
the current population, and is then updated by a line sam-
pling step performed along a direction passing through another
point, called an anchor point. The choice of the anchor point
may depend on any or all of the samples in the current popu-
lation except the current point. If the update leaves the condi-
tional distribution on the line invariant, then the resulting new
point is also an iid sample of the current set.

In this article, we generalize this operator to the case where
the samples of the current set are not necessarily identi-
cally distributed. The snooker crossover operator proceeds as
follows:

1. Uniformly select one chromosome, say x;, from the cur-
rent population x.

2. Select the other chromosome, say x;, from the subpopu-
lation x\ {x;} with a probability proportional to its Boltz-
mann weight w; = exp{—H(x;)/1,}, where £, is called a
selection temperature.

3. Lete=(x; —x;)/[lx;, — x;||, and y; = x; + re, where r €
(—o0, 00} is a random variable sampled from the density

f(r)yoc|r|*m(x; +re). (6)

4. Construct a new population by replacing x; with the “off-
spring” v,, and replace x by y.

Note that the line sampling step can be replaced by one
or several Metropolis—Hastings moves or the Griddy-Gibbs
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sampler (Ritter and Tanner 1992) in the case where sampling
directly from f(r) is difficult. The following theorem shows
that the snooker crossover operator is indeed a proper tran-
sition, which leaves the Boltzmann distribution (2) invariant.
To prove the theorem, we first introduce a lemma, which is a
generalized version of lemma 3.1 of Roberts and Gilks (1994)
and was proven by Liu et al. (2000).

Lemma I. Suppose that x ~ 7 and z is any fixed point in a
d-dimensional space. Let e = (x —z)/||x — z|| be a unit vector.
If r is drawn from its conditional distribution on the direction
e, [i.e., f(r) o |r|*"m(z+ re)], then y = z + re follows dis-
tribution 7. If z 1s generated from a distribution independent
of x, then y is independent of 7 and has density 7 (y).

Theorem /. Under the setting of the real-coded EMC algo-
rithm, the Boltzmann distribution (2) is invariant with respect
to the snooker crossover operator.

Proof. Suppose that the current population x ~ f(x) is
true, and that x; and x; are selected for the snooker crossover.
The selection procedure shows that x; and x; are independent
of one another. Following from Lemma 1, y, is independent of
x; and has density f,(y;). Hence y ~ f(y), f(x) is invariant
with respect to the snooker crossover operator.

3.3 Exchange

The exchange operator is the same as that used in the
binary-coded EMC algorithm. Given the current popula-
tion x and the attached temperature ladder ¢, (x,t) =
(X, fy ety vy, Iy), we propose to obtain a new popula-
tion y by making an exchange between x; and x; with-
out changing the t’s; that is, (y,8) = (X, t;, ..., X; b e ny
Xistjs o5 Xy, ty). The new population is accepted with prob-
ability min(1,r,) according to the Metropolis—Hastings rule,

MT(xly):exp{(H(xi) H(X))(——l)} (7)

T TOR

Typically, the exchange is performed only on two individ-
uals with neighboring temperatures; that is, [i — j| = 1. Let
p.(x;) denote the probability that x; is chosen to exchange
with the other individual, and let p,(x;|x;) denote the prob-
ability that x; is chosen to exchange with x; for a given x,.
Thus we have T'(y|x) = p.(x;)p.(x;lx;) + p.(x;)p.(x;|x;) and
T(ylx) =T(xly).

3.4 Algorithm

Based on the operators introduced earlier, the real-coded
EMC algorithm is summarized as follows. Given an initial
population x = {x,, . . ., xy} (initialized at random) and a tem-
perature ladder ¢ = {z,,. ...y}, one iteration comprises two
steps:

1. Apply mutation, real crossover or snooker crossover
operators to the population with probability p,,, 1 —p,, /2
and 1—p, /2 (p,, is called a mutation rate).

2. Try to exchange x; and x; for N pairs (i, j), with i sam-
pled uniformly on {1,..., N} and j =i=+ 1 with proba-
bility p,(x,|x;), where p,(x,|x;) = p,(x;_|x;) = .5 and
pe(xy|x;) = p(xpy_ylxy) = 1.
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In the mutation step, each chromosome of the population
is mutated independently. In the crossover step, about 50%
of chromosomes are chosen to mate. Note that the crossover
operator works in an iterative way; that is, each time, two
parental chromosomes are chosen from the updated population
by the previous crossover operation.

The algorithm has three user-set parameters: N, ¢, and p,,.
For the choice of N and ¢, note that they both are related to the
diversity of the population, and that a highly diversed popula-
tion is always preferred for the system mixing. Indeed, we use
two methods to increase the diversity of a population in EMC.
One method is to increase the population size N; the other is
to steepen the temperature ladder to increase the value of f,.
But these methods need some balance. A small population size
may result in a steeper temperature ladder and a low accep-
tance probability of exchange operations given the tempera-
ture range. A large population size may result in x, being less
likely to be updated in per-unit CPU time, and a slow sampler
for the target distribution. Neither is an attractive choice. One
heuristic guideline is to choose the population size compara-
ble (at least) with the dimension of the problem, choose the
highest temperature such that the (anticipated) energy barriers
can be easily overcome by a Metropolis move, and choose the
temperature ladder to produce a moderate acceptance proba-
bility of the exchange operations. For the choice of p,,, note
that the mutation operator usually provides a local exploration
around a local mode, and the crossover operators usually pro-
vide a much more global exploration over the entire sample
space and often have a low acceptance probability. To bal-
ance the two kinds of operations, we usually set p,, to a small
value between .25 and .4, which may not be optimal but usu-
ally works well. (For a further discussion of this choice refer
to Liang and Wong 2000.)

Each of the foregoing operators, {mutation, crossover, and
exchange) leaves the Boltzmann distribution (2) invariant. This
implies that the samples of a population are all mutually inde-
pendent, and that each distribution f;(x) is also invariant with
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Figure 1.
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respect to the operators. Hence the algorithm leads to an effec-
tive sampler for a sequence of distributions. Samples can be
collected from the corresponding levels for a further inference
for the distributions in which we are interested. The algo-
rithm’s structure is very flexible. Setting p,, = 1, it turns out
to be parallel tempering. Setting p,, =1 and N = 1, it turns to
the single-chain Metropolis—Hastings algorithm.

4. THREE ILLUSTRATIVE EXAMPLES
4.1 A Bimodal Example

We first test the effectiveness of crossover operators on a
five-dimensional mixture Gaussian

1 2
W(x) = §N5(0’ 15) + §N5(5. ]5),

where 0 = (0,...,0) and 5=(5.....5), and the distance
between the two modes is 5+/5 = 11.2. This example is iden-
tical to example 6.2 of Liu, Liang, and Wong (2000).

The Metropolis algorithm was first applied to the problem
with a proposal distribution unif[x — 2, x + 2]°. The overall
acceptance rate is about .23. In all of the 10° iterations, the
algorithm could not escape from the mode in which it started.

The real-coded EMC algorithm (hereinafter called simply
EMC) was also applied to this problem with a population size
of 10 and a constant temperature ladder ¢, = 1. A cross-test
was performed for the snooker crossover and real crossover
versus two initial distributions, N(0,1) and N(2.5,25L),
where 2.5 = (2.5,...,2.5). The mutation rate was .25, and
e, was a random draw from unif[x —2, x+2]°. In the snooker
crossover step, six parental chromosome pairs were chosen
to mate, and the overall acceptance rate was .22. In the real
crossover (one-point crossover) step, four parental chromo-
some pairs were chosen to mate, and the overall acceptance
rate was .35. The selection temperature was .1.

Figure 1 shows the sampling paths of the first 2,000 itera-
tions of the four runs. It is seen that if one starts with a locally
concentrated population, then the real crossover may fail to

T SO E SO S
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A Cross-Test on the Snooker Crossover and Real Crossover Versus Two Initial Distributions N(0,1;) and N(2.5,25l;). (a) The snooker

crossover versus N((0,l;); (b) the snooker crossover versus N((2.5,251;); (c) the real crossover versus N((0,l5); (d) the real crossover versus

N((2.5,25l,).
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Figure 2. The Mixing Results of the EMC Samples. (a) A marginal histogram of the sample; (b) time series plot of the sample x,.

escape from the mode in which it was started, but the snooker tion. The estimates of the mixing proportion, marginal means,
crossover can still mix well with other modes, although the variance, and even cdf’s of the mixture distribution can be
burn-in time becomes slightly longer. But if one starts with an  estimated rather accurately (i.e., they differ from the true val-
overdispersed population, then both of the crossover operators  ues in the second decimal place). Figure 2 plots the histogram
can mix well rapidly. Note that the mix of the real crossover and the time series of the first coordinate of x,. Compared
in Figure 1(d) is due in part to the exchange operations. With to CGMC, EMC has created significant savings in computa-
a longer run, the quantities of (-} can be estimated accu- tional time for this example. To get the same estimates, CGMC
rately by run (a) or run (b). This experiment clearly shows that needs about 300 seconds of CPU time on the same machine:
the crossover operators provide a much more global explo- this translates to an eight-fold improvement. Note that a rel-
ration over the entire sample space, whereas the mutation atively large population size and a low selection temperature
operator or the Metropolis move provides a good local explo- make EMC perform like CGMC; however, the local optimiza-
ration around a local mode. The experiment also shows that tion procedure is avoided.

the snooker crossover is more efficient than the real crossover

for this example. Because the real crossover operator intro- 45 A Multimodal Example

duces a different move, we still include it in the runs of the

following examples, although at a small proportion, e.g., .05 Consider a simulation from a two-dimensional mixture nor-
or .1. This experiment also suggests that a diversed popula- mal distribution,

tion is preferred for the mixing of a system. In Section 3 we

mentioned that simulating along a temperature is an efficient - & . {_L o V(r — 11 }

way to increase the diversity of a population. A run of EMC @) V2mo ;u’ s 202 o) =) )

with a nonconstant temperature ladder is described in the next

paragraph. where 0 = .1 and w, = --- = wy,; = .05. The mean vec-
In this run, the temperature ladder ranged from 5.0 to 1.0 OIS fy, fo, ..., Hy are uniformly drawn from the rectan-

with an equal space; the other parameters had the same set- gle [0, 10] x [0, 10]; these are listed in Table 1 and plotted
ting as in the last run, and only the snooker crossover was in Figure 3. It is seen that components 2, 4, and 15 are well
used. The overall acceptance probabilities of the mutation, separated from the others. The distance between component
crossover, and exchange operations were .44, .24, and .85. The 4 and its nearest-neighboring component is 3.15, and the dis-
acceptance probabilities of these operations on f, were also tance between component 15 and its nearest-neighboring com-
examined and were .22, .22, and .69. These values imply that ponent (except component 2) is 3.84. These distances are 31.5
EMC has been implemented effectively for this example. With ~ and 38.4 times of the standard deviation. The mixing of the
100,000 iterations, EMC produced 100,000 samples from 7r(-) ~components across so long a distance puts a great challenge
in about 36 seconds of CPU time on a Sun Ultra2 worksta- on EMC.

Table 1. The Mean Vectors of the 20 Components of the Mixture Normal Distribution

i iy Miz i i Miz i Kir Miz / it Hiz

1 2.18 5.76 6 3.25 3.47 11 5.41 2.65 16 4.93 1.50
2 8.67 9.59 7 1.70 .50 12 2.70 7.88 17 1.83 .09
3 4.24 8.48 8 4.59 5.60 13 4.98 3.70 18 2.26 31
4 8.41 1.68 9 6.91 5.81 14 1.14 2.39 19 5.54 6.86
5 3.93 8.82 10 6.87 5.40 15 8.33 9.50 20 1.69 8.11
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10

Figure 3. The Center Points of the 20 Components of the Mixture
Normal Distribution.

We applied EMC to this problem with the following param-
eter settings: population size 20, highest temperature 5, low-
est temperature 1, intermediate temperatures equally spaced
between 5 and 1, and mutation rate .2. The population was
initialized by the random vectors sampled uniformly from
U[0,1] x U[0, 1]. The algorithm was run for 100,000 iter-
ations, with a CPU time of 210 seconds (The computation
of this example was done on an Ultra Sparc2 workstation).
In the mutation step, we chose e, ~ N,(0,.25%,) for k =
l,..., N, where 1, is the temperature of the kth level. The
overall acceptance rate was .26. The overall acceptance rates
of real crossover (one-point crossover) operations and snooker
crossover operations were .14 and .16. The overall exchange
rate was .95. Figure 4(a) shows the sample paths (+ = 1) in the
first 10,000 iterations; Figure 5(a) shows the whole samples.
Figure 4(a) illustrates that EMC has sampled all components
in the first 10,000 iterations, although the population was ini-
tialized at one corner.

For comparison, we also applied parallel tempering to the
example with the same parameter settings and initialization.
Within the same computational time frame, parallel temper-
ing produced 73,500 iterations. The local updating step was
done by the mutation operator used in EMC, and the accep-
tance rate was .28. This value suggests that parallel tempering

(a)

10

10
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has been implemented effectively. The overall exchange rate
was .95. Parallel tempering took longer per iteration, because
each chromosome will undergo an updating step. However,
only about 50% of chromosomes are chosen to mate in the
crossover steps of EMC. Figure 4(b) shows the sample path
(t = 1) of the first 10,000 iterations, and Figure 5(b) shows the
whole samples. Figure 4(b) illustrates that parallel tempering
did not sample all components in the first 10,000 iterations,
and that most samples got stuck at the starting corner. Figure
5(b) shows that parallel tempering could not sample correctly
from the mixture distribution even with 73,500 iterations; the
components 2, 4, and 15 were never sampled.

For further comparison, we ran both algorithms 20 times
independently. Each run of EMC consists of 10° iterations,
each run of parallel tempering consists of 7.35 x 10° iterations,
and they have about the same CPU time. The mean and vari-
ance of the mixture distribution were estimated; the results are
summarized in Table 2 (evolutionary A and parallel temper-
ing). It is clear that EMC has estimated the mean and variance
rather accurately, but that parallel tempering fails completely.

In another experiment, we examined the effect of the
snooker crossover. The evolutionary algorithm with only the
real crossover operator was run 20 times. Each run com-
prised of 10° iterations, and the CPU time was about the same
as the last experiment. The estimation results were shown
in Table 2 (evolutionary B). The comparison shows that the
snooker crossover is superior to the real crossover and has a
faster convergence rate for simulation.

4.3 Galaxy Data Example

The dataset for this example comprises velocities of 82
galaxies from six well-separated conic sections of the corona
borealis region. It was first presented by Postman, Huchra, and
Geller (1986), and subsequently was analyzed by many others,
including Roeder (1990), Carlin and Chib {(1993), Chib (1995),
Phillips and Smith (1995), and Neal (1999). Our objective is
to find the best-fitting Gaussian finite-mixture model. Follow-
ing Chib (1995), we use the following setup for this example.
Let y,,...,y, denote the iid samples from a mixture model
of d components. The density function of the jth component

10

Figure 4. Sample Path of the First 10,000 lterations at Temperature t = 1. (a) EMC; (b) parallel tempering.
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Figure 5. The Plot of Whole Samples. (a) EMC; (b) parallel tempering.

is given by ¢(v|u;. o), where (u;, 07) is the component-
specific mean and variance and the mixture proportion is
denoted by p;, (Z}[:x p; = 1). The likelihood function is then

nod
L(y|0". M) =T]> p;d(xlu;. o).
i=1 j=1
where ' = (p|, ..., py_1 s Ofs - -, by, ) 1s the set of
parameters of model M,;. Assume that all components of 6 are
mutually independent and have the prior distributions

TR N(py. A_l)’
i~ (2.2),
/ 2 2

g ~ Dirichlet («, ..., a,),
where p, = 20, A™' =100, vy, =6, §, = 40, q =

(Proe s Py | 'Zl;{;ll pjand o, =--=a,=1.
The marginal likelihood under model M, is

and

m(yIM,) = [ (316", M) (8 |1,)d8".

where 7(0'?|M ) denotes the prior density of '), Typically,
the foregoing integration has no analytical form and must be
evaluated by numerical or MC methods. A recent review of
the methods was given by Chen et al. (2000). In this article
we show that the marginal likelihood can be evaluated conve-
niently and efficiently from the outputs of EMC using bridge
sampling (Meng and Wong 1996).

(0)
- ‘**5
e e

. -« @

L. .

Bridge sampling works as follows. Suppose that we have
two distributions f, (i = 1, 2), and that each is known up to a
multiplicative constant c¢;; that is, f;(w) = g;(w)/c;.

Let w;, ..., w,, denote the samples drawn from f(w), i =
1,2. The ratio r = ¢, /¢, can be estimated iteratively through
the following formula:

| R l;
n, Zi:‘ $Ly; + 5,7
1 1 ’

ny U s sy P

;(r~l) —

where s; = n,/(n; + n,) and L = gl(wi,)/g:(wi,') =
1....,n;i=1,2), which need to be computed only once at
the beginning of iterations, and F™" denotes the estimated
value of r in the (¢ + 1)st iteration. The initial guess F@
can be any value larger than 0. This estimate is consistent
(Meng and Wong 1996). Let g, = L(y|6'Y, M,)7(6'“|M,)
and g, = m(6'Y|M,); the resulting multiplicative constants
ratio turns out to be the marginal likelihood m(y|M ).

Motivated by the foregoing choice of g, and g,, we have
the following distribution ladder for EMC:

fi(x) o [L(y10"", M )] m(6'|M,),

for i=0,1,...,N, where u, denotes the inverse of tem-
perature and 0 = u; < u, < --- < uy = 1. Note that f,(x)
corresponds to w(8|M,), which can be sampled from
directly. The other distributions fi(x) (/ = 1,...,N) can

Table 2. Parameter Estimates Based on the Samples Over 20 Independent Runs

Evolutionary A Evolutionary B Parallel tempering
Parameter True value Estimate SD Estimate SD Estimate SD
”y 4.478 4.481 .0043 4.444 .0259 3.781 .0316
Mo 4.905 4.909 .0076 4,862 .0230 4.337 0435
p 5.552 5.549 .0062 5.544 0507 3.656 1114
PP, 9.861 9.841 .0097 9.775 .0481 8.546 .0485
P 2.605 2.591 .0105 2.580 .0434 1.294 .0839

NOTE: Here p; and p, denote the first and second component of the mean vector of distribution (8) X4y, ¥z, and X5 denote
three components of the covariance matrix of distribution (8); and SD denotes the standard deviation of the corresponding estimate.
Evolutionary A: with both the real crossover and the snooker crossover; evolutionary B: with only the real crossover.
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be sampled from using EMC, and the marginal likelihood
m(y|M,) then can be estimated by

N
r= l—I rivl,i’
i=I
where F;

:_1.; denotes the estimated multiplicative constant ratio
between f; and f,_,. The posterior distribution {fy(x)) of the
mixture model is invariably a multimodal function; for exam-
ple, the multimodality can be caused simply by a random per-
mutation of model components, and the resulting modes are
often isolated from each other. Sampling from such a multi-
modal distribution poses a great challenge for EMC.

In our simulation, N = 20, u, = .05, u,, = 1, and the other
values of u;, (i=2,...,N —1) are equally spaced between
u, and u,. The mutation rate is .4. Models with two to five
components are considered. For each model, we ran EMC 20
times independently, with each run comprising 25,000 itera-
tions. The first 5,000 iterations were discarded for the burn-in
process. Figure 6 shows the pairwise scatterplot of the com-
ponent means sampled by EMC for a three-component model.
Clearly, EMC has sampled from all possible modes.

Table 3 lists the estimated log-marginal likelihood values
for the models with d =2 to 5. For comparison, it also lists
the computational results of Chib (1995) and Neal (1999).
Chib estimated the log-marginal likelihood from the Gibbs
output. Neal estimated the log-marginal likelihood by sim-
ple Monte Carlo integration with 10% points drawn from the
prior distribution. The results show that a model with three-
component models fit well to the data, and the four- and five-
component models overfit to the data. This result is consistent
with the findings of Chib (1995).

In theory, the marginal likelihood values should be esti-
mated based on the samples from all modes of the posterior

Journal of the American Statistical Association, June 2001

distribution. But we know that some modes are caused sim-
ply by random permutations of model components, and if we
impose a relabeling constraint (e.g., i, < &, -+ < p,), on the
parameter space, then the number of posterior modes will be
reduced by a factor of d!. An interesting question is whether
the marginal likelihood value depends on the factor d!—in
other words, if the marginal likelihood can be computed based
on the samples from only a space restricted by the relabel-
ing constraint. For a test, we impose the relabeling constraint
on a three-component model. The estimation result shows that
the relabeling constraint does not change the marginal likeli-
hood value. This can also be determined from our marginal
likelihood estimation method, which depends only on the like-
lihood values and is invariant with respect to the relabeling
constraint.

Due to the complexity of the likelihood evaluation of this
example, the CPU time of each iteration is dominated by that
used for the likelihood evaluations. Thus the total CPU time
of the simulation is approximately proportional to that of like-
lihood evaluations. With the above parameter setting, on aver-
age the likelihood will be evaluated 12.5 times in one iteration
of EMC (five pairs of chromosomes are chosen to mate in the
crossover step), so each estimator of EMC in Table 3 is based
on 6.25 x 10° likelihood evaluations. Compared to the simple
Monte Carlo integration where 10® evaluations are used, sig-
nificant computational savings has been created by EMC. This
point is made more clear as the value of d increases. Note
that here the estimates of EMC may not be directly compara-
ble with the estimate of Chib (1995), who imposed a relabel-
ing constraint on the parameter space, sampled from only one
mode, and used a smaller sample size.
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Figure 6. Pairwise Scatterplot of the Component Means of the Samples From Evolutionary Monte Carlo in One Run With 20,000 flterations.
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Table 3. Summary of the Results for Galaxy Data

Model fitted

Chibs’ estimate

Neals’ estimate EMC

Two components, equal variances
Three components, equal variances
Three components, unequal variances
Three® components, unequal variances
Four components, unequal variances
Five components, unequal variances

—240.464 {.0086)
-228.620 (.008)
—224.138° {.086)

—239.764 (.005)
—226.803 (.040)
—226.791 (.089)

—239.744 (.015)
—226.828 (.061)
~226.780 (.058)
—226.768 (.057)
~226.629 (.061)
—226.394 (.062)

NOTE: The log-marginal likelihood values are estimated based on 20 independent runs.
#According to an anonymous JASA referee, the figure of —224.138 is a “typo,” with the correct figure being —228.608 (Neai 1999).
P A relabeling constraint (uy < #2 < p3) is put on the model such that the component means are in an increasing order in the simulation.

5. TWO BAYESIAN NEURAL NETWORK EXAMPLES

Suppose that we have data pairs D = {(y,x),
(3.%5),...,(¥.x,)}, which are generated from the
relationship

¥ Zf(x/)—'_fr’ (9)
where y, € R',x, € R”, and €, ~ N(0,0?%) for t =1,...,n.

The function f(-) is unknown and may be highly nonlinear,
and the approximation to which has been one of central topics
in statistics. In this article we propose to approximate it using
a one-hidden layer feed-forward neural network model,

f(xr) = ZB;¢(x;7j+77j)s (10)
j=I

where M € N denotes the number of hidden units, 8, € R and
¥; € R” denote the connection weights from the hidden unit j
to the output unit and the connection weights from the input
units to the hidden unit j, and 7, denotes the bias term of
the hidden unit j and can be viewed as a connection weight
from an additional input unit with a constant input, say x, = 1.
In the following, we suppress the bias term by treating it as
a component of y;. The activation function (-) is a tanh
function,

(o) = S —exp(-2) -
exp(z) +exp(—2)

The interest in the neural network model comes from its
universal approximation property (Cybenko 1989; Hornik,
Stinchcombe, and White 1989; White 1992); that is, a neural
network with a sufficient number of hidden units and properly
adjusted connection weights can approximate most functions
(including any continuous function with a bounded support)
arbitrarily well. Over the last several decades, many algo-
rithms have been proposed to train neural networks, including
conjugate gradient, back propagation (Rumelhart, Hinton, and
Williams 1986), and their variants.

The Bayesian neural network model was first introduced by
Buntine and Weigend (1991) and MacKay (1992). Later, it
was analyzed by Neal (1993, 1996) with hybrid Monte Carlo.
Recently, Miiller and Insua (1998) applied the Gibbs sam-
pler (Geman and Geman 1984) and reversible jump MCMC

(Green 1995) to it. In this article we view the model as a non-
linear regression of response vy on the covariates x,

M
Yo=Y B(xy) +e,. (12)
=
where €, ~ N(0, 0%) for t =1, ..., n. The prior distributions
are assumed to be B; ~ N(0,03), v, ~ N(0,031) for j =
l,....,M, 072 ~ gamma(v, 8). The log-posterior (up to an
additive constant) of the model is
logm(B,y,07|D) x — (g +v— 1) log(o?)
2
1 n M
— 3 28+Z yz_Zle:[l(xr‘Yj)
20 =1 =1
M g2 M p 'y.z.
DI I 13
=205 D20y

The posterior distribution is invariably an extremely com-
plex function. The complexity is caused mainly by two factors,
the nonlinearity and the multimodality. For example, the pos-
terior distribution is invariant with respect to arbitrary rela-
beling of the hidden units. Because /(—x) = —i(x), it is
also invariant with respect to the simultaneous changes of the
signs of B; and v, for some value of j. One way of avoiding
the multimodality is to impose a constraint on the parameter
space; for example, 0 < y,; < ¥ < -+ < ¥y, (Miiller and
Insua 1998). In this article we impose no constraint on the
parameter space, so the example is meant to illustrate how the
evolutionary algorithm performs in presence of multimodality
and nonlinearity.

Under the Bayesian framework, the point prediction can be
obtained by integrating out the nuisance parameters,

E(ytJvllxr-Hv D) = //_/h(xwl’ B.7, O'Az)
x m(B,y, o7 |D)dBdyda™, (14)

where h(x,,,.,v,07 %) denotes a point prediction at x,.
based on a single sample of (8,7, c~?). Note when x,,, is
observable, we have
M
h(x:+1’B’7s Uﬁz)=23j¢(x;+ﬁ’,-)- (15)
j=1

The resulting prediction is unbiased.
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Table 4. The Connection Weights Corresponding to the Eight Modes
of the Posterfor Distribution of the Simulated Example

No. Yo Y Ya0 Yer B B:
1 2 -1 1 1.5 20 10
2 —2 1 1 1.5 -20 10
3 -2 1 —1 -1.5 -20 -10
4 2 -1 -1 -15 20 -10
5 1 1.5 2 -1 10 20
6 -1 -1.5 2 -1 -10 20
7 -1 -1.5 -2 1 -10 -20
8 1 1.5 -2 1 10 -20

5.1 A Simulated Example

We simulated y,....,vy, from (12) with M = 2,
Y= Vi Y1) = (2.-1), ¥, = (va, 7)) = (1, 1.5), B =
(20,10), 0 = .1, and the input pattern x, = (l,z,), where
=tx.1forr=1,2,...,100.

This example is identical to example 2 of Miiller and Insua
(1998) except that there a sigmoidal function was used as the
activation function. The posterior distribution of the example
has at least eight modes, because of the arbitrary permutation
of the hidden units and the simultaneous changes of the signs
of y and . The connection weights corresponding to the eight
modes are listed in Table 4.

In EMC, a neural network model with two input units, two
hidden units, and one output unit (a 2-2-1 structure) was sim-
ulated. The prior parameters were set as 03 =20, 0, =5,v =
.01, and 8 =.01. The population size was 20. The highest tem-
perature was 20, the lowest temperature was .1, and the inter-
mediate temperatures were equally spaced between 20 and .1.
The selection temperature was .01. The mutation rate was .25.
The lowest temperature is sufficiently low that the samples
on that level will cluster in the small neighborhoods of each
mode, and it is meant to test whether the global optima can
be located by EMC as the temperature tends to 0. For com-
parison, we also applied parallel tempering to the example
with the same neural network structure and the same parame-
ter settings.

We ran the two algorithms five times independently on an
Ultra Sparc2 workstation. Each run of EMC comprised 20,000

(a)

L og likefihood
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-160

o 200 400 &S00

iteration

800 1000

Figure 7. Comparison of EMC ({.
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iterations, and the CPU time was 152 seconds. The overall
acceptance rates of the mutation, real crossover (one-point
crossover), snooker crossover, and exchange operations were
.07, .09, .04 and .72. With the same CPU time, paralle] tem-
pering was iterated 14,000 times. The overall acceptance rates
of the local Metropolis moves and exchange were .13 and .66.
The low acceptance rate of the local Metropolis moves results
from the fact that the system always got stuck in local min-
ima in the last several thousands of iterations. The acceptance
rate was .24 in the first 5,000 iterations.

Figure 7(a) shows the negative of the log-posterior values of
the samples at r = .1 versus the computational time. Note that
the two algorithms have been adjusted to have the same time
scale (i.e., we plot a point every 20 iterations for EMC and
every 14 iterations for parallel tempering). Figure 7(b) plots
the mean squared error (MSE) values corresponding to the
runs in Figure 7(a). The similarity of these two plots illustrates
the equivalence of maximizing a posterior distribution and
minimizing the MSE for training a neural network. The latter
is often used as an objective when training non-Bayesian neu-
ral networks. Later, we ran the two algorithms 100 times inde-
pendently; 97 runs of EMC converged to some value below
—160, but no run of parallel tempering converged to a value
below —160, and all of them got stuck at some local minima.

Figure 8 shows the maximum a posteriori (MAP) esti-
mate of the regression line obtained in one run. Figures 9(a)
and 9(b) plot the histograms y and 8. The samples come from
750 independent runs of EMC. It is clear that all eight possible
modes have been sampled by EMC, and the relative weights
among them are also estimated roughly correctly (these modes
are equally weighted). These results demonstrate the superi-
ority of EMC over parallel tempering in sampling from a dis-
tribution with multimodality and nonlinearity. They also show
that EMC may possibly work as an optimization algorithm as
ty tends to 0.

5.2 A Real Example

The dataset for this example is the gas furnace data from
Box and Jenkins (1970). The time series consists of 296 pairs

(b)
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MSE

004

002

o 200 400 600

itoration

800 1000

) and Parallel Tempering (---). (a) The negative of log-posterior values of the samples versus the

computational time; (b) the MSE values of the samples versus the computational time.
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Figure 8. The Original Data (---) and the MAP Estimate (. ) of the Nonlinear Regression Line.
of input-output observations. The input x, is the gas flow rate  log-posterior (up to an additive constant) of the model is
into a furnace, and the output y, is the CO, concentration
from the furnace. The sampling rate is 9 seconds. Because log w(A, B, v, 0*|D)
our focus was to illustrate the usefulness of EMC in training n )
. . x—|=+v—1)log(c?)
and forecasting of Bayesian neural networks, we used only the 2
output v, and treated it as a univariate time series. 1 n M 2
In this problem, a neural network with a more general struc- 357 {25 + Z [,V; — XA — Zﬁjl//(x;‘}’j)] }
ture was used, =l =
14
Y,
l I (17)
i=0 203 Dz 2

M
v =xA+) Bi(xy;) +e, (16)
j=1

where x, = (1,y, .. ..,¥,_,), p is the number of input units,
and A denotes a vector of shortcut connections; that is, the
connections from the input units to the output unit. An inde-
pendent normal prior is imposed on each A,; that is, A, ~
N(0,03) for k =0, ..., p. The other parameters are subject
to the same prior setting as in the preceding example. The
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Following Box and Jenkins (1970), we used the first 206
observations as the training data and used the remaining obser-
vations as for test. A neural network with a 4-5-1 structure
and shortcut connections was simulated with EMC. This net-
work model has 35 tunable connection parameters plus o2,
for a total of 36 unknown parameters. Thus this example illus-
trates EMC’s ability to sample from a distribution defined on
a high-dimensional space.
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Figure 9. Histograms of the Posterior Distribution of the Network Connections. (a) The first layer connections vy, (b) the second layer

connections f3.
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The prior parameters were set as 0, = g3 = 0, = 10 and
v = 6 = .05. The population size was 40. The highest temper-
ature was 15, the lowest temperature was 1, and the intermedi-
ate temperatures were equally spaced between 15 and 1. The
selection temperature was .1, and the mutation rate was .25.

First, the evolutionary algorithm was run five times inde-
pendently. Each run comprised 2.5 x 10° iterations done on
an Alpha500 workstation, and the CPU time was 60 minutes.
The overall acceptance rate of mutation, real crossover (one-
point crossover), snooker crossover, and exchange operations
were .11, .03, .51, and .79.

For comparison, parallel tempering, conjugate gradient, and
the Box-Jenkins approach were also applied to this example.
The training errors associated with these methods are shown
in Table 5. In parallel tempering, we used the same neural net-
work structure and the same parameter setting as in EMC. We
ran parallel tempering five times independently, with each run
comprising 1.5 x 10° iterations and a CPU time of 73 minutes,
20% longer than that of EMC.

The conjugate gradient method trains a neural network by
minimizing the total fitting error }_/_, (y, —3,)°, where n is the
number of training cases. This method is similar to back prop-
agation (Rumelhart et al. 1986), as both are gradient based.
The efficiency of the conjugate gradient method in training
neural networks has been widely acknowledged (Mehrotra,
Mohan, and Ranka, 1996). In this example, we ran the method
until the convergence occurred. Considering the dependence
of the performance of the method on the starting values, we
ran it 100 times independently with different initial connec-
tion weights, with each sampled uniformly on the hypercube
[—.1,.1]*. The conjugate gradient method converged very fast
in the example. On average, the number of iterations to con-
vergence was 164.4. The total CPU time for the 100 runs was
163 minutes, 2.7 times longer than that of EMC.

Following Box and Jenkins (1970), we fitted an
ARMA(4,2) model using the Box—Jenkins approach. This
was done via the standard procedure “arima.mle” in S-PLUS.

One important goal of time series analysis is to forecast
future values. For the one-step-ahead prediction, the covari-
ate x,, is observable, and y,., can be predicted unbiasedly
using (14). For the multiple-step-ahead prediction, we have
the following recursive procedure (Ding, Canu, and Denoeux
1996; Hill, O’Connor, and Remus 1996). Given a sequence
of samples of neural networks (B,,7%),.... (B, Vn). the
{-step-ahead prediction involves two steps:

1. For each sample (f3;, y,;). forecast y,,, using (15), then
use the forecast value as a new input to forecast y,,,,
and so on, until y,, is predicted.

2. Average the forecast values of y,., over the neural net-
work samples to get the final forecast value of y, ;.

Although the prediction is biased, the procedure is very simple
and intuitive, and performs well in most cases. The predic-
tion ability (generalizability) of neural networks can be simply
measured by the mean squared prediction error (MSPE),

n—1{

MSPE(!) = Y[y — 7 (T (n == 1+ 1),

T=r

(18)
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Table 5. Comparison of the MSPE's of the Four Methods.

MSPE
Run Training error One-step Two-step Three-step
(a) Box-Jenkins approach
.09594 .1569 .8873 2.4638

(b) Conjugate gradient

1 .09471 .1558 .8571 2.3576

2 09472 .1569 .8670 2.3947

3 .09472 1542 .8429 2.3068

4 09472 .1558 .8587 2.3677

5 .09473 .1567 .8675 2.4017
Avg. .09472 .1559 .8586 2.3657
(c) Simutated tempering

1 .09463 .1566 .8644 2.3868

2 .09457 .1569 .8650 2.3858

3 .09466 .1566 .8633 2.3819

4 .09436 .1569 .8646 2.3778

5 .09432 .1566 .8605 2.3477
Avg. .09451 1567 .8636 2.3760
(d) Evolutionary sampling

1 .08692 1612 .8060 2.0747

2 .08408 1504 7926 2.1058

3 .08711 1636 7761 1.9103

4 .08608 .1523 7720 1.9921

5 .08694 .1569 7902 2.0171
Avg. .08623 1569 7874 2.0200

NOTE: The MSPEs are calculated with T =207 and n = 296. (a) The Box-Jenkins approach;
(b) the MSPEs of the conjugate gradient method in five (out of 100) runs with the smallest
training errors; (c) the MSPEs of parallel tempering in five runs; (d} the MSPEs of the evolu-
tionary algorithm in five runs.

where [ denotes the [-step-ahead prediction, and %, ,(T)
denotes the point prediction of y,,, made at time 7.

Table 5 gives MSPE(!)s ({ = 1,2,3) of the four meth-
ods. For all methods, the MSPE(1)s are comparable. How-
ever, MSPE(2) and MSPE(3) of the Box-Jenkins approach
are larger than those of the other three neural network-based
methods. It is not surprising that as the forecast horizon
extends, the Box—Jenkins model performs less well, because
this model is best suited for short-term forecasting. This is
also consistent with the finding of Hill et al. (1996) and Kang
(1991) that neural network models generally perform better
in the latter periods of the forecast horizon. Among the three
neural network—based methods, EMC clearly outperforms the
other two methods, conjugate gradient and parallel tempering.
The small training and prediction errors of EMC implies that
an efficient sampler is an essential tool for improving the gen-
eralizability of Bayesian neural networks.

6. CONCLUSIONS

This article extends the EMC method to sample from a tar-
get distribution with real-valued parameters, using the snooker
operator to implement the crossover operations. Simulation
studies confirm the method’s effectiveness. The effectiveness
is due to two factors: the method has incorporated the learn-
ing ability of the genetic algorithm by evolving with crossover
operators, and it has incorporated the fast mixing ability of
parallel tempering (simulated tempering) by simulating along
a temperature ladder. We posit the following explanation for
EMC’s learning capability.

In general, a “learning” capability means that one is able
to modify a behavioral tendency by experience. For a MCMC
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sampler, this means that the sampler can be guided by the
samples obtained in previous steps. Clearly, the single-chain—
based MCMC algorithms (e.g., the Metropolis algorithm and
the Gibbs sampler) have no such an ability because of their
Markovian properties. The use of population, which works as
the state space of the Markov chain and also as a dynamic
memory of the simulation, provides an opportunity for the
MCMC sampler to learn from its historical samples.

In parallel tempering, all samples are simulated in paral-
lel, no crossover operation is used, and no “learning” occurs
between samples. In adaptive direction sampling, all samples
of the population are iid. At each step, one sample (the cur-
rent sample) is randomly selected to update along a direction
pointing to another sample (the anchor sample) of the cur-
rent population. Usually the anchor sample is chosen to be iid
with the current sample, and the “learning” is not managed in
an efficient way. CGMC does have a learning capability, but
it learns from a local mode found by the local optimization
procedure instead of the historical samples. We realize that a
local optimization procedure does increase the diversity of the
population and improve the mixing rate of a system. We sug-
gest possibly incorporating a CGMC sampler into EMC as a
crossover operator when the local optimization procedure is
available for the problem. Because of the computational cost
of local optimization, it can be applied at a low frequency
(e.g., .05 or .1).

The setting of EMC facilities its learning from the historical
samples. The simulation at high temperatures can help the sys-
tem explore the entire sample space. The exchange operation
(swapping of temperature) can be viewed as a selection mech-
anism. A “bad” sample (with a low fitness value) will, through
the exchange operations, be forced to climb up the tempera-
ture ladder. At high temperatures, random mutations are easily
accepted, and thus the sample will be easily eliminated from
the population. In contrast, a “good” sample (with a high fit-
ness value) will be forced to climb down the temperature lad-
der. At low temperatures, random mutations are accepted with
difficulty, and the sample will be stored there for a relatively
long time. According to the roulette wheel selection procedure
used by EMC, the “good” sample will have a high probability
of being selected as a parental sample for mating to produce
offspring, which will have a high probability of resembling the
parental sample. In this sense, we say that EMC has learned
from its historical samples. The temperature ladder together
with the exchange operator conveniently provides a selection
mechanism for the dynamic memory of EMC.

[Received October 1999. Revised July 2000.]
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