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Evolutionary Monte Carlo for protein folding simulations
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We demonstrate that evolutionary Monte Carlo~EMC! can be applied successfully to simulations of
protein folding on simple lattice models, and to finding the ground state of a protein. In all cases,
EMC is faster than the genetic algorithm and the conventional Metropolis Monte Carlo, and in
several cases it finds new lower energy states. We also propose one method for the use of secondary
structures in protein folding. The numerical results show that it is drastically superior to other
methods in finding the ground state of a protein. ©2001 American Institute of Physics.
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I. INTRODUCTION

In recent years the prediction of the native structure o
protein from its sequence have attracted a great deal o
tention. Given a polypeptide chain and the correct molecu
potential, how can one find the thermodynamically sta
state of the protein? This problem has bee recognized t
‘‘NP-complete,’’1–3 which means that this problem is no
solvable in polynomial time, even for an optimal algorithm
The difficulty of the problem is that the energy landscape
the system is characterized by a multitude of local mini
separated by high energy barriers. At low temperatures,
ditional Monte Carlo and molecular dynamics simulatio
tend to get trapped in local minima. Hence, only a sm
fraction of the phase space is sampled, the native struc
cannot be located, and the thermodynamic quantities ca
be estimated accurately.

Attempts to alleviate this difficulty have been in tw
directions. One direction is to search for the lowest poten
energy conformation~which is believed to correspond to th
native state of a protein! with powerful optimization tech-
niques such as Monte Carlo with minimization,4 simulated
annealing,5 and genetic algorithms.6,7 The effectiveness o
these methods have been tested with many proteins and
tice models.8,9 One drawback is that these optimizers igno
the entropic contributions of the conformations and the th
modynamic quantities of interest cannot be estimated.
other direction is to sample the phase space with more
cient samplers such as multicanonical,10 entropic sampling,11

parallel tempering,12,13 simulated tempering,14 1/k-ensemble
sampling,15 chain growth algorithms,16–19and Metropolis al-
gorithms with long range moves.20,21For a recent review, se
Ref. 22.

In this paper we test our a new Monte Carlo algorith
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the evolutionary Monte Carlo~EMC! ~Ref. 23! algorithm, on
2D hydrophobic–hydrophilic~HP! models.24 This algorithm
is motivated by the genetic algorithm in optimization.
works by simulating a population of Markov chains, where
different temperature is attached to each chain. The pop
tion is updated by mutation, crossover and exchange op
tors that preserve the Boltzmann distribution of the popu
tion. EMC possesses two attractive features as a simula
algorithm. One is that it has incorporated the extensiv
search ability of the genetic algorithm by evolving wi
crossover operators. The other one is that it has incorpor
the fast mixing ability of simulated tempering by simulatin
along a temperature ladder. The numerical results show
EMC is a promising algorithm for simulation and optimiz
tion.

II. THE 2D HP MODEL

In the 2D HP model a protein is composed of ‘‘amin
acids’’ of only two types: hydrophobic~H for nonpolar! and
hydrophilic ~P for polar!. The sequence is ‘‘folded’’ on a
two-dimensional square lattice. At each point the chain c
turn 90° left, right, or continue ahead. Only the self-avoidi
conformations are valid with energieseHH521 and eHP

5ePP50 for interactions between noncovalently bou
neighbors. The interest in the model comes from the fact
although it is very simple, it does exhibit many of the fe
tures of real protein folding.25,26 For the 2D HP model, low
energy conformations are compact with a hydrophobic co
since the H–H interactions are rewarded. The hydropho
residues have to be buried inside to yield a low energy str
ture, while the hydrophilic residues are forced to the surfa
This model has been used by chemists to evaluate new
pothesis of protein structure formation.27 Also, the simplicity
of the model permits a rigorous analysis of the efficiency
a folding algorithm. In fact, this model has become standa
in testing efficiency of folding algorithms.

il:
4 © 2001 American Institute of Physics
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III. EVOLUTIONARY MONTE CARLO ALGORITHM

The algorithm we applied here is a special implemen
tion of EMC for the 2D HP model. To apply EMC to the 2
HP model, each conformation~individual or chromosome in
terms of genetic algorithms! of a protein is represented by
vectorz5(z(1),...,z(d)) with z( i )(P$0,1,2%, where each digit
represents a torsion angle: 0, right; 1, continue and 2,
The energy function of the conformation is denoted byH(z)
and the Boltzmann distribution is defined by

f ~z!}exp$2H~z!/t%,

wheret is called the temperature of the system.
In EMC, to simulate from the target distributionf (z), a

sequence of distributionsf 1 ,...,f N are first constructed with

f i~z!}exp$2H~z!/t i%, i 51,...,N.

The temperature sequencet5(t1 ,...,tN) forms a ladder with
t1.....tN[t. Hence,f N(•) turns out to be the target dis
tribution to be sampled from. Letzi denote a sample from
f i(x), the samplesz1 ,...,zN form a population denoted b
z5$z1 ,...,zN%, where N is called the population size. In
EMC, the Markov chain state is augmented as a popula
of samples instead of a single sample, and the Boltzm
distribution of the population is defined as

f ~z!}expH 2(
i 51

N

H~zi !/t iJ . ~1!

The population is updated by three operators: mutat
crossover, and exchange~described below!.

In the mutation operator, an individual, sayzm , is first
equally likely selected from the current populationz. Then
zm is mutated to a new chromosomezm8 . A new population is
formed by replacing zm by zm8 , that is, z8
5$z1 ,...,zm21 ,zm8 ,zm11 ,...,zN%. The new population is ac
cepted with probability min~1,r m) according to the
Metropolis–Hastings rule,28,29

r m5
f ~z8!

f ~z!

T~„zzz8!

T~z8zz!

5exp$2~H~zm8 !2H~zm!!/tm%
T~zuz8!

T~z8zz!
, ~2!

whereT(•u•) denotes the transition probability between tw
populations. If the proposal is accepted, the current pop
tion z is replaced byz8, otherwise,z is unchanged.

The mutation operators used in this paper include
k-point mutation, a three-bead flip, a crankshaft move, an
rigid rotation. Ink-point mutations,k bits are randomly cho-
sen from the individualzm , and their values are replaced b
the ones sampled uniformly from the set$0,1,2%. Thek is also
a random variable, of which the value ranges from 1 tod.
Whenk5d, the operator produces a completely new rand
conformation independent of the current one, and it eff
tively prevents the population from becoming homogeneo
The k-point mutation operator is symmetric in the sense t
T(zzz8)5T(zzz8), andr m in Eq. ~2! is reduced to the conven
tional Metropolis ratio. The other mutation operators a
identical to the local moves used in Ref. 30, and they
Downloaded 11 Oct 2004 to 165.91.112.101. Redistribution subject to AI
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illustrated in Fig. 1. For example, in the crankshaft opera
@Fig. 1~b!#, the two crankshaft structures can be represen
as 2002 and 0220 in our coding scheme, respectively.
first search for all of the crankshaft structures fromzm and
denote the total number of them bycm , and then randomly
choose one crankshaft uniformly on 1 tocm to mutate by
reversing~i.e., change 0220 and 2002 and vice versa!. The
transition probability ratio is thenT(zzz8)/T„z8zz)5cm8 /cm ,
wherecm8 denotes the total number of local crankshaft stru
tures inzm8 . The other operators are performed in a simi
manner.

In the crossover operator, different offspring are pr
duced by a recombination of parental chromosomes r
domly selected from the population. For example,za andzb

are selected as the parental chromosomes. Without los
generality, we assume thatH(za).H(zb). Two ‘‘offspring’’
za8 andzb8 are generated as follows. First an integer crosso
point c is drawn uniformly on$1,...,d%, thenza8 and zb8 are
constructed by swapping the genes of the two parental c
mosomes to the right of the crossover point. The followi
diagram illustrates a 1-point crossover operator,

~za
~1! ,...,za

~d!! ~za
~1! ,...,za

~c! ,zb
~c11! ,...,zb

~d!!

⇒
~zb

~1! ,...,zb
~d!! ~zb

~1! ,...,zb
~c! ,za

~c11! ,...,za
~d!!

where c is called a crossover point. If there arek(k.1)
crossover points, it is called ak-point crossover. In this pa
per, we usek51 or 2.

A new population is formed by replacing the select
parental chromosomes with the new ‘‘offspring,’’za is re-
placed by the offspring with the higher energy andzb is
replaced by the other one. The new population is accep
with probability min(1,r c) according to the Metropolis–
Hastings rule,

r c5
f ~z8!

f ~z!

T~zuz8!
T~z8uz!

5exp$2~H~za8!2H~za!!/ta2~H~zb8!

2H~zb!!/tb%
T~zuz8!
T~z8uz!

, ~3!

where T(z8uz)5P((za ,zb)uz)P((za8zb8)u(za, zb)),
P((za ,zb)uz) denotes the selection probability of (za ,zb)

FIG. 1. Mutation operators used in 2D HP models. The circle denote
residue, hydrophobic or hydrophilic.~a! A three-bead flip.~b! Crankshaft
moves.~c! Rigid rotations.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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from the populationz, and P((za8 ,zb8)u(za ,zb)) denotes the
generating probability of (za8 ,zb8) from the parental chromo
somes~za ,zb).

Throughout this paper, the parental chromosomes
chosen as follows. The fist chromosomeza(zb) is selected
according to a roulette wheel procedure with Boltzma
weights, that is,za(zb) is selected with a probability,

w~z!5
1

C~z!
exp$2H~z!/ts%,

whereC(z)5( i 51
N exp$2H(zi)/ts%, andts is called a selection

temperature, which takes a value aroundtN . It may be the
same withtN but not necessary. The second chromoso
zb(za) is selected randomly from the rest of the populatio
The selection probability of (za ,zb) from z is then

P~~za ,zb!uz!5
1

~N21!C~z!)

3@exp$2H~za!/ts%1exp$2H~zb!/ts%#.

P(za8 ,zb8uz8) can be calculated similarly. Note that the 1-po
and 2-point crossover operators are both symmetric,
P((za ,zb)u(za8 ,zb8))5P((za8 ,zb8)u(za ,zb)).

The exchange operator is the same with that of para
tempering. Given the current populationz and the attached
temperature laddert, we try to make an exchange betweenzi

and zj without changing thet’s, i.e., initially we have (z,t)
5(z1 ,t1 ,...,zi ,t i ,...,zj ,t j ,...,zN ,tN) and we want to
change it to (z8,t)5(z1 ,t1 ,...,zj ,t i ,...,zi ,t j ,...,zN ,tN). The
new population is accepted with probability min~1,r e) ac-
cording to the Metropolis–Hastings Rule,

r e5
f ~z8…

f ~z!

T~zuz8!
T~z8zz!

5expH ~H~zi !2H~zj !!S 1

t i
2

1

t j
D J T~zzz8!

T~z8zz!
. ~4!

The exchange operator usually only performs on the in
viduals with neighboring temperatures, i.e.,u i 2 j u51.

With the operators described above, one iteration
EMC consists of the following two steps:

~1! Apply either mutation or crossover operator to the pop
lation with probability pm and 12pm , respectively,
wherepm is called a mutation rate.

~2! Try to exchangezi with zj for N21 pairs ~i , j ! with i
being sampled uniformly on$1,...,N% and j 5 i 61 with
probability qi , j , where qi ,i 115qi 21,i50.5 and q1,2

5qN,N2151.

In the mutation step, each chromosome of the popula
is mutated independently. In the crossover step, aboutN/2
pairs of chromosomes are chosen to mate. The cross
operator works in an iterative way, that is, each time
operator works on a new population which was just upda
by the preceding operator. In our experience, the muta
operator provides a good local exploration around a lo
minimum, while the crossover operator provides a much g
bal exploration over the whole conformation space. The
gorithm has three user-set parameters, namelyN, t, andpm .
Downloaded 11 Oct 2004 to 165.91.112.101. Redistribution subject to AI
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Issues about choice of them can be found in Ref.
Roughly speaking, we should choose the population s
comparable~at least! to the length of the chromosome
choose the highest temperature such that the~anticipated!
energy barriers can be overcome easily by a Metropol
Hastings move, choose the temperature ladder such tha
acceptance probability of the exchange operations is mo
ate, and choose the mutation rate to balance the local
global searches, e.g., a value between 0.2 and 0.4.

The structure of EMC is very flexible. Settingpm51,
the algorithm is reduced to parallel tempering.12,13 Setting
pm51 and N51, the algorithm is reduced to the conve
tional single-chain Metropolis–Hastings algorithm.

IV. A TESTING EXAMPLE

The sequence used for this example is: HHPHPHPH
PHPH, which is identical to sequence 1 of Ref. 31. It ha
unique native conformation with energy26. EMC was run
10 times independently. Each run consists of 50 000 ite
tions. The parameters are set as follows: the population
N550; the lowest temperature is 0.5, the highest tempera
is 10, and the intermediate temperatures are equally sp
between 0.5 and 10; the selection temperature is 0.5; and
mutation rate is 0.25. In the mutation step, all individuals
the current population are independently subject to an
tempt of mutation, and the proportions of thek-point muta-
tion, three-bead flip, crankshaft move and rigid rotation
1/2, 1/6, 1/6 and 1/6, respectively. In the crossover step,N/2
chromosome pairs are selected to mate. This parameter
ting may not be optimal, but it works well for this exampl
In the following examples, only the population size, tem
perature ladder, and selection temperature vary with leng
of sequences, and the other parameters are kept unchan

Table I shows the Boltzmann distributions (tN50.5)
generated by EMC and the exact equilibrium distributi
computed by an exhaustive enumeration for this testing
ample. The comparison indicates that EMC is ergodic, a
the 10 runs have achieved agreement between the M
Carlo estimate and the exact equilibrium distribution
within a few percent.

V. A COMPARISON BETWEEN THE METHODS

In this section, EMC is compared to two other com
monly used protein folding algorithms, namely, the gene
algorithm and Metropolis Monte Carlo. The latter two alg
rithms have been implemented in Ref. 9. In protein foldi

TABLE I. Test of ergodicity of EMC simulations. The target is the Bolt
mann distribution at the lowest temperature leveltN50.5.

Energy

0 21 22 23 24 25 26

Exacta 0.0170 0.0602 0.1295 0.2180 0.2643 0.1983 0.11
EMCb 0.0171 0.0618 0.1286 0.2190 0.2653 0.1981 0.11
SDc 0.0003 0.0016 0.0016 0.0023 0.0016 0.0022 0.00

aMass of each valid energy value from the exact equilibrium distribution
bPercentage of time spent in each energy value by the EMC simulation
cSD: standard deviation of the EMC estimator based on 10 runs.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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simulations, the dominant factor is the energy evaluati
which is performed once for each valid conformation. EM
is not significantly more costly per step than the genetic
gorithm, since most of the mutation and crossover opera
are designed to be symmetric, and the corresponding tra
tion probabilities need not to be evaluated. In the excha
step, no energy evaluation is performed. Hence, the m
factors to be compared are the number of energy evaluat
needed to find one of the lowest energy conformations,
the lowest energy attained for a given number of ene
evaluations.

The three algorithms were compared for the sequen
given in Ref. 9. The results were summarized in Table II. F
sequences of length 20, 24, 25, 36, and 50, EMC was fa
than the genetic algorithm and Metropolis Monte Carlo
finding the putative ground energy states. The computatio
amounts used by EMC were only about 10%–30% of t
used by the genetic algorithm, and 1%–3% of that used
Metropolis Monte Carlo. For sequences of length 48, 60,
64, EMC also found the same energy states with sma
computational amounts than the generic algorithm and M
tropolis Monte Carlo. With slightly larger computation
amounts, EMC found some new lower energy states as
ported in Table II. Two local minimum energy conformatio
of energy239 found by EMC for the 64-mer sequence we
shown in Fig. 2. Both are in globular shapes with comp
hydrophobic cores being buried by hydrophilic residues.
summary, Table II shows that EMC has made a signific
improvement over the genetic algorithm and Metropo
Monte Carlo in finding low energy states for a protein. W
note that for the 60-mer sequence a putative ground state
found by the pruned-enriched Rosenbluth method~PERM!.19

A direct comparison of PERM with EMC, Metropolis Mont
Carlo and the genetic algorithm is unfair, since the lat

TABLE II. Comparison of EMG with the genetic algorithm~GA! and Me-
tropolis Monte Carlo~MC!. For each sequence, the three algorithms were
run 5 times independently, the lowest energy values achieved during
most efficient run were reported in the respective columns together with
number of valid conformations scanned before that value was found.

Lengtha

Putative
ground
energy EMCb GAc MCd

20 29 29 ~9,374! 298 ~30,492! 29 ~292,443!
24 29 29 ~6,929! 29 ~30,491! 29 ~2,492,221!
25 28 28 ~7,202! 28 ~20,400! 28 ~2,694,572!
36 214 214 ~12,447! 214 ~301,339! 213 ~6,557,189!
48 223 223 ~165,791! 222 ~126,547! 220 ~9,201,755!
50 221 221 ~74,613! 221 ~592,887! 221 ~15,151,203!
60 236 235 ~203,729! 234 ~208,781! 233 ~8,262,338!
64 242 239 ~564,809! 237 ~187,393! 235 ~7,848,952!

aThe length denotes the number of residues of the sequence.
bFor sequence 20, 24, and 25, EMC was run for 5000 iterations with
population size 100, the highest temperature 20, the lowest temperatur
and the selection temperature 0.3. For the other sequences, EMC wa
for 1000 iterations with the population size 500, the highest temperature
the lowest temperature 0.3, and the selection temperature 0.5.

cThe results of the genetic algorithm reported in Ref. 9. The GA was
with the population size 200 for 300 generations.

dThe results of Metropolis Monte Carlo reported in Ref. 9. Each run of M
consists of 50 000 000 steps.
Downloaded 11 Oct 2004 to 165.91.112.101. Redistribution subject to AI
,

l-
rs
si-
e
in
ns
d
y

es
r
ter

al
t
y
d

er
-

e-

t
n
t

as

r

three algorithms only perform ‘‘blind’’ searches over th
whole conformation space. In contrast, PERM makes us
more information of the sequence when it folds a prote
PERM may build up its chain from any part of a sequen
e.g., a subsequence of hydrophobic residues. PERM~Ref.
19! argues for this idea that real proteins have foldi
nuclei,32 and it should be most efficient to start from such
nucleus. The issue about the use of the subsequence i
mation in protein folding simulations will be further dis
cussed in the next section.

VI. The USE OF SECONDARY STRUCTURES IN
PROTEIN FOLDING

Levinthal33 and Wetlaufer34 pointed out that proteins
fold much too fast~by at least tens of orders of magnitude! to
involve an exhaustive search. This is the so-called Levint
paradox: how can a protein find a native state withou
globally exhaustive search? Experiments show that there
ists ‘‘cooperativity’’ in protein folding, i.e., a protein folds to
its native state according to a relatively small number
‘‘pathways,’’ in other words, it folds by a specific sequen
of molecular events.35.36The cooperativity are mainly driven
by two types of interactions:31,37 ~i! the local interaction by
which each individual tetrapeptide in the sequence find
hydrogen-bonded helical conformation, and~ii ! the nonlocal
interaction by which a compact hydrophobic~H! core is
formed.

Motivated by the above observations, we use the follo
ing steps to speed up the simulations of protein folding:

~1! Identify the subsequences which will possibly fold
secondary structures38 in the native state of a given pro
tein.

~2! Perform sampling on the constrained conformation sp
where some subsequences are subject to possible
ondary structures.

However, the simulation performed on the constrain
conformation space may lead to a biased estimate if we
interested in the thermodynamic properties of protein fo
ing. An ergodic simulation with the use of secondary stru
tures is described as follow.

For the 2D HP model, the possible secondary structu
folded by a subsequence of hydrophobic residues are il
trated in Figs. 3~a!, 3~b!, and 3~c!, which correspond to beta

ll
he
e

e
.3,
run
0,

n

FIG. 2. Two local minimum energy conformations of energy239 found by
EMC for the 64-mer sequence~without the use of secondary structures!. ~a!
Conformation 1;~b! Conformation 2. Solid squares represent hydropho
residues whereas open squares represent hydrophilic residues.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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alpha~with direction 1!, and alpha~with direction 2! struc-
tures of a real protein, respectively. However, the total nu
ber of self-avoiding structures that could be folded by
subsequence may be huge. For example, it is 4067 fo
subsequence of 10 residues. An essentially arbitrary distr
tion can be assigned to these self-avoiding structures

FIG. 3. Secondary structures folded by a subsequence of hydroph
residues.~a! Extended sheet.~b! Helix with direction 1. ~c! Helix with
direction 2.
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each structure having a nonzero mass value. For example
assign that each structure shown in Fig. 3 has a mass v
1/32e, and all other structures have an equal mass 3e/~4067
23!, wheree is a small value chosen by users. The ma
function will then work as a proposal transition function f
the move of the block of residues, and the resulting simu
tion will be ergodic. In fact, the block move can be incorp
rated easily into EMC as a mutation operator. Lete tend to 0,
the simulation reduces to sampling on the constrained c
formation space.

By sampling on the constrained conformation space,
fold the 48-mer and 64-mer sequences and a new 85-
sequence39 rapidly to their putative ground energy states. T
primary sequences of them are given as follows:

ic
~48! PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH;

~64! HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHPPHPHPHHHHHHHHHHHH;

~85! HHHHPPPPHHHHHHHHHHHHPPPPPPHHHHHHHHHHHHPPPHHHHHHHHHHHHPPPHHHHHHH

HHHHHPPPHPPHHPPHHPPHPH.
o

one
e
d in

Two
by
nd
ns.

ary
The computational results were summarized in Table
The putative ground states found by the constrained E
sampler for the 48-mer and 64-mer sequences are show
Fig. 4. Using other algorithms, including Metropolis Mon
Carlo,9 the genetic algorithm,9,39 and PERM,18,19the putative
ground energy states of the 64-mer sequence were n
found. The authors19 commented that this sequence acts a
bottleneck for PERM due to the lack of a folding center
the protein. The 85-mer sequence has a putative ground
ergy of 252. The genetic algorithm39 failed to fold the se-
quence to one of its putative ground energy states, and
lowest energy attained was247, which is far from the puta-
tive ground energy value. PERM was not tried on this
quence. For this sequence, EMC was tried with differ
constraints. For example,

TABLE III. Protein folding simulations with the use of secondary stru
tures.

Lengtha Putative ground energy EMCb

48 223 223 ~53,263!
64 242 242 ~77,287!
85 252 252 ~44,029!

aIn the sequence~48!, the subsequence~residues 17–26! is constrained to
the secondary structure. In the sequence~64!, the subsequences~residues
1–0, 55–64! are constrained to the secondary structures. In the sequ
~85!, the subsequences~residues 9–18, 27–36, 42–51, 57–66! are con-
strained to the secondary structures.

bEMC was run 5 times independently with the population size 500,
highest temperature 20, the lowest temperature 0.5, and the selection
perature 0.5. The reported values are the lowest energy achieved durin
most efficient run and the number of valid conformations scanned be
that value was found.
I.
C
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~a! 11–18, 29–36, 44–51, 59–66;

~b! 9–18, 27–36, 42–51, 57–66;

~c! 9–20, 27–38, 42–53, 57–68.

With constraint~a!, the EMC folds the sequence rapidly t
many states with energy251 @e.g., Figs. 5~a! and 5~b!#. With
slightly stronger constraints~b! and ~c!, EMS folds the se-
quence rapidly to putative ground states. For example, in
run with constraint~b!, only 44029 valid conformations ar
scanned before one putative ground state was found; an
one run with constraint~c!, only 17794 valid conformations
are scanned before one putative ground state was found.
representatively putative ground conformations found
EMS are shown in Fig. 6, and the other putative grou
conformations found by EMC are only their rotated versio
Note that the conformation shown in Fig. 6~a! is identical to

ce

e
m-
the
re

FIG. 4. The putative ground conformations found by EMC with second
structure constraints.~a! The putative ground conformation of energy223
of the 48-mer sequence with the subsequence~residues 17–26! being con-
strained to the secondary structures.~b! The putative ground conformation
of energy 242 of the 64-mer sequence with the subsequences~residues
1–10 and 55–64! being constrained to the secondary structures.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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that originally designed in Ref. 39. From the three examp
we conclude that the use of the secondary structure c
straints substantially eases the search for the lower en
states in simulations, but it also limits the number of grou
conformations that could be found by EMC. For examp
the putative ground conformations@Figs. 6~a! and 6~b!#
found by EMC for the 85-mer sequence have the ident
hydrophobic cores.

For a thorough comparison, we also applied the c
strained EMC sampler to the 60-mer sequence. It folds
sequence rapidly to some states of energy235. However, if
we restrict the subsequence~residues 33–44! to a local struc-
ture as shown in Fig. 7~a!, EMC folds rapidly to one putative
ground state of energy236 @Fig. 7~b!#. In one run, only
40334 valid conformations were scanned before the puta
ground state was found. This experiment suggests tha
appropriately large number of secondary structures shoul
used for an efficient simulation to accommodate various
cal structures of proteins. These structures may be de
mined by a survey for the frequencies of secondary str
tures being adopted by real proteins.

The necessity of the use of local structures in prot
folding simulations can be justified by comparing Fig. 2 a
Fig. 4~b!. Although EMC has folded the 64-mer sequence
globular shapes with and without the use of secondary st
tures, the transition from a local minimum energy state, e
the conformation shown in Fig. 2~a! or 2~b!, to the putative
ground state may cost an extremely long time if second
structures were not used. In real protein folding simulatio

FIG. 5. Two local minimum conformations of energy251 found by EMC
for the 85-mer sequence with constraint~a! where the subsequences~resi-
dues 11–18, 29–36, 44–51, 59–66! are constrained to the secondary stru
tures.

FIG. 6. Two putative ground conformations of energy252 found by EMC
for the 85-mer sequence with constraint~b! or ~c!. In constraint~b!, the
sequences~residues 9–18, 27–36, 42–51, 57–66! are constrained to the
secondary structures. In constraint~c!, the subsequences~residues 9–20,
27–38, 42–53, 57–68! are constrained to the secondary structures.
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a procedure of secondary structure prediction may be
formed first. The predicted secondary structures and t
respective folding probabilities can be incorporated into
simulation, and this will substantially accelerate the simu
tion process of protein folding.

VII. CONCLUSION AND DISCUSSION

We showed that the evolutionary Monte Carlo algorith
can be effectively applied to simulations of protein foldin
on lattice models. In all cases it did better than the gen
algorithm and Metropolis Monte Carlo, and in several ca
it found new lower energy states. We also proposed
method for the use of secondary structures in protein foldi
The numerical results showed that it is very successfu
finding low energy states. Although we have considered o
2D HP models in this article, we should stress that the
tension to 3D HP and real protein models is straightforwa

For EMC, two points needs to stress are its flexib
structure and learning capability. The structure of EMC is
flexible that any efficient move developed for protein foldin
can be incorporated as a mutation operator or a cross
operator. For example, the long range moves20,21 can be in-
corporated into EMC as mutation operators, and the resul
simulation will be more efficient for dense chains. Similar
the systematic crossover operator39 can also be incorporate
into EMC as a crossover operator by an importance samp
procedure, by which one pair of offspring are selected from
temporary stock, where offspring produced from the sa
parents with various crossover points are stored. The deta
balance condition is ensured by accounting for the selec
probabilities of the pair of offspring.

In general, a ‘‘learning’’ capability refers to that one
able to modify its behavioral tendency by experience. T
use of population makes it possible for EMC to learn from
historical samples. In EMC, the simulation at high tempe
tures can help the system make a much global explora
over the whole sample space. The exchange operation~swap-
ping of temperatures! works as a selection mechanism.
high energy conformation will, through exchange operatio
be forced to climb up the temperature ladder. At high te
peratures, random mutations are easily accepted and thu
high energy conformation will be eliminated from the pop
lation. While a low energy conformation will be forced t
climb down the temperature ladder. At low temperatur
random mutations are difficult to accept and the low ene
conformation will be stored there for a relatively long tim

FIG. 7. A local structure~a! and a putative ground conformation~b! of
energy236 of the 60-mer sequence. The putative ground conformation
found by EMC with the subsequence~residues 33–44! being constrained to
the local structure shown in~a!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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period. According to the roulette wheel selection proced
employed by EMC, the low energy conformation will have
large probability to be selected as a parental chromosom
mate with other chromosomes to produce offspring, wh
will be in a large probability to resemble the parental co
formations. In this sense, we say that EMC has learned f
its historical samples.

A further work of interest is how to design a more ef
cient crossover operator for a long sequence. The cross
operators used in this paper are very effective for a seque
of short and moderate length, but are less effective for a l
sequence due to a low acceptance probability, just as not
by the authors20,21 for long range moves. The crossover o
erators do improve the simulations of protein folding.
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