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We demonstrate that evolutionary Monte Ca#d/C) can be applied successfully to simulations of
protein folding on simple lattice models, and to finding the ground state of a protein. In all cases,
EMC is faster than the genetic algorithm and the conventional Metropolis Monte Carlo, and in
several cases it finds new lower energy states. We also propose one method for the use of secondary
structures in protein folding. The numerical results show that it is drastically superior to other
methods in finding the ground state of a protein. 2001 American Institute of Physics.
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I. INTRODUCTION the evolutionary Monte CarlEMC) (Ref. 23 algorithm, on
2D hydrophobic—hydrophili€HP) models?* This algorithm

In recent years the prediction of the native structure of ds motivated by the genetic algorithm in optimization. It
protein from its sequence have attracted a great deal of atvorks by simulating a population of Markov chains, where a
tention. Given a polypeptide chain and the correct moleculadifferent temperature is attached to each chain. The popula-
potential, how can one find the thermodynamically stabletion is updated by mutation, crossover and exchange opera-
state of the protein? This problem has bee recognized to bers that preserve the Boltzmann distribution of the popula-
“NP-complete,”~3 which means that this problem is not tion. EMC possesses two attractive features as a simulation
solvable in polynomial time, even for an optimal algorithm. algorithm. One is that it has incorporated the extensively
The difficulty of the problem is that the energy landscape ofsearch ability of the genetic algorithm by evolving with
the system is characterized by a multitude of local minimacrossover operators. The other one is that it has incorporated
separated by high energy barriers. At low temperatures, trahe fast mixing ability of simulated tempering by simulating
ditional Monte Carlo and molecular dynamics simulationsalong a temperature ladder. The numerical results show that
tend to get trapped in local minima. Hence, only a smallEMC is a promising algorithm for simulation and optimiza-
fraction of the phase space is sampled, the native structu&n.
cannot be located, and the thermodynamic quantities cannot
be estimated accurately.

_ At_tempts to gllev_iate_ this difficulty have been in twc_) Il. THE 2D HP MODEL

directions. One direction is to search for the lowest potential
energy conformatioifwhich is believed to correspond to the In the 2D HP model a protein is composed of “amino
native state of a proteinwith powerful optimization tech- acids” of only two types: hydrophobitH for nonpolay and
niques such as Monte Carlo with minimizatibsjmulated  hydrophilic (P for pola. The sequence is “folded” on a
annealing, and genetic algorithns’ The effectiveness of two-dimensional square lattice. At each point the chain can
these methods have been tested with many proteins and latirn 90° left, right, or continue ahead. Only the self-avoiding
tice model€® One drawback is that these optimizers ignoreconformations are valid with energies;u=—1 and eyp
the entropic contributions of the conformations and the ther=epp=0 for interactions between noncovalently bound
modynamic quantities of interest cannot be estimated. Thaeighbors. The interest in the model comes from the fact that
other direction is to sample the phase space with more effialthough it is very simple, it does exhibit many of the fea-
cient samplers such as multicanonitiéntropic sampling®  tures of real protein folding>?® For the 2D HP model, low
parallel temperindg?*® simulated temperindf® 1/k-ensemble energy conformations are compact with a hydrophobic core,
sampling'® chain growth algorithm&®~*°and Metropolis al- ~ since the H—H interactions are rewarded. The hydrophobic
gorithms with long range moveé&2 For a recent review, see residues have to be buried inside to yield a low energy struc-
Ref. 22. ture, while the hydrophilic residues are forced to the surface.

In this paper we test our a new Monte Carlo algorithm, This model has been used by chemists to evaluate new hy-

pothesis of protein structure formati®éhAlso, the simplicity

dAuthor to whom correspondence should be addressed; Electronic maif:)f the model Permits a rigorous analySlS of the eff|C|ency for

stalfm@nus.edu.sg a foldipg alg(_)r?thm. In fact,_this mod_el has become standards
PElectronic mail: wwong@hsph.harvard.edu in testing efficiency of folding algorithms.
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11l. EVOLUTIONARY MONTE CARLO ALGORITHM (a) () (©
The algorithm we applied here is a special implementa- Kol Z,%X

tion of EMC for the 2D HP model. To apply EMC to the 2D

HP model, each conformatidimdividual or chromosome in f g‘% I

terms of genetic algorithm®f a protein is represented by a o999 iii"‘_)

vectorz=(z1,...,2) with z(<{0,1,2}, where each digit

represents a torsion angle: 0, right; 1, continue and 2, left.

A three-bead flip Crankshaft moves Rigid rotations
The energy function of the conformation is denoted-hz)
and the Boltzmann distribution is defined by FIG. 1. Mutation operators used in 2D HP models. The circle denotes a
residue, hydrophobic or hydrophili¢a) A three-bead flip.(b) Crankshaft
f(z)cexp{—H(z)/7}, moves.(c) Rigid rotations.

where 7 is called the temperature of the system.
In EMC, to simulate from the target distributidifz), a
sequence of distributionfs,...,fy are first constructed with illustrated in Fig. 1. For example, in the crankshaft operator
. [Fig. 1(b)], the two crankshaft structures can be represented
fi)cexp —H(@)/ti},  1=1...N. as 2002 and 0220 in our coding scheme, respectively. We
The temperature sequence(t,,...,ty) forms a ladder with ~ first search for all of the crankshaft structures fragnand
t;>...>ty=r. Hence,fy(-) turns out to be the target dis- denote the total number of them lay,, and then randomly
tribution to be sampled from. Let, denote a sample from choose one crankshaft uniformly on 1 ¢g, to mutate by
fi(x), the sampleg;,...,zy form a population denoted by reversing(i.e., change 0220 and 2002 and vice vgr3de
z={z;,...,zy}, Where N is called the population size. In transition probability ratio is thef(z|z')/T(z'|z)=c/cm,
EMC, the Markov chain state is augmented as a populatiowherec, denotes the total number of local crankshaft struc-
of samples instead of a single sample, and the Boltzmantures inz;,. The other operators are performed in a similar

distribution of the population is defined as manner.
N In the crossover operator, different offspring are pro-
_ Nt duced by a recombination of parental chromosomes ran-
f(z)ocexp[ 2 H(z)/t J @ domly selected from the population. For exampgandz,

are selected as the parental chromosomes. Without loss of
generality, we assume thb(z,) >H(z,). Two “offspring”

z; andz] are generated as follows. First an integer crossover
point ¢ is drawn uniformly on{1,...d}, thenz, and z] are
constructed by swapping the genes of the two parental chro-
mosomes to the right of the crossover point. The following
diagram illustrates a 1-point crossover operator,

The population is updated by three operators: mutation
crossover, and exchangeescribed beloyv

In the mutation operator, an individual, say, is first
equally likely selected from the current populatisnThen
z, is mutated to a new chromosorgg. A new population is
formed by replacing z, by z,, that is, Z
={21,.--Zm-1,Z}n Zm+1.---,Zn}- The new population is ac-

cepted with probability miflr,) according to the (2,2 (2V,... 20,24t 2D
Metropolis—Hastings rulé®2°
=
f(z') T((#z")
'Y T V... (Z4Y,...z20, 2, .. 2
T(z|z') where c is called a crossover point. If there aké¢k>1)
=exp{— (H(zy) —H( Zm))/tm}-l—(z T (2 crossover points, it is called kpoint crossover. In this pa-

per, we use&k=1 or 2.

whereT(-|-) denotes the transition probability between two A new population is formed by replacing the selected
populations. If the proposal is accepted, the current populaparental chromosomes with the new “offspringzy, is re-
tion z is replaced by’, otherwisez is unchanged. placed by the offspring with the higher energy angis

The mutation operators used in this paper include aeplaced by the other one. The new population is accepted
k-point mutation, a three-bead flip, a crankshaft move, and &ith probability min(1f.) according to the Metropolis—
rigid rotation. Ink-point mutationsk bits are randomly cho-  Hastings rule,
sen from the individuat,,, and their values are replaced by
the ones sampled uniformly from the $811,2. Thek s also 2@ T(42)
a random variable, of which the value ranges from Idto ¢ f(2) T(Z|2
Whenk=d, the operator produces a completely new random , ,
conformation independent of the current one, and it effec- =exp~ (H(z) ~H(za))/ta= (H(z;)

tively prevents the population from becoming homogeneous. T(ZZ)

The k-point mutation operator is symmetric in the sense that H(Zb))/tb}-l—(z |z) ©)
T(Z2')=T(ZZ"), andr, in Eq.(2) is reduced to the conven-

tional Metropolis ratio. The other mutation operators arewhere T(Z'|2) =P((za,20) |2 P((Z320) | (Zas Z0)),

identical to the local moves used in Ref. 30, and they aréP((z,,2,)|2) denotes the selection probability of(z,)
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from the populatiorz, and P((z,,2})|(za.2,)) denotes the TABLE I. Test of ergodicity of EMC simulations. The target is the Boltz-
generating probability sz(—; 1Z|’a) from the parental chromo- mann distribution at the lowest temperature leiyet 0.5.
somes(z,,zy). Energy

Throughout this paper, the parental chromosomes are
chosen as follows. The fist chromosomg z,) is selected
according to a roulette wheel procedure with BoltzmanneExact 0.0170 0.0602 0.1295 0.2180 0.2643 0.1983 0.1127

weights, that isz,(z,) is selected with a probability, EMC® 00171 00618 0.1286 02190 0.2653 0.1981 0.1101
SD*  0.0003 0.0016 0.0016 0.0023 0.0016 0.0022 0.0033

0 -1 -2 -3 —4 -5 -6

1
w(z)= ——exp{ —H(z)/ts}, 3Mass of each valid energy value from the exact equilibrium distribution.
C(2) bPercentage of time spent in each energy value by the EMC simulations.

. . °SD: standard deviation of the EMC estimator based on 10 runs.
whereC(2) ==L ; exp{—H(z)/tg, andt, is called a selection vied ' .

temperature, which takes a value arougd It may be the

same withty but not necessary. The second chromosomessuyes about choice of them can be found in Ref. 23.

z,(z,) is selected randomly from the rest of the population.Roughly speaking, we should choose the population size

The selection probability of#,,z,) from z is then comparable(at least to the length of the chromosome;

1 choose the highest temperature such that (dmicipatedl

m energy barriers can be overcome easily by a Metropolis—
Hastings move, choose the temperature ladder such that the

X [exp{—H(z,)/ts} + exp{ —H(zp)/tg}]. acceptance probability of the exchange operations is moder-

y o, . . ate, and choose the mutation rate to balance the local and
P(z},z}|z') can be calculated similarly. Note that the 1'p°'mglobal searches, e.g., a value between 0.2 and 0.4.

and 2-point crossover operators are both symmetric, i.e. The structure of EMC is very flexible. Setting, =1
P((za.20)|(2.2)) = P((za.20)(Za.20)). the algorithm is reduced to parallel temperiid® Setting
The exchange operator is the same with that of parallebm:1 andN=1, the algorithm is reduced to the conven-

tempering. Given the current populatianand the attached ;5 single-chain Metropolis—Hastings algorithm.
temperature ladder we try to make an exchange betwegn

and z; without changing the’s, i.e., initially we have £,t) IV. A TESTING EXAMPLE

P((za.2p)|2)=

=(z1,t,....2i,,...Z),t,...2y,ty)  and we want to
change itto ¢',t)=(zy,t,....2; ,ti ...z ,tj ...,y ty). The The sequence used for this example is: HHPHPHPHP-
new population is accepted with probability rfirr,) ac- PHPH, which is identical to sequence 1 of Ref. 31. It has a
cording to the Metropolis—Hastings Rule, unigue native conformation with energy6. EMC was run
10 times independently. Each run consists of 50000 itera-
f(z') T(z|z')

tions. The parameters are set as follows: the population size

¢ (2 T(Z[2) N=50; the lowest temperature is 0.5, the highest temperature

1 1)) T(zl2) is 10, and the intermediate temperatures are equally spaced

=exp[ (H(z)— H(zj))(—— _)] —. (4) between 0.5 and 10; the selection temperature is 0.5; and the
t 4/ T(Z]2) mutation rate is 0.25. In the mutation step, all individuals in

The exchange operator usually only performs on the indithe current population are independently subject to an at-

viduals with neighboring temperatures, i.g5j|=1. tempt of mutation, and the proportions of tkgoint muta-
With the operators described above, one iteration otion, three-bead ﬂlp, crankshaft move and rlgld rotation are
EMC consists of the fo||owing two steps: 1/2, 1/6, 1/6 and 1/6, respectively. In the crossover $tp,

chromosome pairs are selected to mate. This parameter set-
ting may not be optimal, but it works well for this example.

In the following examples, only the population size, tem-
perature ladder, and selection temperature vary with lengths
of sequences, and the other parameters are kept unchanged.

(1) Apply either mutation or crossover operator to the popu
lation with probability p,, and 1-p,,, respectively,
wherep,, is called a mutation rate.

(2) Try to exchangez; with z; for N—1 pairs(i,j) with i

being sampled uniformly ofl,...N} and j=i+1 with Table | shows the Boltzmann distributiongy & 0.5)
probability g, where g;i+1=0i-1;=05 and di>  generated by EMC and the exact equilibrium distribution
=0un-1=1. computed by an exhaustive enumeration for this testing ex-

ample. The comparison indicates that EMC is ergodic, and

is n:Bt;htg dmiLrl]tggognsdtggilealcnh t%herogggssoorcgrogge p:g);g?tlo?he 10 runs have achieved agreement between the Monte
P Y- P. Carlo estimate and the exact equilibrium distribution to

pairs of chromosomes are chosen to mate. The crossover.,, .
; . . : ; Within a few percent.
operator works in an iterative way, that is, each time the

operator works on a new population which was just update

by the preceding operator. In our experience, the mutatiog\/' A COMPARISON BETWEEN THE METHODS

operator provides a good local exploration around a local In this section, EMC is compared to two other com-
minimum, while the crossover operator provides a much glomonly used protein folding algorithms, namely, the genetic
bal exploration over the whole conformation space. The alalgorithm and Metropolis Monte Carlo. The latter two algo-
gorithm has three user-set parameters, namely andp,,. rithms have been implemented in Ref. 9. In protein folding
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TABLE Il. Comparison of EMG with the genetic algoritht@®A) and Me-
tropolis Monte CarldMC). For each sequence, the three algorithms were all

(@
run 5 times independently, the lowest energy values achieved during the
most efficient run were reported in the respective columns together with the
number of valid conformations scanned before that value was found. »
Putative H A é
ground
Lengti?  energy EmMCE GA® mcH

(b)

20 -9 -9 (91374 —908 (30’493 -9 (292’443 64-residual chain 64-residual chain
24 -9 -9 (6,929 -9 (30,491 —9(2,492,22}1 - )
o5 8 —8(7.202 ~8(20.400 ~8(2694572 FIG. 2. Two local minimum energy conformations of energ$9 found by

EMC for the 64-mer sequendwithout the use of secondary structures)

36 —14 —14(12,447 -14(301,339 —13(6,557,189 Conformation 1;(b) Conformation 2. Solid squares represent hydrophobic
48 —23 —23(165,79) —22(126,547 —20(9,201,755 residues whereas open squares represent hydrophilic residues.

50 -21 —21(74,613 —21(592,887 —21(15,151,208

60 —-36 —35(203,729 —34(208,78) —33(8,262,333

64 —42  —39(564,809 —37(187,393 —35(7,848,952

three algorithms only perform “blind” searches over the
Z’Fhe length denotes the number of residues of the sequence. ' whole conformation space. In contrast, PERM makes use of
For sequence 20, 24, an_d 25, EMC was run for 5000 iterations with th ore information of the sequence when it folds a protein.
population size 100, the highest temperature 20, the lowest temperature 0. build . hain f f

and the selection temperature 0.3. For the other sequences, EMC was rur#ERlvI may build up Its chain from ?‘ny pgrt of a sequence,
for 1000 iterations with the population size 500, the highest temperature 2€.9., & subsequence of hydrophobic residues. PERBf.

the lowest temperature 0.3, and_the selection temperature 0.5. 19) argues for this idea that real proteins have folding
“The results of the genetic algorithm reported in Ref. 9. The GA was run 01632 and it should be most efficient to start from such a
with the population size 200 for 300 generations. . .
The results of Metropolis Monte Carlo reported in Ref. 9. Each run of MC nuc'_eusj The Issue ab_OUt the use of the_ SUbsequence_ infor-
consists of 50 000 000 steps. mation in protein folding simulations will be further dis-

cussed in the next section.

simulations, the dominant factor is the energy evaluationy| The USE OF SECONDARY STRUCTURES IN
which is performed once for each valid conformation. EMC pPROTEIN FOLDING

is not significantly more costly per step than the genetic al- . 3 . i
gorithm, since most of the mutation and crossover operators Levinthaf® and Wetlaufet* pointed out that proteins
are designed to be symmetric, and the corresponding trand2!d much too fastby at least tens of orders of magnityde

tion probabilities need not to be evaluated. In the exchangVolve an exhaustive search. This is the so-called Levinthal
step, no energy evaluation is performed. Hence, the maifR@radox: how can a protein find a native state without a

factors to be compared are the number of energy evaluatiorQ_J,Oba"y exhaustive search? Experiments show that there ex-

needed to find one of the lowest energy conformations, anfptS “cooperativity” in protein folding, i.e., a protein folds to

the lowest energy attained for a given number of energ;}ts native stgte according tq a relatively smz':ll'l number of
“pathways,” in other words, it folds by a specific sequence

evaluations. 5 36 2 . :
The three algorithms were compared for the sequence%f molecular eventd>2®The cooperativity are mainly driven

given in Ref. 9. The results were summarized in Table II. Fo?Y WO types of interaction$." (i) the local interaction by
sequences of length 20, 24, 25, 36, and 50, EMC was fastd¥hich each individual tetrapeptide in the sequence finds a
than the genetic algorithm and Metropolis Monte Carlo inydrogen-bonded helical conformation, afid the nonlocal

finding the putative ground energy states. The computationdfitéraction by which a compact hydrophobii) core is
amounts used by EMC were only about 10%—30% of thaformed. .

used by the genetic algorithm, and 1%—3% of that used by Motivated by the above pbseryatlons, we use the. follow-
Metropolis Monte Carlo. For sequences of length 48, 60, andd Steps to speed up the simulations of protein folding:

64, EMC also found the same energy states with smallef1) |dentify the subsequences which will possibly fold to
computational amounts than the generic algorithm and Me-  secondary structur&sin the native state of a given pro-
tropolis Monte Carlo. With slightly larger computational tein.

amounts, EMC found some new lower energy states as rg2) perform sampling on the constrained conformation space

ported in Table II. Two local minimum energy conformations where some subsequences are subject to possible sec-
of energy—39 found by EMC for the 64-mer sequence were  ondary structures.

shown in Fig. 2. Both are in globular shapes with compact

hydrophobic cores being buried by hydrophilic residues. In However, the simulation performed on the constrained
summary, Table Il shows that EMC has made a significantonformation space may lead to a biased estimate if we are
improvement over the genetic algorithm and Metropolisinterested in the thermodynamic properties of protein fold-
Monte Carlo in finding low energy states for a protein. Weing. An ergodic simulation with the use of secondary struc-
note that for the 60-mer sequence a putative ground state wasres is described as follow.

found by the pruned-enriched Rosenbluth mettRERM).*° For the 2D HP model, the possible secondary structures
A direct comparison of PERM with EMC, Metropolis Monte folded by a subsequence of hydrophobic residues are illus-
Carlo and the genetic algorithm is unfair, since the lattertrated in Figs. &), 3(b), and 3c), which correspond to beta,
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@ (b) © each structure having a nonzero mass value. For example, we
assign that each structure shown in Fig. 3 has a mass value
sessessses il il 9 g
1/3—¢, and all other structures have an equal mag&l867
—3), where e is a small value chosen by users. The mass
FIG. 3. Secondary structures folded by a subsequence of hydrophobifunction will then work as a proposal transition function for
residues.(a) Extended sheet(b) Helix with direction 1.(c) Helix with the move of the block of residues. and the resulting simula-
direction 2. !
tion will be ergodic. In fact, the block move can be incorpo-
rated easily into EMC as a mutation operator. Eé&tnd to O,

] o ] o the simulation reduces to sampling on the constrained con-
alpha(with direction 1), and alphawith direction 2 struc- formation space.

tures of a real protein, respectively. However, the total num- . . .
- By sampling on the constrained conformation space, we
ber of self-avoiding structures that could be folded by the
fold the 48-mer and 64-mer sequences and a new 85-mer

subsequence may be huge. For example, it is 4067 for Y & rapi ) )
subsequence of 10 residues. An essentially arbitrary distrib (E8dUeNnce rapidly to their putative ground energy states. The

tion can be assigned to these self-avoiding structures witRimary sequences of them are given as follows:

Secondary Structure 1 Secondary Structure 2 Secondary Structure 3

(48) PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH;

(64) HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHPPHPHPHHHHHHHHHHHH;

(85) HHHHPPPPHHHHHHHHHHHHPPPPPPHHHHHHHHHHHHPPPHHHHHHHHHHHHPPPHHHHHHH
HHHHHPPPHPPHHPPHHPPHPH.

The computational results were summarized in Table lll.  (3) 11-18, 29-36, 44-51, 59-66;

The putative ground states found by the constrained EMC

sampler for the 48-mer and 64-mer sequences are shown in (b) 9-18, 27-36, 42-51, 57-66;

Fig. 4. Using other algqrithms, including Metropolis Monte (c) 9-20, 27-38, 42-53, 57—68.

Carlo? the genetic algorithm¥®®and PERM3%the putative ' _

ground energy states of the 64-mer sequence were nev¥yith constraint(a), the EMC folds the sequence rapidly to

found. The authof€ commented that this sequence acts as dnany states with energy51[e.g., Figs. &) and §b)]. With

bottleneck for PERM due to the lack of a folding center in Slightly stronger constraintéb) and (c), EMS folds the se-

the protein. The 85-mer sequence has a putative ground efuence rapidly to putative ground states. For example, in one

ergy of —52. The genetic algorithif failed to fold the se- un with constraint(b), only 44029 valid conformations are

guence to one of its putative ground energy states, and thecanned before one putative ground state was found; and in

lowest energy attained was47, which is far from the puta- ©ne run with constrainfc), only 17794 valid conformations

tive ground energy value. PERM was not tried on this ser€ scanned before one putative ground state was found. Two

quence. For this sequence, EMC was tried with differenfepresentatively putative ground conformations found by

constraints. For example, EMS are shown in Fig. 6, and the other putative ground
conformations found by EMC are only their rotated versions.
Note that the conformation shown in Figiabis identical to

TABLE Ill. Protein folding simulations with the use of secondary struc-
tures.
(@) (b)

Length Putative ground energy EMC
48 -23 —23 (53,263
64 —42 —42 (77,287
85 —52 —52 (44,029

4n the sequencé4d), the subsequenc@esidues 17—-26is constrained to
the secondary structure. In the sequef®®, the subsequencégsesidues

1-0, 55—-64 are constrained to the secondary structures. In the sequence 48-residual chain 84-residual chain
(85), the subsequencedsesidues 9-18, 27-36, 42-51, 573 &6e con-
strained to the secondary structures. FIG. 4. The putative ground conformations found by EMC with secondary

PEMC was run 5 times independently with the population size 500, thestructure constraintga) The putative ground conformation of energy23
highest temperature 20, the lowest temperature 0.5, and the selection terof the 48-mer sequence with the subsequegnesidues 17—26being con-
perature 0.5. The reported values are the lowest energy achieved during tiserained to the secondary structuré®. The putative ground conformation
most efficient run and the number of valid conformations scanned befor®f energy —42 of the 64-mer sequence with the subsequericesidues
that value was found. 1-10 and 55-6Mbeing constrained to the secondary structures.
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(a) (b) (a) (b)

i E t Local structure 60-residual chain

FIG. 7. A local structurg(a) and a putative ground conformatigh) of
energy—36 of the 60-mer sequence. The putative ground conformation was
found by EMC with the subsequen@esidues 33—44being constrained to

the local structure shown i(a).

85-residual chain 85-residual chain

FIG. 5. Two local minimum conformations of energys1 found by EMC
for the 85-mer sequence with constrafal where the subsequencésgsi-
dues 11-18, 29-36, 44-51, 59— @6e constrained to the secondary struc-
tures.

a procedure of secondary structure prediction may be per-

formed first. The predicted secondary structures and their
that originally designed in Ref. 39. From the three examplesgespective folding probabilities can be incorporated into the
we conclude that the use of the secondary structure corsimulation, and this will substantially accelerate the simula-
straints substantially eases the search for the lower energion process of protein folding.
states in simulations, but it also limits the number of ground
conformations that could be found by EMC. For example,vil. CONCLUSION AND DISCUSSION
the putative ground conformation$=igs. Ga) and Gb)]

found by EMC for the 85-mer sequence have the identical We showed that the evolutionary Monte Carlo algorithm
hydrophobic cores can be effectively applied to simulations of protein folding

For a thorough comparison, we also applied the conon lattice models. In all cases it did better than the genetic

strained EMC sampler to the 60-mer sequence. It folds thétlgorithm and Metropolis Monte Carlo, and in several cases
sequence rapidly to some states of ener@b. However, if It found new lower energy states. We aIsp proppsed one
we restrict the subsequengesidues 33—44o a local struc- method for the use of secondary structures in protein folding.

ture as shown in Fig.(&), EMC folds rapidly to one putative The_ numerical results showed that it is very sugcessful in
ground state of energy-36 [Fig. 7(b)]. In one run, only finding low energy st.ates.'AIthough we have considered only
40334 valid conformations were scanned before the putativaD HP models in this article, we should s_tress _that the ex-
ground state was found. This experiment suggests that dfnsion to 3D HP and Fea' protein models is strmghtforw_ard.
appropriately large number of secondary structures should be For EMC, two points needs to sfress are its flexible

used for an efficient simulation to accommodate various |o_structure and learning capability. The structure of EMC is so

cal structures of proteins. These structures may be detep-exible that any efficient move developed for protein folding

mined by a survey for the frequencies of secondary struccan be incorporated as a mutation operator or a crossover
tures being adopted by real proteins operator. For example, the long range mé®éscan be in-

The necessity of the use of local structures in proteincorporated into EMC as mutation operators, and the resulting

folding simulations can be justified by comparing Fig. 2 andsimulation Wi!l be more efficient for dense chqins. Similarly,
Fig. 4(b). Although EMC has folded the 64-mer sequence tOf[he systematic crossover operataran also be incorporated

globular shapes with and without the use of secondary strudnt EMC as a crossover op_erator by an importance sampling
tures, the transition from a local minimum energy state, e.g.Procedure, by which one pair of offspring are selected from a

the conformation shown in Fig.(@ or 2(b), to the putative temporary stock, where offspring produced from the same
ground state may cost an extremely long time if secondar)zarems with various crossover points are stored. The detailed

structures were not used. In real protein folding simulations, aIancg_gond|t|on IS e.nsured by_ accounting for the selection
probabilities of the pair of offspring.
In general, a “learning” capability refers to that one is

@ (®) able to modify its behavioral tendency by experience. The
use of population makes it possible for EMC to learn from its
historical samples. In EMC, the simulation at high tempera-
tures can help the system make a much global exploration
over the whole sample space. The exchange operavosap-
ping of temperaturgsworks as a selection mechanism. A
high energy conformation will, through exchange operations,
be forced to climb up the temperature ladder. At high tem-
peratures, random mutations are easily accepted and thus the
high energy conformation will be eliminated from the popu-
]lflG-hG- ;;vo putative ground %onformations of en?FgW found b{))/ Eﬂc lation. While a low energy conformation will be forced to
e e L\ s 1o . €MD down the temperature ladder. At low temperatures,
secondary structures. In constraii), the subsequencesesidues 9—20, andom mutations are difficult to accept and the low energy
27-38, 42-53, 57—6&vre constrained to the secondary structures. conformation will be stored there for a relatively long time

85-residual chain 85-residual chain
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