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This article provides a first theoretical analysis of a new Monte Carlo approach, the dynamic weighting algorithm, proposed recently
by Wong and Liang. In dynamic weighting Monte Carlo, one augments the original state space of interest by a weighting factor,
which allows the resulting Markov chain to move more freely and to escape from local modes. It uses a new invariance principle to
guide the construction of transition rules. We analyze the behavior of the weights resulting from such a process and provide detailed
recommendations on how to use these weights properly. Our recommendations are supported by a renewal theory-type analysis. Our
theoretical investigations are further demonstrated by a simulation study and applications in neural network training and Ising model

simulations.
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1. INTRODUCTION

Optimization, integration, and system simulation are at the
heart of many scientific problems, almost all but the simplest
of which must be solved by numerical methods, either heuris-
tic or semiheuristic and exact or approximate. Algorithms
of a stochastic nature play a central role in these endeav-
ors. In recent decades, Monte Carlo algorithms have received
much attention from researchers in engineering and computer
science (e.g., Geman and Geman 1984, Kirkpatrick, Gelatt,
and Vecchi 1983), statistical physics (e.g., Goodman and Sokal
1989, Marinari and Parisi 1987, Swendsen and Wang 1987),
computational biology (e.g., Lawrence et al. 1993; Leach
1996, Liu, Neuwald, and Lawrence 1999), material science
(Frenkel and Smit 1996), statistics (Gelfand and Smith 1990;
Tanner and Wong 1987), and many other fields.

Let 7(x) be the target density under investigation, which
is often given up to a normalizing constant. Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller (1953) introduced
the fundamental idea of evolving a Markov process to achieve
the simulation of random samples from 7. Start with any con-
figuration, the Metropolis algorithm iterates many times of the
following two steps.

Step 1: Propose a random “perturbation” of the system,
(i.e., from X — X'), which can be regarded as generated from
a transition probability distribution 7(X, X'); calculate the
change Ah =log7(X') —log w(X).

Step 2: Generate a random number U from uniform (0,1).
Accept the proposal and change the configuration to X' if
log U < Ah, and reject the proposal otherwise.

The Metropolis scheme has been used extensively in statis-
tical physics over the last 40 years and is the cornerstone of
all Markov chain Monte Carlo (MCMC) techniques recently
developed in the statistics community. The Gibbs sampler
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(Geman and Geman 1984) can be viewed as a nontrivial vari-
ation of the Metropolis technique.

As known by many researchers, a major drawback of var-
ious MCMC algorithms is that the constructed Markov chain
can mix very slowly and may be trapped indefinitely in a
local mode, rendering the method ineffective. To improve mix-
ing, techniques such as multigrid Monte Carlo (Goodman and
Sokal 1989), auxiliary variables (Swendsen and Wang 1987),
simulated tempering (Geyer and Thompson 1995, Marinari
and Parisi 1992), and blocking and collapsing (Liu, Wong, and
Kong 1994) have been proposed. These techniques can all be
regarded as special variations of the basic Markov chain idea
of Metropolis et al. (1953) and Hastings (1970).

In this article we study a different approach, the dynamic
weighting method recently introduced by Wong and Liang
(1997). The method extends the basic Markov chain equilib-
rium concept of Metropolis et al. (1953) to a more general
weighted equilibrium of a Markov chain.

The purpose of introducing importance weights into the
dynamic Monte Carlo process is to provide a means for the
system to make large transitions not allowable by the standard
Metropolis transition rules. When the distribution has regions
of high density separated by barriers of very low density, the
waiting time for the Metropolis process to cross over the bar-
riers will be essentially infinite. In our dynamically weighted
Monte Carlo, the process can often move against very steep
probability barriers, which apparently violates the Metropolis
rule. The weight variable is updated in a way that allows for
an adjustment of the bias induced by such non-Metropolis
moves. This device can essentially eliminate the “waiting time
infinity” (i.e., the waiting time for a slow-mixing chain to con-
verge is practically infinite) in most applications.

This advantage of using the dynamic weights comes at a
price, however. There can be large variability in the resulting
weighted estimates when the realized weights are very long-
tailed. As we discuss in this article, many of the weighted tran-
sition rules that we propose will lead to a weight distribution
with infinite mean. In short, the waiting time infinity in the
standard Metropolis process now manifests itself as an “impor-
tance weight infinity” in the dynamic weighting process.
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Fortunately, the standard Metropolis and Gibbs moves can
be viewed as special types of weighted move—they are valid
as long as the weight variable is kept constant after the move.
Hence we can mix the new weighted transitions with the stan-
dard transitions so that the weighted moves are used only
when we propose large changes in the system and the standard
Metropolis or Gibbs moves are used for local exploration. In
this way the extra variability in the weights can be greatly
reduced, but the system is still capable of making large jumps.

Two key ideas involved in the approach of Wong and
Liang (1997) are (1) sequential decomposition (and buildup)
of the complicated target function, and (2) introduction of
the importance weight, denoted by W, as a dynamic variable
for the control of the Markov chain simulation in each step.
Wong and Liang’s tests of this method on many large-scale
simulation and global optimization problems yielded promis-
ing results. Some of these problems are reviewed in Section 7.
The purpose of this article is to provide a first theoretical
analysis of the properties of the dynamic weighting rules and
the asymptotic behaviors of the dynamically weighted Monte
Carlo process. We show that asymptotically the weights will
have a stationary distribution, but that this stationary distribu-
tion typically has infinite expectation. Thus the theory for the
weighted estimate is nontrivial. We demonstrate that in gen-
eral the weighted estimate is expected to be consistent, but its
convergence rate is exceedingly slow. Fortunately, our analysis
also shows that the simple device of stratified truncation of the
weights before averaging (Wong and Liang 1997) is capable
of generating stable and approximately unbiased estimates in
reasonable sample sizes. In other words, stratified truncation
seems to be an effective method for handling the “importance
weight infinities” at the estimation stage. In contrast, “wait-
ing time infinities” will preclude the possibility of any such
corrections at the estimation stage.

This article is organized as follow. Section 2 defines the new
transition moves, called the Q-type and the R-rype. [We call
the types of transitions invented by Metropolis et al. (1953)
and generalized by Hastings (1970) M-type moves.} Section 2
also introduces a new invariance principle used for guiding the
design of new moves. Section 3 describes the behaviors of the
weights in a dynamic weighting scheme under various condi-
tions. Section 4 studies the stochastic stability of the weight
process, Section 5 provides general guidelines for the using of
the method, and Section 6 gives a theoretical analysis, using
some renewal theory result of Kesten (1974), for the sugges-
tions made in Section 5. Section 7 describes a simulation study
and applications of the dynamic weighting method to a few
difficult problems, including the neural network training and
the Ising model simulation. Section § concludes with a brief
discussion.

2. DYNAMIC WEIGHTING SCHEMES

As with the Metropolis algorithm, the dynamic weight-
ing scheme starts with an arbitrary Markov transition kernel
T{(x,y), often called the “proposal chain,” from which the
next possible move is “suggested.” In M-type moves, the sys-
tem is updated by a Metropolis step, and its weight variable
is not changed. We introduce two new transitions that com-
bine the move in the original state space with the update of an
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extra weighting variable. The IWIW (Invariance with respect
to importance weighting) principle is introduced to motivate
the scheme.

2.1 Definitions

Suppose that current state is (X,, W,) = (x, w), where X,
denotes the original system state at time ¢ and W, denotes the
dynamic weight attached to the state. The Q-fype move and
the R-type move are defined as follows:

Q-Type Move

« Propose the next state ¥ =y from the proposal 7'(x, ),
and compute the Metropolis ratio,

T(NT(y. x)
m()T(x,y)

« Choose 8 = ¢(w, x) > 0 and draw U ~ unif(0, 1). Update
(X,,W,) to (X,,,, W, as

r(x,y) =

(1

(X1+l’ WH»I)

) omax{6, wr(x,y)}) if U <min{l, wr(x,y)/60}

| (x, aw) otherwise,

2)

where a > | can be either a constant or an independent
random variable.

R-Type Move

+ Draw Y =y from T(x,y) and compute the Metropolis
ratio r(x,y).

+ Choose 8 = 6(w, x) > 0, and draw U ~ unif(0, 1). Update
(Xr’ Wr) to (Xt+l’ WH-I) as

(v, wr(x,y)+6) if U<wr(x,y)/
{wr(x,y)+6}
(x, w(wr(x,y)+6)/0) otherwise.

(Xr+| ’ W!+l) =

()

Note that § in both types is an adjustable parameter that can
depend on previous value of (X, W). Although one can play
with different settings for 8, in this article we concentrate on
special cases with § = constant. Because any positive constant
leads to the same weight behavior, it is sufficient to consider
only two cases: 8 = 1 versus @ =0. When 6 = 0, expressions
(3) and (2) become identical.

The intuition of the Q-type or R-type move is that the
augmented chain can escape from a local mode by automat-
ically increasing the associated weight W. One can also try
to accelerate this by adjusting 6, but we do not explore this
refinement in this article.

We suggest that the two dynamic weighting moves be
applied in a compact space. This can be achieved by pre-
venting the sampler from visiting exceedingly low-probability
regions. Furthermore, to guard against possible boundary
effect caused by exceedingly small r(x, y) (i.e., practically 0),
we can modify the weight updating as follows: If r(x,y) <€
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for a proposed v, then rejection does not induce any change
of the weights.

Because the new moves use different rejection rules than
that of the Metropolis, the detailed balance with respect to 7
no longer holds for either the Q-type move the R-type. Thus
the equilibrium distribution of X (if it exists) is not 7. To
motivate the schemes, Wong and Liang (1997) introduced the
following IWIW principle.

Definition 1. The joint distribution f(x, w) of (X, W) is
said to be correctly weighted with respect to 7 if 3, > w-
fx, w) ocm(x). A transition rule is said to satisfy TWIW if it
maintains the correctly weighted property for the joint distri-
bution of (x, w) whenever the initial joint distribution is cor-
rectly weighted.

Clearly, the M-type move satisfies IWIW, because the state
update satisfies the detailed balance and the weight is constant.
In Section 3 we show that the R-type move does so as well.

2.2 Notations and Assumptions
The following notations are used in this article:

7(x), target distribution of interest

X, space on which 7 (x) is defined

X,. dynamic state variable (defined on X')

W,, dynamic weight, taking values in (0, oo)

T'(x,y), proposal transition function, assumed to be ape-
riodic and irreducible

g(x), an invariant measure of 7T(x, y)

g(x,y), joint distribution of two consecutive steps,
2(OT(x, )

T.(x,y), reversal transition function; that is, 7,(x, y) =
gWT(y, x)/g(x)

O(x, v), log-ratio between backward and forward steps;
that is, logg(v, x) —logg(x, v)

r(x, v), the Metropolis ratio w(¥)T(y, x)/m(x)T(x, y)

u(x), importance weight function, 7(x)/g(x)

E, or var,, expectation or variance taken with respect to
probability measure p.

The following assumptions are made throughout the article:

a. The sample space X is discrete and finite. (Discussions
on how to relax this condition are given).

b. T(x,y)>0if and only if T(v, x) > 0 (so the Metropolis
ratio is always defined).

c. T is irreducible and aperiodic.

d. Both g{(x) and the target distribution 7(x) are greater
than O for x € X

Because of our assumptions on 7 and X, an invariant dis-
tribution g(x) exists and is unique. Assumptions on T are
not very stringent, and most practical Metropolis—Hastings
schemes can achieve this with minor modification (e.g., incor-
porating a random component). We believe that our result can
be extended to the cases when I is a compact space or a
general metric space on which 7 is Harris ergodic (Asmussen
1987), and we provide some discussions on how to achieve
this. If the Markov chain induced by T is reversible, which we
state simply as “T(x, y) is reversible,” then we have T, =T.
But as we explain in Section 4, we are more interested in
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the case where T is nonreversible. This situation arises most
naturally when the proposal chain is a mixture of different
types of moves (e.g., a Q-type more and a M-type move),
which is also the case where dynamic weighting is most use-
ful. Additionally, nonreversible proposal chains can arise in
more advanced dynamic Monte Carlo schemes such as the
Langevin diffusion, hybrid Monte Carlo, Metropolized inde-
pendence sampler (Hastings 1970), and other “biased Monte
Carlo” methods such as the multiple-try Metropolis algorithm
(Liu, Liang, and Wong 2000).

3. INVARIANCE WITH RESPECT TO IMPORTANCE
WEIGHTING PROPERTY OF DYNAMIC
WEIGHTING SCHEMES

We first show that the dynamic weighting schemes satisfy
an appealing property that might be a useful criterion for
designing other Monte Carlo schemes.

Theorem [. Suppose that the starting joint distribution
fi(x, w) for (X, W) is correctly weighted with respect to 7r;
that is, > wf,(x, w) = ¢, 7(x). After one-step transition of
the R-type with 6§ = 0(x, w) > O for all (x, w), the new state
(Y, W) is also correctly weighted with respect to .

Proof. For simplicity, we work here with discrete random
variables, and need to change only summations to integra-
tions in continuous cases. Let f,(y, w’) be the distribution of
(Y, W’); then

S fyy.w)
= Z{Z Zw'f, (x,w) I[w = wr(x, ¥)+ 6]

X w

wr(x,y)
x T(x’))wr(x y)+0

+Zwal(x w)

0

_ w(wr(y,2)+6)
wr(y,z)+0

xl[ ’ 5
wr(x,y)

—;ZJ‘(rw)T(x) 10

kma
(wr(x,y)+9)

0 w(wr(y,z)+8)
wr(y,z)+6 ]

+2 3 Al w)T(x,2)

7(WMT(y, x)

= ;%:U«"fx(.x, l,U) - W(Xj + ;2 LUfl (yq w)T(y’ Z)

= Yo m(WIT (0 +em(y) = 26,7(y). (4)

In the foregoing, I{a = b] is the indicator function, that is, it
equals 1 if the statement ¢ = b is true and 0 otherwise. Note
that # is allowed to be a function of the previous configuration
(X, W) provided that # > 0 for all (X, W).
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In contrast, the Q-type move only approximately satisfies
the IWIW property when 6 > 0. More precisely, we see that

Zw,fz()\w,)
_Z{ZZfl(V w)T (x, \)mm{ r(g +)) }w'
FE T auf 0 0T 0: .|

= ZlZf[ (oo w)T (x. y)wr(x,¥) } +ad wq, ()i (. w)

| 7 ()T (y.)

AT (y) e

:Zc,'n'(x)T(x,V) =c;m(y)+R,,

where ¢,.(y. 2) is the rejection probability when the chain pro-
poses moving from y to z, g,,(v) is the total rejection probabil-
ity for moving away from y, and R, =a >, wq,(y)f1(v, w).
Clearly, if g,(v) is approximately constant in w, then R, ~
ac,7(y). and the IWIW is approximately satisfied. More gen-
erally, if we let r; be the smallest Metropolis ratio, that is,

min

Fy, =
v (. ¥)T(x, v)>0

r(x.y), (5)

which is greater than O when the state space is finite, then
g,(¥) =0 when w > r;'. Hence

R,=a Y wq,(fi(y w).

|
u<r[)

In the case where Y, wf, (¥, w) is very large (i.e., c, is large),
the residue R, = 0 in comparison with with ¢, 7(y). Hence
the IWIW is also approximately satisfied.

If 8 =0, then all of the proposed moves are accepted in
both the Q-and R-type moves. Furthermore, the two moves
are identical, and the IWIW property is satisfied:

2w hivow) =33 [l w)T(x y)wr(x,y)

(VT (y,x)

—ch (x ) (DT (x, ‘)

o m(y).

An interesting distinction between using # =0 and € > 0 is
the normalizing constant (2¢, vs. ¢,). It is easy to see that ran-
domly mixing any number of different types of IWIW moves

also satisfies the IWIW property. However, if the change of

schemes depends on the value of W or X then, IWIW can be
violated.

Although the R-type move satisfies IWIW, it entails two
complications. First, with 6 > 0, the constant ¢, is inflated
to 2c, after one-step transition, as shown in (4). This implies
that in the long run the W sequence may diverge to infinity,
rendering the scheme ineffective. Second, using 6 = 0 makes
the expectation of W, remain constant throughout iterations,
but, as we show in the next section, W, converges to 0 with
probability 1 if the transition matrix T is nonreversible.
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4. STABILITY OF THE WEIGHT PROCESS

Because weight process performance is affected by both 8
and the choice of proposal transition function, we consider
the following five possible scenarios. We show that for all
cases with @ = | and with suitable modification of the weight
updating scheme, the weight process has a stable distribution.

4.1 Case A: § =0 and T(x, y) is Reversible

In this case the Q- and R-type moves are identical, and
both can be viewed as generalizations of standard importance
sampling. More precisely, every proposed move is accepted,
and the weight is updated as

W' =W r(x,y).

Suppose that g(x) is the invariant distribution for T'(x, y) and
that g(x, ¥) = g(x)T (x, y) is the joint distribution for the two
consecutive steps in equilibrium. Let u(x) = 7(x)/g(x) be
the usual ‘weighting function’ if importance sampling is con-
ducted with g(x) as the sampling distribution. The updating
formula for the weight can be rewritten as

w = w i) g0 x)

W) 2x ) ©)

Hence, if the transition matrix T induces a reversible chain
[e.g., g(x,¥) = g(y, x)], and we start with X, = x, and W, =
cot(xg), then for any t > 0, W, = cqu(X,). These weights are
identical to those from standard importance sampling using
the trial distribution g.

42 Case B: 6 =1 and T(x,y) is Reversible

If the proposal chain is reversible, then the Q-type sampler
converges to a regular importance sampler with g(x) as the
trial density. That is, the weight W conditional on X = x will
converge to a degenerate distribution concentrating on cu(x)
for some ¢,. To see this, let u, = min{#7(x)/g(x)}. Then once
the pair (x, w) satisfies w = cyu(x) with couy > 1, the pro-
posed transition y will always be accepted according to (2),
and the new weight will be ¢ u(y) because of (6). Thus the
weight will be stabilized at w(x) = c,u(x) once cyu, > 1, and
the equilibrium distribution of x will be g(x). Therefore, for
any starting value of w, the weight process will have the ten-
dency to climb until

u(X,)

¥ T(X,.x}>0 u(}) ’

W >

After that, the weight stabilizes to the degenerate distribution
as described.

The behavior of the R-type move is more complicated. Here
we give a simple example where W, diverges and show how
this defect can be fixed. For simplicity, we assume that T is
symmetric and 7 is uniform on X = {1, 2, 3}. Then is is easy
to see that

w1 ifU<

g — w+l
w(w+1) otherwise.

Therefore, the sequence of W is monotone increasing, and it
is easy to show that the W process diverges to infinity with
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| probability 1. A similar construction can be made for an arbi-
trary reversible T to show the nonexistence of the weight dis-
tribution.
A simple way to fix this problem is to modify the weight (3)
by a random multiplier; that is,

V{wr(x,y)+1) if accepted
W= e (7
Vw(wr(x,y)+1) if rejected,

where V ~ unif (1 —8, 14 8) is drawn independent of the X,.
It is easy to see that this modified R-type move still satisfies
IWIW. The parameter § needs to be chosen properly so that
E(log V) is not too small. Using the same argument presented
in Section 4.4, we can show that a stable distribution of W
exists for the modified scheme.

4.3 Case C: #=0and T(x,y) is Nonreversible

|
The dynamic weighting schemes are most useful when
combined with the regular Metropolis—Hastings moves, which
typically result in a nonreversible proposal transition. Here we
simplify the situation by directly considering a nonreversible
proposal chain. When 8 = 0, the Q-type and R-type moves are
identical, and the weight process is a deterministic function
of the Markov chain {X,} controlled by the transition function
T(x,y).

Lemma 1. Let g(x,) denote the marginal equilibrium dis-
tribution under transition 7, let g(xy, x,) = g(x)T{xy, x,),
and let 8(x, v) =log[T(y, x)/T(x,y)]. Then

eq = E,8(xp, x)) 0.

The equality holds only when T induces a reversible Markov

chain.
Proof. By definition, we have
T(x,,
ey = E‘Q{log —Lx—]——@}
T{(xg. x,)
7( X, X) o)

(X())T(x(), xl )dXde]

_f]

T( Xgs X
_f{ g(x, ())+10g g(xo) g(xg, X, )dxodx,
g(xg, x,) g(x))
— £ flog 504 tog(30) - £, loe(e(x)
g(xp. X))
:E,{IOgM}SIOgEq{g(«*I_’W —o.
¢ g(xg. xy) “lalxg. x))

The last line follows from Jensen’s inequality, in which the
equality holds only when g(x,.x,) = g(x,,x,). Hence the
lemma is proved.

Because log r(x, y) = log w(v) —log m(x) + 8(x, y), and

logW, =logW,_, +logm(X,)

- lOg Tr(Xr—l) + 8(Xr—ls Xr)v
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we have

log7(X,) —logm(X,) +>_8(X,_;. X,)

s=1

logW, =

<c+Y 8(X,_, X,).

s=1

Thus Lemma 1 implies that under stationarity (with T as
the transition function), process log W, is bounded above by
a cumulative sum of terms with negative drift e,. Because
1/¢30_ 8(X,_,,X,) > e, almost surely (because of the
ergodicity theorem), we see that the weight process goes to 0
almost surely. Summarizing the foregoing arguments, we have
the following result.

Proposition 1. 1f the proposal transition T{x, y) is nonre-
versible and the control parameter 6 = 0, then no stable dis-
tribution of W, can exist for the Q- or R-type moves.

4.4 Case D: =1 and T(x,y) is Nonreversible

Consider the log-weight process for the Q-type move:

max{0, logW,_, +logr(X,_,, X,)}
logW,_, +loga

log W, = %f aclcept
if reject,

(8)

where the acceptance probability is min{l, W,_,r(X,_,, X,)}.

We observe that when W, is large (so that W,r(x,y) > 1,
¥x,y), the log-weight process is controlled by 8(X,_;. X,),
which has a negative expectation according to Lemma I,
provided that the distribution of (X,_;, X,) is sufficiently close
to g. This produces a negative force to prevent the process
from drifting to infinity. The rejection step in the Q-type move
plays the role of a reflection boundary to prevent the log-
weight process from drifting to negative infinity. To avoid
measure-theoretic technicality, in the rest of the article we
assume that X, is defined on a finite state space.

Theorem 2. Suppose that the sample space X of X, is
finite and the proposal transition T(x,y) is nonreversible.
Then the process (X, log W,) induced by the Q-type move is
positive recurrent and has a unique equilibrium distribution.

Proof. Let Y ~T(X,,-). The Q-type move induces the fol-
lowing updates:

(X, 41, logW, )

(Y, max{0, logW, +logr(X,,Y)}
(Y,log W, +loga)

if accepted

if rejected.
Let r, be the minimal Metropolis ratio as defined in (5). Then
the acceptance probability, min{1, W,r}, is at least r.

For the starting value (X, W,)), we define V, =log W, and

VI = Vt—l +10g r(Xt—l' X )

EV()*‘k’g ZS(XS X))

(Xo)
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We assume that V;, < a/r,, which is the upper bound of log W,
immediately after a rejection, and log[7(X,)/7(X,)] < m, for
all X,. Define and let 7, = min{z > 0, V, <0}. Note that for
t <7, V,=logW, When 1, occurs, logW, can be either 0
orequal to V,_, +loga.

Because the state space X is finite and T'(x, y) > 0 if and
only if T(y, x) > 0, function 8(x, ) is bounded from above.
Thus for a very large N,

P(zy> N) < P{}ja(x,,, X,)+V, +log :8(()) . o}
0

=1

sp{%é(é(x,-.,x,)—eo)

1 'a+
>—eg— —| —+m
° N ry 0

< cyexp(~Nd,),

where d,, is related to the spectral gap of the corresponding
Markov chain. The last inequality follows from theorem 3.3 of
Lezaud (1998); an similar inequality was also given by Dembo
and Zeitouni (1993).

Let {, =min{z > 0, log W, =0} and let R, be the total num-
ber of rejections occurring in the first n iterations. When n <
¢, (ie., before the occurrence of renewal event log W, =0),
R, is also the total number of times that the “testing event”
W,r(X,,Y) <1 has occurred. (Otherwise acceptance is with 1
probability 1.) Because W, > 1 for all r as in our design and r
is bounded below by r,, the probability for rejection in each
testing event is at most (1 — r;). On the other hand, because
of the effect of a negative drift in the weight update, the “test-
ing event” must occur frequently. More precisely, we have the
following computation for a sufficiently large N:

N

Py M =P Uik, =i 4 N)

k=0

_ p(U{RN —ki =)

k=0

+P(£JL{RN =k {o> N})

=< P(DI{RN =k; {o> N})+(1“ro)L/r0

k=0
L
<Y (k4 Dege ™+ (1=rp)t /g
k=0
<Ll Nt 4 ¢ el
Letting L = +/N, we have P({, > N) < czNe‘dz‘m. Hence
E{, < o0, which shows that the set {(x,logw): xe X, logw =
0)} is positive recurrent. Because X' x {0} is a finite set, there
must be a point x, € X so that (x;,0) is a regeneration set
(see Asmussen 1987, pp. 150-151); thus the chain is Harris
ergodic. By theorem 3.6 of Asmussen (1987, pp. 154-155),
we conclude that the distribution of (X,, W,) converges to a
unique stationary distribution in total variation.
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Remark 1. The foregoing proof relies on the verification
of the fact that at least one point in the joint space of X
and log W is positive recurrent. When X is a continuous but
compact state space, however, the same argument cannot be
carried through. We can consider modifying the weight update
in the Q-type move to

W, =8W,_ r(X,_,,X,), & ~unif(1—38,1+34).

Note that this does not affect the IWIW property of the move.
The purpose of this modification is to create a “continuous”
component for W, that is useful in finding a “small set”
(Nummelin 1984). Briefly, we imagine cutting X into a large
finite number of tiny pieces. Then under the same condition
{bounded Metropolis ratio, etc.) and by the same argument
as in Theorem 2, there exists at least one piece, B, say, so
that the set {(x,0): x € B,} is positive recurrent. Consider
a uniform measure on A, x (—¢€, €) for a sufficiently small €
and subset A, C B,. We can show that (3.1) of in Asmussen
(1987, p. 150) holds. Thus the chain is Harris ergodic and has
a unique stationary distribution.

Remark 2. For the R-type move, we need also to modify
its weight transition by multiplying an independent random
variable p, with mean 1, as suggested in Section 4.2. Because
E[logu,] < 0, the modification produces an extra negative
drift for the weight process. The new update is

log(W,_ r(X,_,. X,)+ 1) +logu, if accept
logW, = { log W, +log(W,_ r(X,_, X,)+ 1)
+logu, otherwise.
)

The rejection probability is 1/(W,_;r(X,_,, X,)+1). When
W is stochastically large, the rejection probability is
negligible. Thus the X process is controlled by T in this case.
A similar argument to that for the Q-type move can be applied
to show that log W, comes back to, say {w < A} for a suitable
A infinitely often. Then, because w, has a smooth density, we
can argue similarly to Asmussen (1987) that the process has
a unique stationary distribution.

4.5 Case E: Mixing Different Types of Moves

Suppose that in each iteration we conduct a Q-type move
with probability & and conduct a M-type transition with prob-
ability 1 —a. As in Section 4, we let 8 = 1. When w is suffi-
ciently large, there will always be acceptance. Thus the actual
transition when w is large is of the form

Ax,y) = @A (x,¥) + (1 — @) Ay (x, y),

where A,(x,y) is just the proposal transition for the Q-
type move (because there is no rejection) and A,(x,y) is a
Metropolis-type transition that has 7 as its invariant distribu-
tion. Let g(x) the the invariant distribution of A(x, y), and let
8 be the indicator variable that tells which type is conducted.
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Then when we make an accepted move from x to y, the weight
is updated as

m(¥)As(v, x)

W) =w) S Ay
Hence ) () A(yx)
wey wix 8 y,x
g T T8 o T A ey
Similarly,
Elog 20n%) _ 8(»)As(y, x)
As(x,y) g(x)As(x,y)

g(y)A;s(y, x)
1 - =
Slogl Ay

This inequality implies that the same argument as inTheorem 2
can be applied.

5. THE LAW OF LARGE NUMBERS FOR THE
WEIGHTED MONTE CARLO ESTIMATES

Suppose that a set of weighted samples, (x,w),...,
(x,, w,,), is obtained by running either a Q-type or an R- type
scheme. The quantity u = E_p(X) is of interest. Then the
standard importance sampling estimate of u is

llzu)lp('xl)+"'+wmp(xm). (10)

But because the weights derived from the Q-type or R-type
moves may have infinite expectations, it is not clear whether
estimate (10) is still valid. In Section 5.1 we show by a general
weak law of large numbers that this estimate still converges,
albeit very slowly. We then suggest a stratified truncation
method to improve estimation. We give justifications for why
stratified truncation works in Section 6.

5.1 Convergence In Probability

The most general weak law of large numbers (WLLN), due
to Kolmogorov and Feller, has been given by Chung (1974,
thm, 5.2.3). To suit our purposes, we state a variation of the
original theorem.

Lemma 2. Let {Y,} be a sequence of iid random variables
with distribution function F, and S, =37_, ¥;. Let {b,} be a
given sequence of real numbers increasing to +-oco. Suppose

that we have

(a) nf,., dF(y)=o(1) and
(b) n fi,\'lsb” Yy dF(y)/b} = o(1).

Then, if we put a, = n [(b, A|y|)dF(y), where anb =
min(a, b), we have

I
—(Sn - an) -0

5 in probability.

Proof. Leta,=n i< ydF(y). Theorem 5.2.3 of Chung

(1974) states that (S, —a/,)/b, — 0 in probability. Because
(a,—a)/b, = o0(l), the lemma is proved.
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Suppose that one wishes to estimate the probability P(X =
x)=E_I(X = x). We define b, so that b, = a,; that is, b, is
the solution of

b, =nE{{(b,AW)I[X = x]}.

In the next section we show that for the Q-type move, the
tail distribution of log W is exponential with rate 1. Hence b,
must be chosen so that b, = O(n+ nlogb,), which leads to
b, = O(n(logn+log(n+---)). For the R-type move, the tail
of logW is exponential with rate a < 1; then we can solve
b, = a, to derive that b, = O(n"/®).

With b, so chosen, we have the WLLN for the weighted
estimate,

n—»oob() —a,) =0

The truncation point b, is directly related to the point of inter-
est x. If another point, say x', is of interest, then it is easily
seen that

lim e wil(x, =x)
n%ooz, ywil{(x; =x)

i B

TR b, (x)
L E{(WAB ()X =)
TR E((W AL (X =)}

Thus we have shown that the standard estimate (10) of the
target (discrete) distribution is getting closer to a truncated-
distribution expectation,

E{W AL, ()X = x)]
o E[W Ab, (H(X =x)]

In the next section we explain why 7, approaches 7 as
n — oo. The expression (11) suggests that the truncation
should be stratified according to x. Finally, we use a simple
example to demonstrate that p in (10) converges very slowly,
seemingly at a rate of log(n).

7, (x) =

(1)

5.2 Stratified Truncation

To deal with the large variance of importance weights,
we recommend using the method of stratified truncation for
estimation. Suppose that we wish to estimate u = E_p(X).
First, the sample points are stratified according to the value
of the function p(x). Within each stratum function, p should
be as close to constant as possible and the sizes of the
strata are comparable. The highest k% (usually & =1 or 2) of
the weights within each stratum are then trimmed down to the
value of the (100 — k)th percentile of the weights within the
stratum.

In Section 7.3 we are interested in estimating the expect-
ed value of the spontaneous magnetization defined as
w=Ep(X)=E|Y0,|/d* where X= (0, i €d xd lattice
points) follows an Ising model. First, the range of p(x) is
divided into small intervals by < b, < --- < b,, and strat-
ify the weighted samples (x,,w,), t = 1,...,m, accord-
ing to the values of p(x); that is, construct §; = {(x,, w,) :
p(x,) € (bj 1»b;)}. Then the w, in each stratum S, is trun-
cated to w, = w, Awj, where w; is the (100- k)th per-
centile of the weights in S;. Finally, an estimation of u is
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given by (10) with the w, replaced by the w,. In light of
the WLLN, this estimate after truncation makes sense and
converges to something of a similar form as the limit of
the raw weighted estimate. However, it is less clear why
either the estimate with stratified truncation or the raw esti-
mate (10) gives desirable results. The next section pro-
vides a theoretical basis for the appropriateness of using
the former.

If the function of interest p(X) is too degenerate (e.g., a step
function with only a few different values), then the stratifica-
tion should be further refined. A general strategy is to stratify
according to both values of p(X) and the sampled probability
values, w(X). Knowing 7 only up to a normalizing constant
does not affect the stratification.

6. TAIL BEHAVIOR OF THE WEIGHTS AND
STRATIFIED TRUNCATION

To investigate the theory behind stratified truncation, we
consider stratifications based on the value of x. For simplic-
ity, we analyze the Q-type move only. Suppose that the non-
reversible Markov chain {X,} is controlled by the transition
function 7T(x,y), and define a cumulative sum process of
the form

Vi=V_ +e(X,._, X)),

where ¢ is some smooth function such as a log-likelihood
ratio. Kesten (1974) provided a renewal theory for the behav-
ior of such a process. His result can be adapted to derive the
extremal behavior of V,.

Lemma 3. Suppose that X,, X,,... is an irreducible and
aperiodic Markov chain induced by the transition function
T(x,y). Let V,=3""_, ¢(X,_,, X,) for some function ¢. Sup-
pose that we can find a function r: X — (0, 00) and k > 0
such that
E[e"N0r(X))]X, = x].

r(x) = (12)

Then

lim e"‘P[max V,>cl|Xy=x]=

C—

K(@)r(x),

where K is some constant independent of x (but may depend
on function ¢).

Proof. The proof has been given by Kesten (1974, sec. 4).

Lemma 4. Suppose that V, =Y!_ logr(X,_,, X,), where
r{x, y) is the Metropolis ratio as defined in (1). Then

lim e P[maxV >c| X, = x] Kg(x)/m(x),

where g(x) is the stationary distribution of the X,.

Proof. If we let ¢(x,v) =logr(x,y), k=1, and r(x) =
g(x)/m(x) in Lemma 3, then it is easy to verify that (12) is
satisfied. Hence the result holds.

Now we define the process Z,, which differs from V, by
having a reflecting boundary at 0:

Z, +logr(X, .X,) ifZ,_,+logr(X,_,,X)>0

Z, =
! 0 if Z,_, +logr(X,_,,X,) <O.
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Because the behavior of the process Z, is similar to V,, we
expect its tail probability to also have an exponential decay.

Lemma 5. Suppose that Z, = 0 and that X starts from
its equilibrium distribution, g(x). Then the tail probabil-
ity P(Z, > c | X, = x) decays exponentially with rate 1,
and lim_,_ e'P(Z, > ¢ | X, = x} = Ku(x), where u(x) =
7(x)/8(x).

Proof. A way to look at Z, is to relate it to the process V,.
Specifically, we have

Z, :max (v, — VA)_mAax Z logr(X, ,.X,).

=k+1

Now if we imagine a “reversal process” ¥, Y, ..., gov-
erned by the conjugate transition 7,(x, y) = g(y)T(y, x)/g(x),
then the joint distribution of (X, ..., X,) is the same as the

joint distribution of (Y, ..., ¥;). Furthermore, we can iden-

tify X, with ¥ so that

7T(XY)T(XS’ X:—I)
W(X,sfl )T(X.\'~l ’ Xs)
M(XY)T(X‘, X.s'ﬁl)

logr(X,_,, X,) =log

=lo
S uX, )T (X X, )
—log “( TOT(Y, ,m)
VDT Y )
=38 (Y*u Yo )
Thus
Z, —Z _maxZS( LY.

1<k<1

By Lemma 3 applied to the process ZF with ¢(x,y) =
6.(x,v), k =1 and r(x) = u(x), we obtain that
lim,, e P(Z,>c|X,=x)=lim,_, e P(max,Z' >c| Y5 =
x) = Ku(x), which proves the result.

Now we go back to our Q-type moves. If no rejection
occurs, then logW,,, = logW, +logr(X,.X,,,). Because
rejection occurs only when the weight is relatively small, for
large ¢ we expect the log W, process to behave similarly to
the Z, process. Thus we expect the process log W, to satisfy

lim P(logW, > ¢ | X, = x) = K'u(x).

To show that the log W, process behaves similarly to the Z,
process, we study sojourns of both the Z, and the U above
a large positive value A. Consider event {Z, > A}, and let 7,
be the jth crossing time of the process (i.e., the jth time that
event {Z L <A<Z } occurs). Then the random variable
S, =27, — " A has a Statlonary distribution. Because log r(x, y)
is bounded S, is also bounded. Then if the limits exist, they
satisfy

I;im e®P(logW, > A+B|U > A, X, =X)
= lim e®P(Z, > B—S,| X, =x)=KE(e").

Similarly, we let {; be the jth crossing time of the log W,
process and let 7, = log W, —A. Then if A is sufficiently large,
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the behavior of log W, conditional on that of log W, > A is the
same as that of Z, conditional on Z, > A. Thus

;im e®P(logW, > A+ B, X, =x|U > A)
:éim e®P(Z,>B~T,| X, =x)
= Ku(x)E(e").

Hence, up to a constant, the limiting behavior of the tail prob-
ability of log W, is identical to that of Z,.

The forgoing argument demonstrates that when k is small,
the conditional (100-k)th percentile g,(x) of the weights
satisfies approximately the relationship

g (x) x u(x) = w(x)/g(x).

If we draw lines to connect the (100-k)th percentiles of the
weights for, say, x and x’, the lines should parallel to each
other for different £’s. Because no rejections for those X,’s
are associated with the large W,, the distribution of these X,
is close to g.

Now for any pair x and x’, we let logh and logd’ be the
(100-k)th percentiles of [W, | X, = x] and [W, | X, = x'], with
k — 0. Let a and a’ be the (100-k")th percentiles, where &’
goes to 0 at a slower rate than k. Then we have

E[W, Ab|I(X, = x)]
E[W, Ab | (X, =x)]
E[elsWrloeb | [(X, = x)]
= E[eloeWorloet” | [(X, = x)]

Sl E(eRe et llog W, € (. j+ D] | 1(X, = x))

S ioer Efeleinioe I[log W, € (j, j+ D] | I(X, = x')}

_u(x)

N Zg‘:‘ffﬂe‘ x e 'u(x) __ (logb—a)u(x)
u(x’)’

Zﬂ-’ﬁfﬂ e' xe-tu(x) (logh' —a)u(x’)

The final approximation holds because the log W, is approx-
imately exponentially distributed, implying that (logb — a)/
(logh' — a’) — 1. The foregoing argument explains why 7(x)
in (11) approaches 7r(x) as n — oco. Thus the stratified trun-
cation method outlined in Section 4.2 gives the desirable esti-
mate. This conclusion is further supported by a simulation
study and some real examples in Section 7.

Because the exponential decay rate of the log weight is 1,
the expectation of W, for the Q-type process is infinite. It
should be noted that the infinite weight expectation is not nec-
essarily a bad thing; it helps the chain escape from a local
mode effectively. The phenomenon is also a logical conse-
quence of the dynamic weighting philosophy. The method
transforms a waiting time (i.e., the time for the chain to reach
equilibrium) infinity to an importance weight infinity.

7. SIMULATION STUDIES AND REAL EXAMPLES
7.1 Simulation Studies

To understand detailed performances of both the Q-type and
R-type moves, we designed a simulation to check several pre-
dictions of our theory:

569

a. The tail distribution of the log-weight in a Q-type move
is exponential with decay rate =1, and that of a R-type
is exponential with decay rate 8 < 1.

b. Upper percentiles of the stratified weights are approxi-
mately proportional to u(X,).

c. The plain importance sampling estimate (10) converges
slowly, but to the correct mean.

d. Estimation with stratified truncation gives us an approx-
imately correct answer.

To achieve the stated purposes, we let the state space of X
be {l,2,3.4,5}, and generated a random 5 x 5 transition
matrix [with each row drawn independently from Dirichlet
(1,1,1, 1, D]:

00370 .15436 .55588 .15998 .12608
18506 34190 17511 .14471 .15322
T =1 .27798 .26276 .16575 .21687 .07664
29265 28028 .22982 .15994 .03731
25206 .23105 .02426 .22976 .26287

It is easy to verify that the invariant distribution of T is g =
(.1987,.2611, .2398, .1782, .1222). We took the target distri-
bution = (.25, .1, .2, 4, .05). With a =2, a Q-type process
was initiated with W, = 1, and X, ~ g. A total of 200,000
iterations were carried out. Figure 1(a) shows the percentiles
of weights stratified according to the state space. The percent-
ages range from 70% to 99%. The q-q plot [Fig. 1(c)] shows
that the tail of the weights is like that of an exp(1) distribu-
tion. Estimating 7 by using stratified truncation at k% = 1%
and 5% gives 7 = (.2453, .0984, 2001, 4071, .0491) and
(.2449, .1023, .1994, 4049, .0485). These results confirmed
our predictions a—c. To show the slow convergence of the
raw estimate, we ran 2% iterations, estimating 7 by (10) at
every 2% epoch. Figure 1(d) shows the plot of the standardized
error of these estimates [i.e., (30, (m; — 7)*/m;)'/?] versus
the logarithm of the number of iterations.

We also applied the R-type moves to the same problem. The
corresponding results are similar to those of the Q-type moves
(figures omitted). The weights resulting from R-type moves
are appreciably greater than those from Q-type moves, and the
tail distribution of the weights seems to still be exponential but
with a changing rate « that approaches to one as the quantiles
become extreme.

To verify that our analysis can be extrapolated to more
complicated cases, we considered a Bayesian testing problem.
Suppose that we wish to test whether a sequence of binary
observations, y = (y,, ..., ¥,), is iid (null model) or whether
they form a stationary Markov chain (alternative model). The
Markov model can be parameterized by 6 = (6,, 6,), where
6; = P(y,,; = 1]y, =1). Then the parameters in the iid model
lie in the subspace corresponding to 6, = 8,. Let M be the
model indicator, 0 for the null and 1 for the alternative. Sup-
pose that the two models are equally likely a priori. Then
jointly we have

P(y, 0, M) —= 0(’)'01 (l . 90)11009;1“ (1 _ el)nl(,

! 1
x [5(1 — M)8,_,, +§Mj|,
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Results for the Simulation Study With Q-Type Moves. (a) The conditional percentiles of the weights. The parallelness of these quantile

locations is predicted by theory in Section 5 and is the basis for stratified truncation estimate. (b) The histogram of the log-weights corresponding
to X =3. (c) The g-q plot of the upper tail of the log-weights versus exp(1). (d) Convergence of the raw weighted estimates, even though the

weight has an infinite expectation.

where n; =3"(_, I, -yl -;- The Bayes factor B = P(M =
0]y)/P(M =1|y) can be computed from this joint distri-
bution. In many applications, however, an analytical expres-
sion for P(M |y) is impossible. An MCMC procedure is
also difficult to implement because the parameter space
involves a degenerate part. Green (1995) described a vari-
ant of the Metropolis—Hastings algorithm, termed reversible
Jumps, that can be used overcome this difficulty. Besides the
usual Metropolis-type moves, the reversible jump algorithm
also specifies a pair of proposals for “jumping” between two
spaces. For example, we can propose a jump from M =1 to
M =0 as (8,, 6,) > 6, and a reverse jump as

8, — (6,.67). with 67 ~ unif[0, 1].

Whether to accept or to reject this proposal is determined
by the usual Metropolis—Hastings rule. As noted by Liu and
Sabatti (1998), the jump proposals are rarely accepted in com-
plicated applications, and dynamic weighting schemes can be
applied to help.

With a data sequence 0001010101000011100010101100,
we used both the Q-type and R-type rules for between-space
moves and reserved the M-type rules for within-space moves.
When we stratified the dynamic weights only according to the
value of M for weight truncations, the results had a very large

bias. We made a refinement by stratifying the weights on both
the M value and the log-likelihood value (i.e., divided the
lower-dimensional space into 10 parts and the higher dimen-
sional space into 15 pieces according to the log P(6,y, M)
value). The estimates based on 99.9%, 99%, and 95% trun-
cations were 1.19, 1.22, and 1.23. For this simple example,
the exact answer for the Bayes factor is B = 1.187. Figure 2
shows the parallel plot of the percentiles of the weights in each
stratum. This example clearly demonstrates that finer stratifi-
cation reduces the bias in estimation and but it will typically
increase the variance. A balance between bias and variance is
often important in practice.

7.2 Neural Network Training

The artificial neural network is a simple mathematical
model motivated by neuron functions and has been widely
used in learning and classification problems (Hopfield 1982;
Rumelhart and McClelland 1986). The most popular of these
networks is multilayer perceptrons (MLP), a type of feedfor-
ward network. Our stochastic learning algorithm focuses on
the MLP.

In an MLP, all the units (nodes) are grouped into layers (typ-
ically three layers). The layers are ordered (i.e., input-hidden-
output) so that the units in lower layers (input) connects only
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Figure 2. Parallel Plots of the Stratified Dynamic Weights for the Model Selection Example (a) and (b), and Histograms of the Weights in Two

of the Strata (c) and (d).

with the units in the higher layer (Ripley 1996). Each node in
a higher layer independently processes the values fed to it by
nodes in the lower layer in the form

Y=/ (ak +> wjkxj)’

j~k

where the x; are inputs, and then present the output y, as an
input for the next layer. Here we take f; as the same sigmoidal
function [i.e., f(s) = 1/(1 +exp(—s))] throughout the net-
work. Neural network “learning” is accomplished by choosing
the connection strengths w, so that the network outputs match
the desired output in the training data as closely as possiblc.
Currently, the most popular learning algorithm is the back-
propagation and its variants (Rumelhart, Hinton, and Williams
1986). But the back-propagation method can fail badly in
some cases, one of which is the two-spiral problem (Lang
and Witbrock 1989). By using the dynamic weighting method
together with the tempering idea (Geyer and Thompson 1995;
Marinari and Parisi 1992), Wong and Liang (1997) treated
the two-spiral problem with considerable success. (Both the
2-25-1 and 2-14-4-1 networks have been fitted, and the results
were close to perfect, whereas the error rate for back propa-
gation is generally greater than 40%.)

In training programs such as back propagation and Learn-
ing Vector Quantization algorithms (Kohonen 1989), the total
mean squared error,

2
s

E,= Z ”0[7— TI"

where T, is the pth training case’s ideal output and O, is the
output of the network, is used as the cost function. We use the
same cost function and define a probability distribution jointly
for the connection strengths w;, and a temperature parameter
T so that

7wy, all j ki T) o apexp(E,/T),

and T represents a finite number of temperature levels, f, >
t, > --->t,. Wong and Liang chose L =4 for the two-spiral
problem. Conditional on T =1,, we use a standard Metropolis
move to do local changes on the connection strengths (Neal
1996), whereas conditional on the w,, we use a Q-type move
to jump across two temperature levels. After obtaining rea-
sonable configurations of the connection strengths from the
lowest-temperature level, we conduct a postoptimization to
zoom in for the local optimum. Commonly used postoptimiza-
tion methods include steepest-gradient descent and conjugate
gradient. More details of the method were given by Liang
(1997).

We now illustrate this method in the encoder problem
(Ackley, Hinton, and Sejnowski 1985) and the parity prob-
lem (Rumelhart et al. 1986). These two problems have been
regarded as classic benchmarks for testing new methods in
the neural network community. Their difficulties stem from
the stringent noiseless output requirement. The input in the
encoder problem is a length-d binary sequence, and the output
is desired to be identical to the input. A requirement for the
network designed for the task is that the hidden layers cannot
have more than log,(d) nodes. Apparently, a network with a
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hidden layer of d nodes is trivial to design. We trained a three-
layer network with five hidden units for d = 32 (constituting
a 32-5-32 network) without the constant term. Sigmoid was
used as the activation function. In this example, we are dealing
with a 5 x 32 x 2 = 320-dimensional optimization problem.
Our algorithm achieved perfect learning in about 5 minutes
on a Sun SPARC-20 workstation. With a longer running time,
perfect learning was also achieved on the much more diffi-
cult 32-4-32 (with 4 hidden units and 256 scalar parameters
involved) encoder problem.

The input of a d-parity problem is also a binary sequence
of length d. The output is required to be 1 if the input
sequence contains an odd number of 1's, and is 0 otherwise.
So this exercise is meant to show how a “black box” net-
work can mimic a very nonlinear and noncontinuous func-
tion. Rumelhart et al. (1986) showed that ar least d hidden
units are required for a three-layer MLP to solve this prob-
lem. Our method had no difficulty solving this problem with
a d-d-1 (2 < d < 8) network. A perfect solution for d =8 (a
72-dimensional optimization problem) was obtained by Liang
(1997).

7.3 lIsing Model Simulation at
Subcritical Temperatures

Simulations of two-dimensional Ising models and investi-
gating phase transition phenomena present yet another chal-
lenge and also a good test to our method. A two-dimensional
Ising model on a L x L lattice is a probability distribution on
x={o, withi=(a,b)and 1 <a,b <L},

m(x) = Z(IK) exp{K > o',-aj},
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where the spins o; = £1, (i, j) denotes the nearest neighbors
on the lattice, K is the coupling constant (inverse temperature),
and Z(K) is the partition function. This problem and other
spin glass models have been extensively studied in the statisti-
cal physics literature. Among the proposed Monte Carlo meth-
ods for this problem, the clustering approach of Swendsen and
Wang (1987) greatly increased the mixing rate but is diffi-
cult to generalize to other systems, such as random field Ising
models (Marinari and Parisi 1992). Other successful methods
include the simulated tempering (Marinari and Parisi 1992)
and multicanonical method (Berg and Neuhaus 1991). But the
methods may encounter difficulties when simulating an Ising
system at a temperature below the critical point (where the
energy variation is huge). The multigrid Monte Carlo method
of Goodman and Sokal (1989) can be successful for some
other models, but is not suitable for the Ising model.

We now review the results obtained on Ising model simu-
lations by dynamic weighting with R-type moves (Liang and
Wong 1999). The simulations were done on lattices of size
322, 647, and 128%. As with simulated tempering, we treat the
inverse temperature K as a dynamic variable taking values in a
ladder of suitable chosen levels near the critical point (known
to be .44). We applied the R-type moves to cross various tem-
perature levels uniformly spaced in the range [.4, .5], and used
the M-type moves within each temperature level. In each of
the three lattice sizes, we started a single run with the con-
figuration that all spins are +1. The run continued until we
obtained 10,000 configurations at the final temperature level.
Figure 3(a) plots the estimate of the expected absolute value
of the spontaneous magnetization (defined as £ |3 o, | /d°,
where d is the lattice size) at various inverse temperatures
K for the different sizes of lattices. Estimation was done by
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Figure 3. The Expected Absolute Value of the Spontaneous Magnetization (defined as E | Y, 0, | /d? where d is the lattice size) Plotted
Against Various Temperature K in (a) for a Two-Dimensional Ising Model With Lattices of Size 32° (long-dashed line), 64? (short-dashed line),
1282 (dotted line), and Infinite. The solid line in (a) corresponds to the theoretical infinite lattice result. The plot of the conditional quantiles of the
weights at five typical magnetization values is shown in (b). Our theory in Section 5 predicts that the lines connecting the same quantiles should

be approximately parallel.
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weighted averaging, with the weights stratified according to
spontaneous magnetization and then truncated at 99%.

Because the model is many orders of magnitude more com-
plex than the examples in Section 7.1, it is of interest to see if
our theory on the behavior of the weights (Sec. 5) still holds
in this case. Figure 3(b) shows the upper quantiles of the
conditional weight distributions with o stratified according to
five typical values of the spontaneous magnetization for the
128% model. The weights behave very much as predicted. The
phenomena suggest that for any application of the dynamic
weighting method, this parallel graph of conditional quantiles
of the weights can serve as a diagnostic tool for judging how
well the method works.

The smooth curve in Figure 3(a) is the celebrated infinite
lattice result (i.e., the “truth” when the lattice size is infinite)
discovered by Onsager (1949) and proved by Yang (1952).
It is seen that the critical point (.44) can be estimated quite
well from our simulation by the crossing of the curves for the
64 and 128° model. A major strength of our method is that
a single run of the process can yield accurate estimates over
the entire temperature range extending well below the critical
point. As a comparison, we also applied simulated tempering
in the same setting. The scheme was not able to sample both
energy wells in the same run in the 64° and 1282 models (see
Liang and Wong 1999 for more details).

8. DISCUSSION

This article has presented some theory underlying a new
Monte Carlo strategy that combines importance weighting and
Markov chain moves. The advantage of the new scheme is
that it enables the sampler to search a much larger part of the
state space and in the same time respects the constraints given
by the target function 7. In other words, it moves more freely
than a standard MCMC, but is much more “disciplined” than a
random walk. This Monte Carlo strategy not only is effective
in optimization, but also is useful for Monte Carlo integra-
tion/estimation. As was shown by many examples on which
we have tried this method, the improvements over existing
methods can be substantial. The theory presented in this arti-
cle can only be regarded as a preliminary understanding of the
dynamic weighting method, which we hope will stimulate fur-
ther research and development of this promising methodology.

[Received November 1999. Revised September 2000.]
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