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equSA-package Graphical model has been widely used in many scientific fileds to de-
scribe the conditional independent relationships for a large set of ran-
dom variables. Through this package, we provide tools to learn struc-
ture for undirected graph (Markov Random Field) and moral graph
for directed acyclic graph (Bayesian Network).

Description

The package provides multiple algorithms for learning high-dimensional graphical models includ-
ing both undirected graph and directed acyclic graph. For the undirect graph, the package provides
an equivalent measure of partial correlation coefficients for high-dimensional Gaussian Graphical
Models. Extended methods for inferring network structures from discretevariables are also avail-
able. Moreover, we also provide some methods for estimating graphical models from multiple
datasets.

For the directed acyclic graph, the package provides the p-learning algorithm which is used to learn
moral graphs in construction of high-dimensional Bayesian Networks for mixed data.
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Details

Package: equSA
Type: Package

Version: 1.2.1
Date: 2019-05-04

License: GPL-2

We propose an equvalent mearsure of partial correlation coeffient estimator called ψ estimators
which enable us to estimate these networks via sparse, high-dimensional undirected graphical mod-
els. (Liang, F et al, 2015)

Here, we provide the community a convenient and useful tool to learn a Gaussian Graphical Models.

To estimate the network structures from Gaussian distributed data with this package, users simply
need to specify the "method" in the main function, for example equSAR(data,...) to fit GGM to
get the estimated adjacency matrix.

In this package, we also provide the code for combining Networks from two different dataset
combineR(data1,data2,...) and the code for detecting difference between two Networks, for
example diffR(data1,data2,...). data1 and data2 should share the same dimension of vari-
ables (p) but allow have different samples (n).

Besides estimating single GGM, we also propose a joint estimation method for multiple GGMs.
This is achieved by ψ- learning algorithm for graphical model at each time point combined with an
Bayesian data integration method to estimate integrative ψ scores. Then multiple hypothesis tests
were applied to identify the edges for each pair of variables. JGGM(data,...).

If the data contains mixed types of variables, such as either Guassian or binary distributed. We
provide a method for learning graphical models for this mixed dataset with edge restrictions option
available, see plearn.struct(data,...). We also provide a method for jointly estimation of
mixed graphical model, see JMGM(data,...).

If the data are not Gaussian distributed, for example, the count data, we propose a random ef-
fect model-based transformation to continuized data ContTran(data,...), and then we transform
the continuized data to Gaussian via a semiparametric transformation and then apply ψ- learning
algorithm to reconstruct networks. The proposed method is consistent, and the resulting network
satisfies the faithfulness and global Markov properties.The most common application is to estimate
Gene Regulatory Networks from Next Generation Sequencing Data (Jia, B et al, 2017).

If we have the data following a distinct distribution and therefore produce the heterogeneous data.
In this case, we might still be interested in constructing a single gene regulatory network for the
heterogeneous data in a fashion of data integration, see GGMM(data,...).

For learning high-dimensional Gaussian Graphical Models from missing data, we provide a Imputation-
Regularized Optimzation (IRO) algorithm (Liang et al, 2018). See GraphIRO(data,...).

For learning moral graph and markov blanket for Bayesian network, the package currently supports
for Gaussian and binary data and also mixed type of data. See plearn.moral(data,...). The
proposed algorithm provides a feasible way to describe conditional dependence relationships for
the directed acyclic graph.
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To Construct confidence intervals and assess p-values in high-dimensional linear and generalized
linear models. See MNR(x,y,...) for detail.

Author(s)

Bochao Jia, Faming Liang, Runmin Shi, Suwa Xu Maintainer: Bochao Jia<jbc409@gmail.com>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1).
Springer, Berlin: Springer series in statistics.

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coeffi-
cients for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-
1265.<doi:10.1080/01621459.2015.1012391>

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approx-
imation. Biometrika, 95(4), 961-977.<doi:10.1093/biomet/asn036>

Liang, F., Jia, B., Xue, J., Li, Q., and Luo, Y. (2018). An Imputation Regularized Optimization
Algorithm for High-Dimensional Missing Data Problems and Beyond. Submitted to Journal of the
Royal Statistical Society Series B.

Liu, H., Lafferty, J. and Wasserman, L. (2009). The Nonparanormal: Semiparametric Estimation of
High Dimensional Undirected Graphs. Journal of Machine Learning Research , 10, 2295-2328.

Jia, B., Xu, S., Xiao, G., Lamba, V., Liang, F. (2017) Inference of Genetic Networks from Next
Generation Sequencing Data. Biometrics.

Jia, B., and Liang, F. (2018). A Fast Hybrid Bayesian Integrative Learning of Multiple Gene Regu-
latory Networks for Type 1 Diabetes. Submitted to Biostatistics.

Jia, B. and Liang, F. (2018). Learning Gene Regulatory Networks with High-Dimensional Hetero-
geneous Data. Accept by ICSA Springer Book.

Jean-Philippe, Pellet and Andre,Elisseeff (2008). Using Markov blankets for causal structure learn-
ing. Journal of Machine Learning Research, 9, 1295-1342.

Xu, S., Jia, B., and Liang, F. (2019). Learning Moral Graphs in Construction of High-Dimensional
Bayesian Networks for Mixed Data. Neural computation, 1-32.

Jia, B., and Liang, F. (2018) Joint Estimation of Restricted Mixed Graphical Models. manuscript.

Liang, F., Xue, J. and Jia, B. (2018). Markov Neighborhood Regression for High-Dimensional
Inference. Submitted to J. Amer. Statist. Assoc.

Examples

library(equSA)
data(TR0)
subset <- TR0
equSAR(subset)
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alarm One example dataset for p-plearning algorithm.

Description

The ALARM ("A Logical Alarm Reduction Mechanism") is a Bayesian network designed to pro-
vide an alarm message system for patient monitoring.

alarm An object of class ’bn’ for ’alarm’ dataset. See package bnlearn for detail.

Usage

data(alarm)

Format

Alarm dataset is an object of class bn or bn.fit. See package bnlearn for detail.

References

Xu, S., Jia, B., and Liang, F. (2018). Learning Moral Graphs in Construction of High-Dimensional
Bayesian Networks for Mixed Data. Submitted.
I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM Monitoring System:
A Case Study with Two Probabilistic Inference Techniques for Belief Networks. In Proceedings of
the 2nd European Conference on Artificial Intelligence in Medicine, pages 247-256. Springer-
Verlag, 1989.

combineR Combine two networks.

Description

Combine two networks to a single one.

Usage

combineR(Data1,Data2,ALPHA1=0.05,ALPHA2=0.05)

Arguments

Data1 a n1xp data matrix.
Data2 a n2xp data matrix.
ALPHA1 The significance level of correlation screening for each dataset. In general, a

high significance level of correlation screening will lead to a slightly large sepa-
rator set Sij , which reduces the risk of missing some important variables in the
conditioning set. Including a few false variables in the conditioning set will not
hurt much the accuracy of the ψ-partial correlation coefficient.

ALPHA2 The significance level of ψ screening for integrative estimation of ψ scores.
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Value

A pxp Adjacency matrix of the combined graph.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients
for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approx-
imation. Biometrika, 95(4), 961-977.

Examples

library(equSA)
data(SR0)
data(TR0)
combineR(SR0,TR0)

Cont2Gaus A transfomation from count data into Gaussian data

Description

To transform count data into Gaussian distributed and also keep the consistency for contructing
networks.

Usage

Cont2Gaus(iData,total_iteration=5000,stepsize=0.05)

Arguments

iData a nxp count data matrix.
total_iteration

Total iteration number for Baysian random effect model-based transformation,
default of 5000.

stepsize The stepsize of updating parameters in transformation, default of 0.05.
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Details

This is the function that transform the count data into Gaussian data which include two steps. First,
we do data continuized transformation ContTran(data,...) and then we apply the semiparametric
transformation (Liu, H et al, 2009) provided in huge packages to tranform continuized data into
Gaussian distributed.

Value

Gaus A nxp matrix of normalized data with Gaussian distribution.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Jia, B., Xu, S., Xiao, G., Lamba, V., Liang, F. (2017) Inference of Genetic Networks from Next
Generation Sequencing Data. Biometrics.

Liu, H., Lafferty, J. and Wasserman, L. (2009). The Nonparanormal: Semiparametric Estimation of
High Dimensional Undirected Graphs. Journal of Machine Learning Research , 10, 2295-2328.

Examples

library(equSA)
data(count)
Cont2Gaus(count,total_iteration=1000)

ContSim A simulation method for generating count data from multivariate
Zero-Inflated Negative Binomial distributions

Description

Implements the data generation from multivariate Zero-Inflated Negative Binomial (ZINB) dis-
tributions with different graph structures, including "random", "hub", "cluster", "AR(2)" and
"scale-free".

Usage

ContSim(n, p, v = NULL, u = NULL, g = NULL, prob = NULL, vis = FALSE, verbose = TRUE,
graph.type="AR(2)", k=3.30, lambda=515, omega=0.003,lower.tail = TRUE, log.p = FALSE)
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Arguments

n The number of observations (sample size).

p The number of variables (dimension).

graph.type The graph structure with 4 options: "random", "hub", "cluster", "AR(2)" and
"scale-free".

v The off-diagonal elements of the precision matrix, controlling the magnitude of
partial correlations with u. The default value is 0.3.

u A positive number being added to the diagonal elements of the precision matrix,
to control the magnitude of partial correlations. The default value is 0.1.

g For "cluster" or "hub" graph, g is the number of hubs or clusters in the graph.
The default value is about d/20 if d >= 40 and 2 if d < 40. NOT applicable to
"random" and "AR(2)" graph.

prob For "random" graph, it is the probability that a pair of nodes has an edge. The
default value is 3/d. For "cluster" graph, it is the probability that a pair of
nodes has an edge in each cluster. The default value is 6*g/d if d/g <= 30 and
0.3 if d/g > 30. NOT applicable to "hub" or "AR(2)" graphs.

vis Visualize the adjacency matrix of the true graph structure, the graph pattern,
the covariance matrix and the empirical covariance matrix. The default value is
FALSE

verbose If verbose = FALSE, tracing information printing is disabled. The default value
is TRUE.

k dispersion parameter of ZINB distribution, default of 3.30.

lambda vector of (non-negative) means of ZINB distribution, default of 515.

omega zero-inflation parameter of ZINB distribution, default of 0.003.

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X> x].

log.p logical; if TRUE, probabilities p are given as log(p).

Details

This is the function that can generate dataset from multivariate Zero-Inflated Negative Binomial
distributions with different graph structures, including "random", "hub", "cluster", "AR(2)" and
"scale-free".

Given the adjacency matrix theta, the graph patterns are generated as below:

(I) random: Each pair of off-diagonal elements are randomly set theta[i,j]=theta[j,i]=1 for
i!=j with probability prob, and 0 other wise. It results in about d*(d-1)*prob/2 edges in the
graph.

(II)hub:The row/columns are evenly partitioned into g disjoint groups. Each group is associated
with a "center" row i in that group. Each pair of off-diagonal elements are set theta[i,j]=theta[j,i]=1
for i!=j if j also belongs to the same group as i and 0 otherwise. It results in d - g edges in the
graph.
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(III)cluster:The row/columns are evenly partitioned into g disjoint groups. Each pair of off-
diagonal elements are set theta[i,j]=theta[j,i]=1 for i!=j with the probability probif both
i and j belong to the same group, and 0 other wise. It results in about g*(d/g)*(d/g-1)*prob/2
edges in the graph.

(IV)AR(2): The off-diagonal elements are set to be theta[i,j]=0.5 if |i-j|=1, theta[i,j]=0.05
if |i-j|=2 and 0 other wise.

(V) scale-free: The graph is generated using B-A algorithm. The initial graph has two connected
nodes and each new node is connected to only one node in the existing graph with the probability
proportional to the degree of the each node in the existing graph. It results in d edges in the graph.

The adjacency matrix theta has all diagonal elements equal to 0. To obtain a positive definite
precision matrix, the smallest eigenvalue of theta*v (denoted by e) is computed. Then we set
the precision matrix equal to theta*v+(|e|+0.1+u)I. The covariance matrix is then computed for
generating multivariate ZINB dataset.

The default values for parameters k, lambda and omega of ZINB distribution are estimated from a
real TCGA dataset. See Jia.B et al(2017) for more detail.

Value

A list of two elements:

data The simulated count dataset in a nxp matrix.

Adj pxp The adjacency matrix of true graph structure (in sparse matrix representa-
tion) for the generated data

Author(s)

Bochao Jia<jbc409@gmail.com>

References

Jia, B., Xu, S., Xiao, G., Lamba, V., Liang, F. (2017) Inference of Genetic Networks from Next
Generation Sequencing Data. Biometrics.

T. Zhao and H. Liu.(2012) The huge Package for High-dimensional Undirected Graph Estimation
in R. Journal of Machine Learning Research.

Yahav, I., and Shmueli, G. (2012). On generating multivariate Poisson data in management science
applications. Applied Stochastic Models in Business and Industry, 28(1), 91-102.

Examples

library(equSA)
ContSim(100,200)
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ContTran A data continuized transformation

Description

Transform count data into continuous data.

Usage

ContTran(iData,total_iteration=5000,stepsize=0.05)

Arguments

iData a nxp count data matrix.
total_iteration

total iteration number for Baysian random effect model-based transformation,
default of 5000.

stepsize The stepsize of updating parameters in transformation, default of 0.05.

Details

This is the function that transform the count data into continuized data.

Value

continuz nxp matrix of continuized data.

Author(s)

Bochao Jia<jbc409@gmail.com>, Suwa Xu and Faming Liang

References

Jia, B., Xu, S., Xiao, G., Lamba, V., Liang, F. (2017) Inference of Genetic Networks from Next
Generation Sequencing Data. Biometrics.

Examples

library(equSA)
data(count)
ContTran(count,total_iteration=1000)
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count An example of count dataset for constructing network

Description

A simulated dataset for illustrating our proposed method for inferening networks from next gener-
ation sequencing data.

Usage

data(count)

Format

count dataset is a 100x200 matrix. Each row represents a observation and each column represents a
variable. It is generated from an overdispersion and zero-inflated Possion distribution.

References

Jia, B., Xu, S., Xiao, G., Lamba, V., Liang, F. (2017) Inference of Genetic Networks from Next
Generation Sequencing Data. Biometrics.

DAGsim Simulate a directed acyclic graph with mixed data (gaussian and bi-
nary)

Description

Simulate a directed acyclic graph with mixed data (gaussian and binary).

Usage

DAGsim(n, p, sparsity = 0.02, p.binary, type="AR(2)", verbose = TRUE)

Arguments

n Number of observations.

p Number of variables. Not applicable to the graph of "alarm" type.

sparsity Sparsity of the graph in the "random" type, the default value is 0.02. Not appli-
cable to other types.

p.binary Number of binary variables. Not applicable to the graph of "alarm" type. The
default value is p/2.

type The graph structure with 3 options: "random", "alarm" and "AR(2)" (default).

verbose If verbose = FALSE, tracing information printing is disabled. The default value
is TRUE.
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Details

Given the type of graph, the patterns are generated as below:

(I) "random": Each pair of off-diagonal elements are randomly set edgematrix[i,j]=1 for i < j
with probability sparsity, and 0 otherwise. It results in about p*(p-1)*sparsity/2 edges in the
graph.

(II)"AR(2)": The off-diagonal elements are set to be theta[i,j]=1 if i<j and |i-j|<=2 and 0
otherwise.

(III) "alarm": The graph structure is directly borrowed from package ’bnlearn’, which has 37
variables with 46 edges. See ’bnlearn’ for more detail.

Value

A list of five objects.

edgematrix A pxp matrix which indicates the true structure of directed acyclic graph. If the
(i,j)th element is equal to 1, there exists a directed edge from Xi to Xj .

data The simulated dataset in a nxp matrix.
moral.matrix The simulated adjacency matrix of the moral graph, which is the undircted ver-

sion of Bayesian network.
gaussian.index The index of Gaussian variables.
binary.index The index of binary variables.

Author(s)

Suwa Xu, Bochao Jia and Faming Liang

References

Kalisch, M., and Buhlmann, P. (2007). Estimating high-dimensional directed acyclic graphs with
the PC-algorithm. Journal of Machine Learning Research, 8(Mar), 613-636.

Xu, S., Jia, B., and Liang, F. (2018). Learning Moral Graphs in Construction of High-Dimensional
Bayesian Networks for Mixed Data. Submitted.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM Monitoring System:
A Case Study with Two Probabilistic Inference Techniques for Belief Networks. In Proceedings of
the 2nd European Conference on Artificial Intelligence in Medicine, pages 247-256. Springer-
Verlag, 1989.

Examples

library(equSA)
DAGsim(n=300, p=100, type="AR(2)", p.binary=50)
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diffR Detect difference between two networks.

Description

Detecting significant different edges between two networks.

Usage

diffR(Data1,Data2,ALPHA1=0.05,ALPHA2=0.05)

Arguments

Data1 a n1xp data matrix.

Data2 a n2xp data matrix.

ALPHA1 The significance level of correlation screening for each dataset. In general, a
high significance level of correlation screening will lead to a slightly large sepa-
rator set Sij , which reduces the risk of missing some important variables in the
conditioning set. Including a few false variables in the conditioning set will not
hurt much the accuracy of the ψ-partial correlation coefficient.

ALPHA2 The significance level of ψ screening for integrative estimation of ψ scores.

Value

A pxp adjacency matrix of the combined graph.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients
for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approx-
imation. Biometrika, 95(4), 961-977.

Examples

library(equSA)
data(SR0)
data(TR0)
diffR(SR0,TR0)
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equSAR An equvalent mearsure of partial correlation coeffients

Description

Infer networks from Gaussian data by ψ-learning algorithm.

Usage

equSAR(iData,iMaxNei,ALPHA1=0.05,ALPHA2=0.05,GRID=2,iteration=100)

Arguments

iData a nxp data matrix.

iMaxNei Neiborhood size in correlation screening step, default to n/log(n), where n is
the number of observation.

ALPHA1 The significance level of correlation screening. In general, a high significance
level of correlation screening will lead to a slightly large separator set Sij , which
reduces the risk of missing some important variables in the conditioning set.
Including a few false variables in the conditioning set will not hurt much the
accuracy of the ψ-partial correlation coefficient.

ALPHA2 The significance level of ψ screening.

GRID The number of components for the ψ scores. The default value is 2.

iteration Number of iterations for screening. The default value is 100.

Details

This is the main function of the package that fit the Gaussian Graphical Models and obtain the ψ
scores and adjacency matrix.

Value

A list of two elements:

Adj pxp adjacency matrix of the generated graph.

score Estimated ψ score matrix which has 3 columns. The first two columns denote
the pair indices of variables i and j and the last column denote the calculated ψ
scores for this pair.

Author(s)

Bochao Jia and Faming Liang



GauSim 15

References

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients
for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approx-
imation. Biometrika, 95(4), 961-977.

Examples

library(equSA)
data <- GauSim(100,100)$data
equSAR(data)

GauSim Simulate centered Gaussian data from multiple types of structures.

Description

Implements the data generation from Gaussian distribution with different graph structures, includ-
ing "random", "hub", "cluster", "AR(2)" and "scale-free".

Usage

GauSim(n, p, graph = "AR(2)", v = NULL, u = NULL, g = NULL, prob = NULL,
vis = FALSE, verbose = TRUE)

Arguments

n The number of observations (sample size).

p The number of variables (dimension).

graph The graph structure with 4 options: "random", "hub", "cluster", "AR(2)" and
"scale-free".

v The off-diagonal elements of the precision matrix, controlling the magnitude of
partial correlations with u. The default value is 0.3.

u A positive number being added to the diagonal elements of the precision matrix,
to control the magnitude of partial correlations. The default value is 0.1.

g For "cluster" or "hub" graph, g is the number of hubs or clusters in the graph.
The default value is about d/20 if d >= 40 and 2 if d < 40. NOT applicable to
"random" and "AR(2)" graph.

prob For "random" graph, it is the probability that a pair of nodes has an edge. The
default value is 3/d. For "cluster" graph, it is the probability that a pair of
nodes has an edge in each cluster. The default value is 6*g/d if d/g <= 30 and
0.3 if d/g > 30. NOT applicable to "hub" or "AR(2)" graphs.
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vis Visualize the adjacency matrix of the true graph structure, the graph pattern,
the covariance matrix and the empirical covariance matrix. The default value is
FALSE

verbose If verbose = FALSE, tracing information printing is disabled. The default value
is TRUE.

Details

Given the adjacency matrix theta, the graph patterns are generated as below:

(I) random: Each pair of off-diagonal elements are randomly set theta[i,j]=theta[j,i]=1 for
i!=j with probability prob, and 0 other wise. It results in about d*(d-1)*prob/2 edges in the
graph.

(II)hub:The row/columns are evenly partitioned into g disjoint groups. Each group is associated
with a "center" row i in that group. Each pair of off-diagonal elements are set theta[i,j]=theta[j,i]=1
for i!=j if j also belongs to the same group as i and 0 otherwise. It results in d - g edges in the
graph.

(III)cluster:The row/columns are evenly partitioned into g disjoint groups. Each pair of off-
diagonal elements are set theta[i,j]=theta[j,i]=1 for i!=j with the probability probif both
i and j belong to the same group, and 0 other wise. It results in about g*(d/g)*(d/g-1)*prob/2
edges in the graph.

(IV)AR(2): The off-diagonal elements are set to be theta[i,j]=0.5 if |i-j|=1, theta[i,j]=0.05
if |i-j|=2 and 0 other wise.

(V) scale-free: The graph is generated using B-A algorithm. The initial graph has two connected
nodes and each new node is connected to only one node in the existing graph with the probability
proportional to the degree of the each node in the existing graph. It results in d edges in the graph.

The adjacency matrix theta has all diagonal elements equal to 0. To obtain a positive definite
precision matrix, the smallest eigenvalue of theta*v (denoted by e) is computed. Then we set
the precision matrix equal to theta*v+(|e|+0.1+u)I. The covariance matrix is then computed to
generate multivariate normal data.

Value

A list of three elements:

data The simulated Gaussian distributed dataset with mean 0 in a nxp matrix.

sigma pxp The The covariance matrix for the generated data.

theta pxp The adjacency matrix of true graph structure (in sparse matrix representa-
tion) for the generated data.

Author(s)

Bochao Jia<jbc409@gmail.com>
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References

Jia, B., Xu, S., Xiao, G., Lamba, V., Liang, F. (2017) Inference of Genetic Networks from Next
Generation Sequencing Data. Biometrics.

T. Zhao and H. Liu.(2012) The huge Package for High-dimensional Undirected Graph Estimation
in R. Journal of Machine Learning Research.

Examples

library(equSA)
GauSim(100,200)

GGMM Learning high-dimensional Gaussian Graphical Models with Hetero-
geneous Data.

Description

Gaussian Graphical Mixture Models for learning a single high-dimensional network structure from
heterogeneous dataset.

Usage

GGMM(data, A, M, alpha1 = 0.1, alpha2 = 0.05, alpha3 = 0.05, iteration = 30, warm = 20)

Arguments

data nxp mixture Gaussian distributed dataset.

A pxp true adjacency matrix for evaluating the performance.

M The number of heterogeneous groups.

alpha1 The significance level of correlation screening in the ψ-learning algorithm, see
R package equSA for detail. In general, a high significance level of correlation
screening will lead to a slightly large separator set, which reduces the risk of
missing important variables in the conditioning set. In general, including a few
false variables in the conditioning set will not hurt much the accuracy of the
ψ-partial correlation coefficient, the default value is 0.1.

alpha2 The significance level of ψ-partial correlation coefficient screening for estimat-
ing the adjacency matrix, see equSA, the default value is 0.05.

alpha3 The significance level of integrative ψ-partial correlation coefficient screening
for estimating the adjacency matrix of GGMM method, the default value is 0.05.

iteration The number of total iterations, the default value is 30.

warm The number of burn-in iterations, the default value is 20.
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Value

RecPre The output of Recall and Precision values of our proposed method.

Adj pxp Estimated adjacency matrix.

label The estimated group indices for each observation.

BIC The BIC scores for determining the number of groups M .

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients
for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approx-
imation. Biometrika, 95(4), 961-977.

Liang, F., Jia, B., Xue, J., Li, Q., and Luo, Y. (2018). An Imputation Regularized Optimization
Algorithm for High-Dimensional Missing Data Problems and Beyond. Submitted to Journal of the
Royal Statistical Society Series B.

Jia, B. and Liang, F. (2018). Learning Gene Regulatory Networks with High-Dimensional Hetero-
geneous Data. Accept by ICSA Springer Book.

Examples

library(equSA)
result <- SimHetDat(n = 100, p = 200, M = 3, mu = 0.5, type = "band")
Est <- GGMM(result$data, result$A, M = 3, iteration = 30, warm = 20)
## plot network by our estimated adjacency matrix.
plotGraph(Est$Adj)
## plot the Recall-Precision curve
plot(Est$RecPre[,1], Est$RecPre[,2], type="l", xlab="Recall", ylab="Precision")

GraphIRO Learning high-dimensional Gaussian Graphical Models with Missing
Observations.

Description

The imputation regularized optimization (IRO) algorithm for learning high-dimensional Gaussian
Graphical Models from incomplete dataset.
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Usage

GraphIRO(data, A, alpha1 = 0.05, alpha2 = 0.05, alpha3 = 0.05, iteration = 30, warm = 10)

Arguments

data nxp Dataset with missing values.

A True adjacency matrix for evaluating the performance of the IRO algorithm.

alpha1 The significance level of correlation screening in the ψ-learning algorithm, see
R package equSA for detail. In general, a high significance level of correlation
screening will lead to a slightly large separator set, which reduces the risk of
missing important variables in the conditioning set. In general, including a few
false variables in the conditioning set will not hurt much the accuracy of the
ψ-partial correlation coefficient, the default value is 0.05.

alpha2 The significance level of ψ-partial correlation coefficient screening for estimat-
ing the adjacency matrix, see equSA, the default value is 0.05.

alpha3 The significance level of integrative ψ-partial correlation coefficient screening
for estimating the adjacency matrix of IRO_Ave method, the default value is
0.05.

iteration The number of total iterations, the default value is 30.

warm The number of burn-in iterations, the default value is 10.

Value

RecPre The output of Recall and Precision values for the IRO algorithm.

Adj pxp Estimated adjacency matrix by our IRO algorithm.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients
for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approx-
imation. Biometrika, 95(4), 961-977.

Liang, F., Jia, B., Xue, J., Li, Q., and Luo, Y. (2018). An Imputation Regularized Optimization
Algorithm for High-Dimensional Missing Data Problems and Beyond. Submitted to Journal of the
Royal Statistical Society Series B.

Examples

library(equSA)
result <- SimGraDat(n = 200, p = 100, type = "band", rate = 0.1)
Est <- GraphIRO(result$data, result$A, iteration = 20, warm = 10)
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## plot network by our estimated adjacency matrix.
plotGraph(Est$Adj)
## plot the Recall-Precision curve.
plot(Est$RecPre[,1], Est$RecPre[,2], type="l", xlab="Recall", ylab="Precision")

JGGM Joint estimation of Multiple Gaussian Graphical Models

Description

Infer networks from Multiple Gaussian data from differnt groups using our proposed fast Bayesian
integrative method.

Usage

JGGM(data,ALPHA1=0.05,ALPHA2=0.01,structure = "temporal",parallel=FALSE,nCPUs)

Arguments

data a list of nxp data matrices. n can be different for each dataset but p should be
the same.

ALPHA1 The significance level of correlation screening. In general, a high significance
level of correlation screening will lead to a slightly large separator set Sij , which
reduces the risk of missing some important variables in the conditioning set.
Including a few false variables in the conditioning set will not hurt much the
accuracy of the ψ-partial correlation coefficient.

ALPHA2 The significance level of ψ screening.

structure The depedent structure of multiple networks, either "temporal" or "spatial". The
default is "temporal".

parallel Should parallelization be used? (logical), default is FALSE.

nCPUs Number of cores used for parallelization. Recommend to be equal to the number
of datasets.

Details

This is the function that can jointly estimate multiple GGMs which can integrate the information
throughtout all datasets. The method mainly consists three steps: (i) separate estimation of ψ-
scores for each dataset, (ii) identifies possible changes of each edge across different groups and
integrate the ψ scores across different groups simultaneously and (iii) apply multiple hypothesis
test to identify edges using integrated ψ scores. See Jia, B., et al (2018).
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Value

A list of three elements:

A An array of multiple adjacency matrices of networks which is a Mxpxp array.
M is the number of dataset groups, p is the dimension of variables in each group.

score.sep Separately estimated ψ scores matrix for all pairs in multiple datasets. The first
two columns denote the pair indices of variables i and j and the rest columns
denote the estimated ψ scores for this pair in different groups.

score.joint Estimated integrative ψ scores matrix for all pairs in multiple datasets. The first
two columns denote the pair indices of variables i and j and the rest columns
denote the estimated integrative ψ scores for this pair in different groups.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Jia, B., and Liang, F. (2018). A Fast Hybrid Bayesian Integrative Learning of Multiple Gene Regu-
latory Networks for Type 1 Diabetes. Submitted to Biostatistics.

Examples

library(equSA)
data(SR0)
data(TR0)
data_all <- vector("list",2)
data_all[[1]] <- SR0
data_all[[2]] <- TR0
JGGM(data_all,ALPHA1=0.05,ALPHA2=0.05)

JMGM Joint Mixed Graphical Models

Description

Infer network structures from multiple datasets with mixed types of variables and edge restrictions
option available.
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Usage

JMGM(data,ALPHA1=0.05,ALPHA2=0.01,restrict=FALSE,parallel=FALSE,nCPUs)

Arguments

data a list of nxp data matrices. n can be different for each dataset but p should be
the same.

ALPHA1 The significance level of correlation screening. In general, a high significance
level of correlation screening will lead to a slightly large separator set Sij , which
reduces the risk of missing some important variables in the conditioning set.
Including a few false variables in the conditioning set will not hurt much the
accuracy of the ψ-partial correlation coefficient.

ALPHA2 The significance level of ψ screening.

restrict Should edge restriction applied? (logical). If TRUE, we assume that there should
be no edge among binary variables. The default is FALSE.

parallel Should parallelization be used? (logical), default is FALSE.

nCPUs Number of cores used for parallelization. Recommend to be equal to the number
of datasets.

Details

This is the function that can jointly estimate multiple graphical models with mixed types of data
and also consider the edge restriction scenarios. The method has three novelties: First, the pro-
posed method resolves the conditional independence information using a p-learning algorithm and
therefore can be applied to the mixed types of random variables. Second, the proposed method
can construct networks with restricted edges determined by some preliminary knowledges. Third,
the proposed method involves a Fast Bayesian joint estimation method which works on edge-wise
scores and can achieve both fast and accurate integration performance for constructing multiple
networks. See Jia and Liang (2018).

Value

A list of three elements:

A An array of multiple adjacency matrices of networks which is a Mxpxp array.
M is the number of dataset groups, p is the dimension of variables in each group.

score.sep Separately estimated ψ scores matrix for all pairs in multiple datasets. The first
two columns denote the pair indices of variables i and j and the rest columns
denote the estimated ψ scores for this pair in different groups.

score.joint Estimated integrative ψ scores matrix for all pairs in multiple datasets. The first
two columns denote the pair indices of variables i and j and the rest columns
denote the estimated integrative ψ scores for this pair in different groups.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang
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References

Jia, B., and Liang, F. (2018) Joint Estimation of Restricted Mixed Graphical Models. manuscript.

Examples

library(equSA)
data1 <- DAGsim(n=200, p=100, type="AR(2)")$data
data2 <- DAGsim(n=200, p=100, type="AR(2)")$data
data_all <- vector("list",2)
data_all[[1]] <- data1
data_all[[2]] <- data2
JMGM(data_all,ALPHA1=0.1,ALPHA2=0.05,parallel=TRUE,nCPUs=2)

MNR Markov Neighborhood Regression for High-Dimensional Inference.

Description

Construct confidence intervals and assess p-values in high-dimensional linear and generalized linear
models.

Usage

MNR(x,y,family='gaussian',penalty='lasso',tune='bic',alpha1=0.1,alpha2=0.05,level=0.95)

Arguments

x The design matrix, of dimensions nxp, without an intercept. Each row is an
observation vector.

y The response vector of dimension nx1. Quantitative for family=’gaussian’, bi-
nary (0-1) for family=’binomial’. For family=’cox’, y should be an object of
class Surv, as provided by the function Surv() in the package survival.

family Response type (see above).

penalty The penalty to be applied in the regularized likelihood subproblems. ’lasso’ (the
default), ’MCP’, or ’SCAD’ are provided. See package SIS for detail.

tune Method for tuning the regularization parameter of the penalized likelihood sub-
problems and of the final model selected by (I)SIS. Options include tune=’bic’,
tune=’ebic’, tune=’aic’, and tune=’cv’.
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alpha1 The significance level of correlation screening in the ψ-learning algorithm, see
R package equSA for detail. In general, a high significance level of correlation
screening will lead to a slightly large separator set, which reduces the risk of
missing important variables in the conditioning set. In general, including a few
false variables in the conditioning set will not hurt much the accuracy of the
ψ-partial correlation coefficient, the default value is 0.1.

alpha2 The significance level of ψ-partial correlation coefficient screening for estimat-
ing the adjacency matrix, see equSA, the default value is 0.05.

level the confidence level required, the default value is 0.95

Value

CI Estimated confidence intervals for all coefficients.

coef px1 estimated regression coefficients for all variables.

pvalue px1 estimated p-values for all variables.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Liang, F., Xue, J. and Jia, B. (2018). Markov Neighborhood Regression for High-Dimensional
Inference. Submitted to J. Amer. Statist. Assoc.

Examples

library(equSA)
p <- 500
coef_true <- rep(0,p)
coef_true[1:5] <- c(2,4,-3,-5,10)
coef <- c(1,coef_true)
data <- SimMNR(n = 200, p = 500, coef = coef, family = "gaussian")
MNR(data$x, data$y, family = "gaussian")

Mulpval Multiple hypothesis tests for p values

Description

Conduct multiple hypothesis tests from p values.
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Usage

Mulpval(pvalue, ALPHA2=0.05,GRID=2,iteration=100)

Arguments

pvalue A vector of p values.

ALPHA2 The significance level of screening, default of 0.05.

GRID The number of components for the z-scores. The default value is 2.

iteration Number of iterations for screening. The default value is 100.

Details

This is the function that conduct multiple hypothesis test for p values.

Value

qqqscore The threshold of p value which indicates that p values are not larger than the
threshold are considered significance and larger otherwise.

Author(s)

Bochao Jia, Faming liang<fmliang@purdue.edu>

References

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approx-
imation. Biometrika, 95(4), 961-977.

Examples

library(equSA)
pvalue <- c(runif(20,0,0.001),runif(200,0,1))
Mulpval(pvalue,ALPHA2=0.05)

pcorselR Multiple hypothesis test

Description

Infer networks from ψ scores using multiple hypothesis test in ψ screening procedure.

Usage

pcorselR(score, ALPHA2=0.05,GRID=2,iteration=100)
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Arguments

score ψ score matrix which has 3 columns. The first two columns denote the pair of
variables i and j and the last column denote the calculated ψ scores for this pair.

ALPHA2 The significance level of ψ screening, default of 0.05.

GRID The number of components for the ψ-scores. The default value is 2.

iteration Number of iterations for screening. The default value is 100.

Details

This is the function that conduct multiple hypothesis test for ψ scores, thus we called it ψ screening
procedure.

Value

qqqscore The threshold value of ψ scores which indicates that if one pair of variables
has larger ψ scores than this threshold value in the ψ score matrix, this pair is
considered as connected, i.e there is an edge between this pair of variables.

Author(s)

Bochao Jia, Faming liang<fmliang@purdue.edu>

References

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approx-
imation. Biometrika, 95(4), 961-977.

Examples

library(equSA)
data(SR0)
U <- psical(SR0, ALPHA1=0.05,iteration=50)
## probit transformation for psi scores ###
z<-U[,3]
q<-pnorm(-abs(z), log.p=TRUE)
q<-q+log(2.0)
s<-qnorm(q,log.p=TRUE)
s<-(-1)*s
U<-cbind(U[,1:2],s)
## subsampling for psi scores ###
N <- length(U[,1])
ratio<-ceiling(N/100000)
U<-U[order(U[,3]), 1:3]
m<-floor(N/ratio)
m0<-N-m*ratio
s<-sample.int(ratio,m,replace=TRUE)
for(i in 1:length(s)) s[i]<-s[i]+(i-1)*ratio
if(m0>0){

s0<-sample.int(m0,1)+length(s)*ratio
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s<-c(s,s0)
}
Us<-U[s,]
y <- round(Us,6)
## multiple hypothesis tests ###
pcorselR(y,ALPHA2=0.05)

plearn.moral Learning Moral graph based on p-learning algorithm.

Description

Construct moral graph of Bayeisan network for mixed types of random varaibles based on p-
learning algorithm. Each variable in the dataset can be either binary or Gaussian distributed.

Usage

plearn.moral(data, gaussian.index = NULL, binary.index = NULL,
alpha1 = 0.1, alpha2 = 0.02, restrict = FALSE, score.only=FALSE)

Arguments

data The data matrix, of dimensions nxp. Each row is an observation vector and each
column is a variable.

gaussian.index The index vector of Gaussian nodes. The default value is NULL. If not specified,
the system will automatically determine the index for each variable.

binary.index The index vector of binary nodes. The default value is NULL. If not specified, the
system will automatically determine the index for each variable.

alpha1 The significant level of correlation screening in p-learning algorithm. The de-
fault value is 0.1.

alpha2 The significant level of partial correlation screening in p-learning algorithm. The
dafault value is 0.02.

restrict Should edge restriction applied? (logical). If TRUE, we assume that there should
be no edge among binary variables. The default is FALSE.

score.only If TRUE, it only reports z-scores for all pair of variables. The default is FALSE.

Details

This is the function that implements the p-learning algorithm for learning moral graph of Bayesian
Network with mixed type of random variables.

Value

A list of two objects.

moral.matrix The estimated adjacency matrix of moral graph.
score The estimated z-scores for all pair of variables.
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Author(s)

Suwa Xu Bochao Jia and Faming Liang

References

Xu, S., Jia, B., and Liang, F. (2018). Learning Moral Graphs in Construction of High-Dimensional
Bayesian Networks for Mixed Data. Submitted.

Examples

library(equSA)
data.graph <- DAGsim(n = 200, p = 100, type="AR(2)", p.binary = 50)$data
plearn.moral(data.graph, alpha1 = 0.1, alpha2 = 0.02)

plearn.struct Infer network structure for mixed types of random variables.

Description

Learning graphical model structure for mixed types of random varaibles based on p-learning algo-
rithm. Each variable in the dataset can be either binary or Gaussian distributed.

Usage

plearn.struct(data, gaussian.index = NULL, binary.index = NULL,
alpha1 = 0.1, alpha2 = 0.02, restrict = FALSE, score.only=FALSE)

Arguments

data The data matrix, of dimensions nxp. Each row is an observation vector and each
column is a variable.

gaussian.index The index vector of Gaussian nodes. The default value is NULL. If not specified,
the system will automatically determine the index for each variable.

binary.index The index vector of binary nodes. The default value is NULL. If not specified, the
system will automatically determine the index for each variable.

alpha1 The significant level of parent and children screening in p-learning algorithm.
The default value is 0.1.

alpha2 The significant level of moral graph screening in p-learning algorithm. The
dafault value is 0.02.
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restrict Should edge restriction applied? (logical). If TRUE, we assume that there should
be no edge among binary variables. The default is FALSE.

score.only If TRUE, it only reports z-scores for all pair of variables. The default is FALSE.

Details

This is the function that implements the p-learning algorithm for learning the undirect network
structure for mixed types of random variables.

Value

A list of two objects.

Adj The estimated adjacency matrix of undirect network.

score The estimated z-scores for all pair of variables.

Author(s)

Bochao Jia and Faming Liang

References

Jia, B., and Liang, F. (2018) Joint Estimation of Restricted Mixed Graphical Models. manuscript.

Examples

library(equSA)
data.graph <- DAGsim(n = 200, p = 100, type="AR(2)", p.binary = 50)$data
plearn.struct(data.graph, alpha1 = 0.1, alpha2 = 0.02)

plotGraph Plot Single Network

Description

Plot a network with specific layout.

Usage

plotGraph(net, fn = "", th = 1e-06, mylayout = NULL)
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Arguments

net a square adjacency matrix of the network to be plotted.

fn file name to save the network plot. Default to be an empty string, so the network
is plotted to the standard output (screen). NOTE: if a file name is specified, it
should be file name for PDF file.

th numeric value, default to 1e-06. To specify the threshold if the estimated coeffi-
cient between two variables is to be considered connected.

mylayout graph layout to draw the network, default to NULL.

Details

This function serves as the alternative plotting function to allow users to plot a specific network
with specific layout, such as plotting the simulated network.

Value

Returns the layout object from igraph package - numeric matrix of two columns and the rows with
the same number as the number of vertices.

Examples

library(equSA)
Adj <- GauSim(100,200,graph="scale-free")$theta
plotGraph(Adj)

plotJGraph Plot Networks

Description

Plot multiple networks with specific layout.

Usage

plotJGraph(A,fn="Net",th = 1e-06, mylayout = NULL)

Arguments

A An array of multiple adjacency matrices of networks to be plotted which is a
Mxpxp array. M is the number of dataset groups, p is the dimension of variables
in each group.

fn file name to save the network plots. Default to be an string called "Net". NOTE:
It should be file name for PDF file.

th numeric value, default to 1e-06. To specify the threshold if the estimated coeffi-
cient between two variables is to be considered connected.

mylayout graph layout to draw networks, default to NULL.
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Details

This function serves as the alternative plotting function to allow users to plot multiple networks
with specific layout, such as plotting the simulated networks.

Value

Returns the multiple layout objects from igraph package - numeric matrix of two columns and the
rows with the same number as the number of vertices.

Author(s)

Bochao Jia<jbc409@gmail.com>, Faming liang

References

Jia, B., and Liang, F. (2018). Learning Multiple Gene Regulatory Networks in Type 1 Diabetes
through a Fast Bayesian Integrative Method. Submitted to Journal of Statistical Computing.

Examples

library(equSA)
data(SR0)
data(TR0)
data_all <- vector("list",2)
data_all[[1]] <- SR0
data_all[[2]] <- TR0
A <- JGGM(data_all,ALPHA1=0.05,ALPHA2=0.01)$Array
plotJGraph(A)

psical A calculation of ψ scores.

Description

To compute an equvalent mearsure of partial correlation coeffients called ψ scores.

Usage

psical(iData,iMaxNei,ALPHA1=0.05,GRID=2,iteration=100)
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Arguments

iData a nxp data matrix.

iMaxNei Neiborhood size in correlation screening step, default to n/log(n), where n is
the number of observation.

ALPHA1 The significance level of correlation screening. In general, a high significance
level of correlation screening will lead to a slightly large separator set Sij , which
reduces the risk of missing some important variables in the conditioning set.
Including a few false variables in the conditioning set will not hurt much the
accuracy of the ψ-partial correlation coefficient.

GRID The number of components for the corrlation scores. The default value is 2.

iteration Number of iterations for screening. The default value is 100.

Details

This is the function to calculate ψ scores and can be used in combining or detecting difference of
two networks.

Value

score Estimated ψ score matrix which has 3 columns. The first two columns denote
the pair indices of variables i and j and the last column denote the calculated ψ
scores for this pair.

Author(s)

Bochao Jia, Faming liang<fmliang@purdue.edu>

References

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients
for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approx-
imation. Biometrika, 95(4), 961-977.

Examples

library(equSA)
data <- GauSim(100,100)$data
psical(data)
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SimGraDat Simulate Incomplete Data for Gaussian Graphical Models

Description

Simulate compeletely missing at random (CMAR) data with a band structure, which can be used in
GraphIRO(data,...) for estimating the structure of the Gaussian graphical network.

Usage

SimGraDat(n = 200, p = 100, type = "band", rate = 0.1)

Arguments

n Number of observations, default of 200.

p Number of covariates, default of 100.

type type=="band" which denotes the band structure, with precision matrix

Ci,j =


0.5, if |j − i| = 1, i = 2, ..., (p− 1),
0.25, if |j − i| = 2, i = 3, ..., (p− 2),
1, if i = j, i = 1, ..., p,
0, otherwise.

rate Missing rate, the default value is 0.1.

Value

data nxp Gaussian distributed data with missing.

A pxp adjacency matrix used for generating data.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Liang, F., Jia, B., Xue, J., Li, Q., and Luo, Y. (2018). An Imputation Regularized Optimization
Algorithm for High-Dimensional Missing Data Problems and Beyond. Submitted to Journal of the
Royal Statistical Society Series B.

Examples

library(equSA)
SimGraDat(n = 200, p = 100, type = "band", rate = 0.1)
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SimHetDat Simulate Heterogeneous Data for Gaussian Graphical Models

Description

Simulate Heterogeneous data with a band structure, which can be used in GGMM(data,...) for
estimating the structure of the Gaussian graphical network.

Usage

SimHetDat(n = 100, p = 200, M = 3, mu = 0.3, type = "band")

Arguments

n Number of observations for each group, default of 100.

p Number of covariates for each observation, default of 200.

M Number of latent groups for the simulated dataset choose 2 or 3, default of 3.

mu The mean difference among groups. If M = 3, the mean of three groups are
−mu, 0,mu, respectively. IfM = 2, the mean of two groups are 0,mu, respec-
tively.

type type=="band" which denotes the band structure, with precision matrix

Ci,j =


0.5, if |j − i| = 1, i = 2, ..., (p− 1),
0.25, if |j − i| = 2, i = 3, ..., (p− 2),
1, if i = j, i = 1, ..., p,
0, otherwise.

Value

data nxp Heterogeneous Gaussian distributed data.

A pxp adjacency matrix used for generating data.

label The group indices for each observation.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Jia, B. and Liang, F. (2018). Learning Gene Regulatory Networks with High-Dimensional Hetero-
geneous Data. Accept by ICSA Springer Book.

Examples

library(equSA)
SimHetDat(n = 100, p = 200, M = 3, mu = 0.5, type = "band")
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SimMNR Simulate Data for high-dimensional inference

Description

Simulate data with graphical structure for generalized regression, which can be used in MNR(x,y,...)
for constructing confidence intervals and assessing p-values.

Usage

SimMNR(n, p, coef, family="gaussian")

Arguments

n Number of observations.

p Number of variables.

coef A p + 1x1 vector. The first value denotes the intercept term and other p values
denote the true regression coefficients for p variables.

family Quantitative for family=’gaussian’ (default), binary (0-1) for family=’binomial’.
Survival data for family=’cox’.

Details

We generate p variables from the following precision matrix, which is often been called "band"
structure or "AR(2)" structure.

Ci,j =


0.5, if |j − i| = 1, i = 2, ..., (p− 1),
0.25, if |j − i| = 2, i = 3, ..., (p− 2),
1, if i = j, i = 1, ..., p,
0, otherwise.

Value

x Simulated data in a nxp design matrix, without an intercept.

y The response vector of dimension nx1. Quantitative for family=’gaussian’, bi-
nary (0-1) for family=’binomial’. For family=’cox’, y should be an object of
class Surv, as provided by the function Surv() in the package survival.

A The true adjacency matrix of variables in the design matrix x.

Author(s)

Bochao Jia<jbc409@gmail.com> and Faming Liang

References

Liang, F., Xue, J. and Jia, B. (2018). Markov Neighborhood Regression for High-Dimensional
Inference. Submitted to J. Amer. Statist. Assoc.
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Examples

library(equSA)
p <- 200
coef_true <- rep(0,p)
coef_true[1:5] <- runif(5,3,5)
coef <- c(1,coef_true)
data <- SimMNR(n = 100, p = 200, coef = coef, family = "cox")

solcov Calculate covariance matrix and precision matrix

Description

Calculate the adjusted covriance matrix and precision matrix given the network structure from high
dimesional dataset.

Usage

solcov(data, struct, tol=10^-5)

Arguments

data A nxp data matrix.
struct A preacquired adjacency matrix
tol Tolerant value, default is 10^-5

Value

A list of two elements:

COV Adjusted covriance matrix
PRE Precision matrix

Author(s)

Bochao Jia<jbc409@gmail.com> & Runmin Shi

References

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning (Vol. 1).
Springer, Berlin: Springer series in statistics.

Examples

library(equSA)
data <- GauSim(100,200)
solcov(data$data,data$theta)
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SR0 One example dataset for ψ-learning alogorithm

Description

SR0 is a simulated dataset for illustration our ψ-learning alogorithm.

Usage

data(SR0)

Format

SR0 dataset is a 100x200 matrix. Each row represents a observation and each column represents a
variable.

References

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients
for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.

TR0 One example dataset for ψ-learning alogorithm

Description

TR0 is a simulated dataset for illustration our ψ-learning alogorithm.

Usage

data(TR0)

Format

TR0 dataset is a 100x200 matrix. Each row represents a observation and each column represents a
variable.

References

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients
for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.
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