
Chapter 9

Interval Estimation

9.1 Introduction

Definition 9.1.1 An interval estimate of a real-values parame-

ter θ is any pair of functions, L(x1, . . . , xn) and U(x1, . . . , xn),

of a sample that satisfy L(x) ≤ U(x) for all x ∈ X . If X = x is

observed, the inference L(x) ≤ θ ≤ U(x) is made. The random

interval [L(X), U(X)] is called an interval estimator.

Although in the majority of cases we will work with finite values

for L and U , there is sometimes interest in one-sided interval esti-

mates. For instance, if L(x) = −∞, then we have the one-sided

interval (−∞, U(x)] and the assertion is that θ ≤ U(x). We could

similarly take U(x) = ∞ and have a one-sided interval [L(x),∞).

Although the definition mentions a closed interval [L(x), U(x)], it
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132 CHAPTER 9. INTERVAL ESTIMATION

will sometimes be more natural to use an open interval ([L(x), U(x))

or even a half-open and half-closed interval. We will use whichever

seems most appropriate for the particular problem at hand.

Example 9.1.1 (Interval estimator) Let X1, . . . , X4 be a sam-

ple from N(µ, 1). When we estimate µ by X̄, the probability that

we are exactly correct, that is, P (X̄ = µ) = 0. However, with an

interval estimator, for example, [X̄−1, X̄+1], we have a positive

probability of being correct. The probability that µ is covered by

the interval is

P (µ ∈ [X̄ − 1, X̄ + 1]) = P (X̄ − 1 ≤ µ ≤ X̄ + 1)

= P (−2 ≤ (X̄ − µ)/
√

1/4 ≤ 2) = 0.9544.

Sacrificing some precision in our estimate, in moving from a

point to an interval, has resulted in increased confidence that

our assertion is correct.
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Definition 9.1.2 For an interval estimator [L(X), U(X)] of a

parameter θ, the coverage probability of [L(X), U(X)] is the

probability that the random interval [L(X), U(X)] covers the

true parameter, θ. In symbols, it is denoted by either Pθ(θ ∈
[L(X), U(X)]) or Pθ(θ ∈ [L(X), U(X)]|θ).

Definition 9.1.3 For an interval estimator [L(X), U(X)] of a

parameter θ, the confidence coefficient of [L(X), U(X)] is the

infimum of the coverage probabilities, infθ Pθ(θ ∈ [L(X), U(X)]).

Note that the interval is the random quantity, not the parameter.

Interval estimators, together with a measure of confidence (usually a

confidence coefficient), are sometimes known as confidence intervals.

We will often use this term interchangeably with interval estimator.

Another point is concerned with coverage probabilities and confi-

dence coefficients. Since we do not know the true value of θ, we can

only guarantee a coverage probability equal to the infimum, the con-

fidence coefficient. In some cases this does not matter because the

coverage probability will be a constant function of θ. In other cases,

however, the coverage probability can be a fairly variable function of

θ.
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Example 9.1.2 (Scale uniform interval estimator) Let X1, . . . , Xn

be a random sample from a uniform(0, θ) population and let

Y = max{X1, . . . , Xn}. We are interested in an interval esti-

mator of θ. We consider two candidate estimators: [aY, bY ],

1 ≤ a < b, and [Y + c, Y + d], 0 ≤ c < d, where a, b, c and d are

specified constants. For the first interval we have

Pθ(θ ∈ [aY, bY ]) = Pθ(aY ≤ θ ≤ bY ) = Pθ(
1

b
≤ Y

b
≤ 1

a
) = Pθ(

1

b
≤ T ≤ 1

a
),

by defining T = Y/θ. The pdf of T is fT (t) = ntn−1, 0 ≤ t ≤ 1.

We therefore have

Pθ(
1

b
≤ T ≤ 1

a
) =

∫ 1/a

1/b

ntn−1dt = (
1

a
)n − (

1

b
)n.

Thus, the coverage probability of the interval is independent of

the value of θ, (1
a)

n − (1
b)

n is the confidence coefficient of the

interval.

For the other interval, for θ ≥ d a similar calculation yields

Pθ(θ ∈ [Y + c, Y + d]) = Pθ(1− d

θ
≤ T ≤ 1− c

θ
) =

∫ 1−c/θ

1−d/θ

ntn−1dt

= (1− c

θ
)n − (1− d

θ
)n.

In this case, the coverage probability depends on θ. It is easy to
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see that for any constants c and d,

lim
θ→∞

(1− c

θ
)n − (1− d

θ
)n = 0,

showing that the confidence coefficient of this interval estimator

is 0.
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9.2 Methods of Finding Interval Estimators

9.2.1 Inverting a test Statistic

There is a strong correspondence between hypothesis testing and in-

terval estimation. In fact, we can say in general that every confidence

set corresponding to a test and vice versa. Consider the following ex-

ample.

Example 9.2.1 (Inverting a normal test) Let X1, . . . , Xn be

iid N(µ, σ2) and consider testing H0 : µ = µ0 versus H1 : µ 6=
µ0. For a fixed α level, a reasonable test has rejection region

{x : |x̄− µ0| > zα/2σ/
√

n}. That is, H0 is accepted with

x̄− zα/2
σ√
n
≤ µ0 ≤ x̄ + zα/2

σ√
n
.

Since the test has size α, this means that P (H0 is accepted|µ =

µ0) = 1− α, i.e.,

P (X̄ − zα/2
σ√
n
≤ µ0 ≤ X̄ + zα/2

σ√
n
|µ = µ0) = 1− α.

But this probability statement is true for every µ0. Hence, the

statement

Pµ(X̄ − zα/2
σ√
n
≤ µ ≤ X̄ + zα/2

σ√
n

) = 1− α
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is true. The interval [x̄−zα/2
σ√
n
, x̄+zα/2

σ√
n
], obtained by inverting

the acceptance region of the level α test, is a 1 − α confidence

interval.

In this example, the acceptance region, the set in sample space for

which H0 : µ = µ0 is accepted, is given by

A(µ0) = {(x1, . . . , xn) : µ0 − zα/2
σ√
n
≤ x̄ ≤ µ0 + zα/2

σ√
n
},

and the confidence interval, the set in parameter space with plausible

values of µ, is given by

C(x1, . . . , xn) = {µ : x̄− zα/2
σ√
n
≤ µ ≤ x̄ + zα/2

σ√
n
}.

These sets are connected to each other by the tautology

(x1, . . . , xn) ∈ A(µ0) ⇔ µ0 ∈ C(x1, . . . , xn).

Hypothesis test and confidence set both look for consistency between

sample statistics and population parameters. The hypothesis test

fixes the parameter and asks what sample values (acceptance region)

are consistent with that fixed value. The confidence set fixes the

sample value and asks what parameter values (the confidence inter-

val) make this sample value most plausible. The next theorem gives

a formal version of this correspondence.
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Theorem 9.2.1 For each θ0 ∈ Θ, let A(θ0) be the acceptance

region of a level α test of H0 : θ = θ0. For each x ∈ X , define a

set C(x) in the parameter space by

C(x) = {θ0 : x ∈ A(θ0)}. (9.1)

Then the random set C(X) is a 1−α confidence set. Conversely,

let C(X) be a 1− α confidence set. For any θ0 ∈ Θ, define

A(θ0) = {x : θ0 ∈ C(x)}.

Then A(θ0) is the acceptance region of a level α test of H0 : θ =

θ0.

Proof: For the first part, since A(θ0) is the acceptance region of a

level α test,

Pθ0(X /∈ A(θ0)) ≤ α and hence Pθ0(X ∈ A(θ0)) ≥ 1− α.

Since θ0 is arbitrary, write θ instead of θ0. The above inequality,

together with (9.1), showing that the coverage probability of the set

C(X) is given by

Pθ(θ ∈ C(X)) = Pθ(X ∈ A(θ)) ≥ 1− α,

showing that C(X) is a 1− α confidence set.
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For the second part, the type I error probability for the test of

H0 : θ = θ0 with acceptance region A(θ0) is

Pθ0(X /∈ A(θ0)) = Pθ0(θ0 /∈ C(X)) ≤ α.

So this is a level α test. ¤

In Theorem 9.2.1, we stated only the null hypothesis H0 : θ = θ0.

All that is required of the acceptance region is

Pθ0(X ∈ A(θ0)) ≥ 1− α.

In practice, when constructing a confidence set by test inversion, we

will also have in mind an alternative hypothesis such as H1 : θ 6= θ0

or H0 : θ > θ0. The alternative will dictate the form of A(θ0)

that is reasonable, and the form of A(θ0) will determine the shape

of C(x). Note, however, that we carefully the word set rather than

interval. This is because there is no guarantee that the confidence

set obtained by test inversion will be an interval. In most cases,

however, one-sided tests give one-sided intervals, two-sided tests give

two sided intervals, strange-shaped acceptance regions give strange-

shaped confidence sets. Later examples will exhibit this.
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The properties of the inverted test also carry over to the confi-

dence set. For example, unbiased tests, when inverted, will produce

unbiased confidence sets. Also, and more important, since we know

that we can confine attention to sufficient statistics when looking

for a good test, it follows that we can confine attention to sufficient

statistics when looking for a good confidence sets.

Example 9.2.2 (Inverting an LRT) Suppose that we want a

confidence interval for the mean, λ, of an exponential(λ) popula-

tion. We can obtain such an interval by inverting a level α test

of H0 : λ = λ0 versus H1 : λ 6= λ0.

Take a random sample X1, . . . , Xn, the LRT statistic is given

by

1
λn

0
e−

∑
xi/λ0

supλ
1
λne−

∑
xi/λ

=

1
λn

0
e−

∑
xi/λ0

1
(
∑

xi/n)ne
−n

=
(∑

xi

nλ0

)n
ene−

∑
xi/λ0.

For fixed λ0, the acceptance region is given by

A(λ0) =
{
x :

∑
xi

λ0

)n
e−

∑
xi/λ0 ≥ k∗

}
, (9.2)

where k∗ is a constant chosen to satisfy Pλ0(X ∈ A(λ0)) = 1−α.

(The constant en/nn has been absorbed into k∗.) Inverting this
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acceptance region gives the 1− α confidence set

C(x) =
{
λ :

∑
xi

λ

)n
e−

∑
xi/λ ≥ k∗

}
.

So the confidence interval can be expressed in the form

C(
∑

xi) = {λ : L(
∑

xi) ≤ λ ≤ U(
∑

xi)},

where L and U are functions determined by the constraint that

the set (9.2) has probability 1− α and

( ∑
xi

L(
∑

xi)

)n
e−

∑
xi/L(

∑
xi) =

( ∑
xi

U(
∑

xi)

)n
e−

∑
xi/U(

∑
xi). (9.3)

If we set ∑
xi

L(
∑

xi)
= a and

∑
xi

U(
∑

xi)
= b, (9.4)

where a > b, then (9.3) becomes

ane−a = bne−b.

To work out some details, let n = 2 and note that
∑

xi ∼
Gamma(2, λ) and

∑
xi/λ ∼ Gamma(2, 1). Hence, from (9.4), the

confidence interval becomes {λ : 1
a

∑
xi ≤ λ ≤ 1

b

∑
xi}, where a

and b satisfy

Pλ(
1

a

∑
xi ≤ λ ≤ 1

b

∑
xi) = P (b ≤

∑
xi

λ
≤ a)

=

∫ a

b

te−tdt = e−b(b + 1)− e−a(a + 1) = 1− α.
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To get a 1− α confidence interval, we can solve the system

e−b(b + 1)− e−a(a + 1) = 1− α.

a2e−a = b2e−b.

For example, let α = 0.1, we get a = 5.480, b = 0.441, with a

confidence coefficient of 0.90006. Thus,

Pλ(
1

5.480

∑
Xi ≤ λ ≤ 1

0.441

∑
Xi) = 0.90006.

The region obtained by inverting the LRT of H0 : θ = θ0 versus

H1 : θ 6= θ0 is of the form

accept H0 if L(θ0|x)

L(θ̂|x)
≤ k(θ0),

with the resulting confidence region

{θ : L(θ|x) ≥ k′(x, θ)},

for some function k′ that gives 1− α confidence.

The test inversion method is completely general in that we can

invert any test and obtain a confidence set. In the preceding example,

we inverted LRTs, but we could have used a test constructed by any

method.



9.2. METHODS OF FINDING INTERVAL ESTIMATORS 143

Example 9.2.3 (Normal one-sided confidence bound) Let

X1, . . . , Xn be a random sample from a N(µ, σ2) population. Con-

sider constructing a 1−α upper confidence bound for µ. That is,

we want a confidence interval of the form C(x) = (−∞, U(x)].

To obtain such an interval using Theorem 9.2.1, we will invert

one-sided tests of H0 : µ = µ0 versus H1 : µ < µ0. The size α

LRT of H0 versus H1 rejects H0 if

X̄ − µ0

S/
√

n
< −tn−1,α.

Thus the acceptance region for this test is

A(µ0) = {x : x̄ ≥ µ0 − tn−1,α
s√
n
}

and x ∈ A(µ0) ⇔ x̄ + tn−1,αs/
√

n ≥ µ0. We define

C(x) = {µ0 : x ∈ A(µ0)} = {µ0 : x̄ + tn−1,α
s√
n
≥ µ0}.

By Theorem 9.2.1, the random set C(X) = (−∞, X̄+tn−1,αS/
√

n]

is a 1− α confidence set for µ. We see that, inverting the one-

sided test gave a one-sided confidence interval.
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9.2.2 Pivotal Quantities

The two confidence intervals that we saw in Example 9.1.2 differed

in many respects. One important difference was that the coverage

probability of the interval {AY, bY } did not depend on the value of

the parameter θ, while that of {Y + c, Y + d} did. This happened

because the coverage probability of {aY, bY } could be expresses in

terms of the quantity Y/θ, a random variable whose distribution

does not depend on the parameter, a quantity known as a pivotal

quantity, or pivot.

Definition 9.2.1 A random variable Q(X, θ) = Q(X1, . . . , Xn, θ)

is a pivotal quantity (or pivot) if the distribution of Q(X, θ) is

independent of all parameters. That is, if X ∼ F (x|theta), then

Q(X, θ) has the same distribution for all values of θ.

The function Q(x, θ) will usually explicitly contain both param-

eters and statistics, but for any set A, Pθ(Q(X, θ) ∈ A) cannot

depend on θ. The technique of constructing confidence sets from

pivots relies on being able to find a pivot and a set A so that the set

{θ : Q(X, θ) ∈ A} is a set estimate of θ.
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Table 9.1: Location-scale pivots

Form of pdf Type of pdf Pivotal quantity

f(x− µ) location X̄ − µ

1
σf(x

σ ) scale X̄
σ

1
σf(x−µ

σ ) location-scale X̄−µ
S

Example 9.2.4 (Location-scale pivots) In location and scale

cases there are lots of pivots. Let X1, . . . , Xn be a random sample

from the indicated pdfs, and let X̄ and S be the sample mean and

standard deviation. In particular if X1, . . . , Xn is from N(µ, σ2),

then the t statistic X̄−µ
S is pivot because the t distribution does

not depend on the parameters µ and σ2.
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In general, differences are pivotal for location problems, while ra-

tios are pivotal for scale problems.

Example 9.2.5 (Gamma pivot) Suppose that X1, . . . , Xn are

iid exponential(λ). Then T =
∑

Xi is a sufficient statistic for λ

and T ∼ gamma(n, λ). In the gamma pdf t and λ appear together

as t/λ and, in fact the gamma(n, λ) pdf (Γ(n)λn)−1tn−1e−t/λ is a

scale family. Thus, if Q(T, λ) = 2T/λ, then

Q(T, λ) ∼ gamma(n, λ(2/λ)) = gamma(n, 2) or χ2
2n,

which does nor depend on λ. The quantity Q(T, λ) = 2T/λ is a

pivot.

In the above example, the quantity t/λ appeared in the pdf and

this turned out to be a pivot. In the normal pdf, the quantity (x̄−
µ)/σ appears and this quantity is also a pivot. In general, suppose

the pdf of a statistic T , f (t|θ), can be expressed in the form

f (t|θ) = g(Q(t, θ))| ∂
∂t

Q(t, θ)| (9.5)

for some function and some monotone function Q (monotone in t for

each θ). Then Q(T, θ) is a pivot.
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Once we have a pivot, it is easy to construct a confidence set.

We will use the pivot to specify the specific form of our acceptance

region, and use the test inversion method to construct the confidence

set. If Q(x, t) is a pivot, then for a specified value of α we can find

numbers a and b, which do not depend on θ, to satisfy

Pθ(a ≤ Q(x, θ) ≤ b) ≥ 1− α.

Then, for each θ0 ∈ Θ,

A(θ0) = {x : a ≤ Q(x, θ0) ≤ b}

is the accept region for a level α test of H0 : θ = θ0. Using Theorem

9.2.1, we invert these tests to obtain

C(x) = {θ0 : a ≤ Q(x, θ0) ≤ b},

and C(X) is a 1 − α confidence set for θ. If θ is a real-valued

parameter and if, for each x ∈ X , Q(x, θ) is a monotone function of

θ, then C(x) will be an interval. In fact, if Q(x, θ) is an increasing

function of θ, then C(x) has the form L(x, a) ≤ θ ≤ U(x, b).

If Q(x, θ) is a decreasing function of θ, then C(x) has the form

L(x, b) ≤ θ ≤ U(x, a).
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Example 9.2.6 (Continuation of Example 9.2.5) Consider

the test H0 : λ = λ0 versus λ 6= λ0, if we choose constants a and

b to satisfy P (a ≤ χ2
2n ≤ b) = 1− α, then

Pλ(a ≤ 2T

λ
≤ b) = Pλ(a ≤ Q(T, λ) ≤ b) = P (a ≤ χ2

2n ≤ b) = 1−α.

Inverting the set A(λ) = {t : a ≤ 2t
λ ≤ b} gives C(t) = {λ : 2t

b ≤
λ ≤ 2t

a }, which is a 1−α confidence interval. Note here Q(x, λ)

is decreasing in λ. For example, if n = 10, then consulting a

table of χ2 cutoffs shows that a 95% confidence interval is given

by {λ : 2T
34.17 ≤ λ ≤ 2T

9.59}.

Example 9.2.7 (Normal pivotal interval) If X1, . . . , Xn are

iid N(µ, σ2), then (X̄−µ)/(σ/
√

n) is a pivot. If σ2 is known, we

can use this pivot to construct a confidence interval for µ. For

any constant a,

P (−a ≤ X̄ − µ

σ/
√

n
≤ a) = P (−a ≤ Z ≤ a),

where Z is standard normal, and the resulting confidence interval

is

{µ : x̄− a
σ√
n
≤ µ ≤ µ + a

σ√
n
}.

If σ2 is unknown, we can use the location-scale pivot X̄−µ
S/
√

n
. Since
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X̄−µ
S/
√

n
has Student’s t distribution,

P (−a ≤ X̄ − µ

S/
√

n
≤ a) = P (−a ≤ Tn−1 ≤ a).

Thus, for any given α, if we take a = tn−1,α/2, we find that a

1− α confidence interval is given by

{µ : x̄− tn−1,α/2
s√
n
≤ µ ≤ x̄ + tn−1,α/2

s√
n
},

which is the classic 1 − α confidence interval for µ based on

Student’s t distribution.

Because (n− 1)S2/σ2 ∼ χ2
n−1, (n− 1)S2/σ2 is also a pivot. A

confidence interval for σ2 can be constructed as follows. Choose

a and b to satisfy

P (a ≤ (n− 1)S2/σ2 ≤ b) = P (a ≤ χ2
n−1 ≤ b) = 1− α.

Invert this set to obtain the 1− α confidence interval

{σ2 : (n− 1)S2/b ≤ σ2 ≤ (n− 1)S2/a}

or, equivalently,

{σ :
√

(n− 1)S2/b ≤ σ ≤
√

(n− 1)S2/a}.

One choice of a and b that will produce the required interval is

a = χ2
n−1,1−α/2 and b = χ2

n−1,α/2.
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9.2.3 Pivoting the CDF

First we consider the case where T is continuous. The situation where

T is discrete is similar but has a few additional technique details to

consider. We, therefore, state the discrete in a separate theorem.

First, recall theorem 2.1.10 :

Let X have continuous cdf FX(x) and define the random vari-

able Y as Y = FX(X). Then Y is uniformly distributed on (0, 1),

that is, P (Y ≤ y) = y, 0 < y < 1.

This theorem tells us that the random variable FT (T |θ) is uni-

form(0,1), a pivot. Thus, if α1 + α2 = α, an α-level acceptance

region of the hypothesis H0 : θ = θ0 is

{t : α1 ≤ FT (t|θ) ≤ 1− α2},

with associated confidence set

{θ : α1 ≤ FT (t|θ) ≤ 1− α2}.

Now to guarantee that the confidence set is an interval, we need to

have FT (t|θ) to be monotone in θ. But we have seen this already,

in the definitions of stochastically increasing and stochastically de-

creasing.
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Theorem 9.2.2 (Pivoting a continuous cdf) Let T be a statis-

tic with continuous cdf Ft(t|θ). Let α1 + α2 = α with 0 < α < 1

be fixed values. Suppose that for each t ∈ T , the functions θL(t)

and θU(t) can be defined as follows.

i. If FT (t|θ) is a decreasing function of θ for each t, define θL(t)

and θU(t) by

FT (t|θU(t)) = α1, FT (t|θL(t)) = 1− α2.

ii. If FT (t|θ) is an increasing function of θ for each t, define

θL(t) and θU(t) by

FT (t|θU(t)) = 1− α2, FT (t|θL(t)) = α1.

Then the random interval [θL(T ), θU(T )] is a 1 − α confidence

interval for θ.

Proof: We will prove only part (i). The proof of part (ii) is similar.

Assume that we have constructed the 1− α acceptance region

{t : α1 ≤ FT (t|θ0) ≤ 1− α2}.

Since FT (t|θ) is a decreasing function of θ for each t and 1−α2 > α1,
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θL(t) < θU(t), and the values θL(t) and θU(t) are unique. Also,

FT (t|θ) < α1 ⇔ θ > θU(t)

FT (t|θ) > 1− α2 ⇔ θ < θL(t)

and hence {θ : α1 ≤ FT (t|θ) ≤ 1 − α2} = {θ : θL(T ) ≤ θ ≤
θU(T )}. ¤

We note that, in the absence of additional information, it is common

to choose α1 = α2 = α/2. Although this may not be optimal, it

is certainly a reasonable strategy in most situations. If a one-sided

interval is desired, however, this can easily be achieved by choosing

either α1 or α2 equal to 0.

The equations for case (i) can also expressed in terms of the pdf

of the statistic T . The functions θU(t) and θL(t) can be defined to

satisfy
∫ t

−∞
fT (u|θU(t))du = α1 and

∫ ∞

t

fT (u|θL(t))du = α2. (9.6)

A similar set of equations holds for case (ii).

Example 9.2.8 (Location exponential interval) If X1, . . . , Xn

are iid with pdf f (x|µ) = e−(x−µ)I[µ,∞)(x), then Y = min{X1, . . . , Xn}
is sufficient for µ with pdf

fy(y|µ) = ne−n(y−µ)I[µ,∞)(y).
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Fix α and define µL(y) and µU(y) to satisfy
∫ y

µU (y)

ne−n(u−µU (y))du =
α

2
,

∫ ∞

y

ne−n(u−µL(y))du =
α

2
.

These integrals can be evaluated to give the equations

1− e−n(y−µU (y)) =
α

2
, e−n(y−µL(y)) =

α

2
,

which give us the solutions

µU(y) = y +
1

n
log(1− α

2
), µL(y) = y +

1

n
log(

α

2
).

Hence, the random interval

C(Y ) =

∫
{µ : Y +

1

n
log(

α

2
) ≤ µ ≤ Y +

1

n
log(1− α

2
)},

is a −1α confidence interval for µ.

Note two things about the use of this method. First, the equations

(9.6) need to be solved only for the values of the statistics actually

observed. If T = t0 is observed, then the realized confidence interval

on θ will be [θL(t0), θU(t0)]. Thus, we need to solve only the two

equations
∫ t0

−∞
fT (u|θU(t0))du = α1 and

∫ ∞

t0

fT (u|θL(t0))du = α2

for θL(t0) and θU(t0). Second, the two equations can be solved nu-

merically if a analytical solution is not available.
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Theorem 9.2.3 (Pivoting a discrete cdf) Let T be a discrete

statistic with cdf FT (tθ) = P (T ≤ t|θ). Let α1 + α2 = α with

0 < α < 1 be fixed values. Suppose that for each t ∈ T , θL(t)

and θU(t) can be defined as follows.

i. If FT (tθ) is a decreasing function of θ for each t, define θL(t)

and θU(t) by

P (T ≤ t|θU(t)) = α1, P (T ≥ t|θL(t)) = α2.

ii. If FT (tθ) is an increasing function of θ for each t, define

θL(t) and θU(t) by

P (T ≥ t|θU(t)) = α1, P (T ≤ t|θL(t)) = α2.

Then the random interval [θL(t), θU(t)] is 1−α confidence interval

for θ.

Proof: We will only sketch the proof of part (i). First recall Ex-

ercise 2.10, where it was shown that FT (tθ) is stochastically greater

than a uniform random variable, that is, Pθ(FT (T |θ) ≤ x) ≤ x.

This implies that the set

{θ : Ft(T ≤ t|θ) ≥ α1 and 1− FT (T |θ) ≥ α2}
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is a 1− α confidence set.

The fact that FT (t|θ) is a decreasing function of θ for each t implies

that 1 − FT (t|θ) is a nondecreasing function of θ for each t. It

therefore follows that

θ > θU(t) ⇒ FT (t|θ) < α1, θ < θL(t) ⇒ 1− FT (t|θ) < α2,

and hence {θ : Ft(T ≤ t|θ) ≥ α1 and 1− FT (T |θ) ≥ α2} = {θ :

θL(T ) ≤ θ ≤ θU(T )}. ¤

Example 9.2.9 (Poisson interval estimator) Let X1, . . . , Xn

be a random sample from a Poisson population with parame-

ter λ and define Y =
∑

Xi. Y is sufficient for λ and Y ∼
Poisson(nλ). Applying the above method with α1 = α2 = α/2, if

Y = y0 is observed, we are led to solve for λ in the equations

y0∑

k=0

e−nλ(nλ)k

k!
=

α

2
and

∞∑

k=y0

e−nλ(nλ)k

k!
=

α

2
.

Recall the identity, from Example 3.3.1, linking the Poisson and

gamma families. Apply that identity to the above sums, we can

write

α

2
=

y0∑

k=0

e−nλ(nλ)λ

k!
= P (Y ≤ y0|λ) = P (χ2

2(y0+1) > snλ),
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where χ2
2(y0+1) is a chi squared random variable with 2(y0 + 1)

degrees of freedom. Thus, the solution to the above equation is

to take

λ =
1

2n
χ2

2(y0+1),α/2.

Similarly, applying the identity to the other equation yields

α

2
=

∞∑

k=y0

e−nλ(nλ)k

k!
= P (Y ≥ y0|λ) = P (χ2

2y0
< 2nλ).

Thus, we obtain the 1− α confidence interval for λ as

{λ :
1

2n
χ2

2y0,1−α/2 ≤ λ ≤ 1

2n
χ2

2(y0+1),α/2}.

(At y0 = 0 we define χ2
2y0,1−α/2 = 0.)

For a numerical example, consider d = 10 and observe y0 =
∑

xi = 6. A 90% confidence interval for λ is given by

1

20
χ2

12,0.95 ≤ λ ≤ 1

20
χ2

14,0.05,

which is 0.262 ≤ λ ≤ 1.184.

9.2.4 Bayesian Intervals

To keep the distinction between Bayesian and classical sets clear, the

Bayesian set estimates are referred to as credible sets rather than

confidence sets.
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If π(θ|x) is the posterior distribution of θ given X = x, then for

any set A ⊂ Θ, the credible probability of A is

P (θ ∈ A|x) =

∫

A

π(θ|x)dθ, (9.7)

and A is a credible set for θ. If π(θ|x) is a pmf, we replace integrals

with sums in the above expressions.

Example 9.2.10 (Poisson credible set) Let X1, . . . , Xn be iid

Poisson(λ) and assume that λ has a gamma prior pdf, λ ∼
gamma(a, b). The posterior pdf of λ is

pi(λ|
∑

Xi =
∑

xi) = gamma(a +
∑

xi, [n + 1/b]−1).

We can form a credible set for λ in many different ways, as any

set A satisfying (9.7) will do. One simple way is to split the α

equally between the upper and lower endpoints. Thus, a 1 − α

credible interval is

{λ :
b

2(nb + 1)
χ2

2(
∑

x+a),1−α/2 ≤ λ ≤ b

2(nb + 1)
χ2

2(
∑

x+a),α/2}.

If we take a = b = 1, the posterior distribution of λ given
∑

X =
∑

x can then be expressed as 2(n + 1)λ ∼ χ2
2(

∑
x+1). As

in Example 9.2.9, assume n = 10 and
∑

x = 6, a 90% credible

set for λ is given by [0.299, 1.077].
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Example 9.2.11 (Coverage of a normal credible set) Let

X1, . . . , Xn be iid N(θ, σ2), and let θ have the prior pdf N(µ, τ 2),

where µ, σ and τ are all known. Thus, we have

π(θ|x̄) ∼ N(δB(x̄),Var(θ|x̄)),

where δB(x̄) = σ2

σ2+nτ2µ+ nτ2

σ2+nτ2 x̄ and Var(θ|x̄) = σ2τ2

σ2+nτ2 . It there-

fore follows that under the posterior distribution,

θ − δB(x̄)√
Var(θ|x̄)

∼ N(0, 1),

and a 1− α credible set for θ is given by

δB(x̄)− zα/2

√
Var(θ|x̄) ≤ θ ≤ δB(x̄) + zα/2

√
Var(θ|x̄).

9.3 Methods of Evaluating Interval Estimators

We now have seen many methods for deriving confidence sets and,

in fact, we can derive different confidence sets for the same problem.

In such situations we would, of course, want to choose a best one.

Therefore, we now examine some methods and criteria for evaluating

set estimators. In set estimation two quantities vie against each

other, size and coverage probability. Naturally, we want our set

to have small size and large coverage probability, but such sets are

usually difficult to construct.
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The coverage probability of a confidence set will, except in special

cases, be a function of the parameter, so there is not one value to

consider but an infinite number of values. For the most part, however,

we will measure coverage probability performance by the confidence

coefficient, the infimum of the coverage probabilities.

When we speak of the size of a confidence set we will usually mean

the length of the confidence set, if the set is an interval. If the set

is not an interval, or if we are dealing with a multidimensional set,

then length will usually become volume.

9.3.1 Size and Coverage Probability

Example 9.3.1 (Optimizing length) Let X1, . . . , Xn be iid

N(µ, σ2), where σ is known. From the method of section 9.2.2

and the fact that

Z =
X̄ − µ

σ/
√

n

is a pivot with a standard normal distribution, any a and b that

satisfy

P (a ≤ Z ≤ b) = 1− α
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will give the 1− α confidence interval

{µ : x̄− b
σ√
n
≤ µ ≤ x̄− a

σ√
n
}.

The length of the interval is (b − a) σ√
n

and it can be minimized

by choosing a = −zα/2 and b = zα/2 according to the following

theorem.

Theorem 9.3.1 If f (x) be a unimodal pdf. If the interval [a, b]

satisfies

i.
∫ b

a f (x)dx = 1− α,

ii. f (a) = f (b) > 0,

iii. a ≤ x∗ ≤ b, where x∗ is a mode of f (x),

then [a, b] is the shortest among all intervals that satisfy (i).

Proof: First, let’s recall the definition of unimodal: A pdf f (x)

is unimodal if there exists x∗ such that f (x) is nondecreasing for

x ≤ x∗ and f (x) is non-increasing for x ≥ x∗.

Let [a′, b′] be any interval with b′− a′ < b− a. We will show that

this implies
∫ b′

a′ f (x)dx < 1 − α. The result will be proved only for

a′ ≤ a, the proof being similar if a′ > a. Also, two cases need to be

considered, b′ ≤ a and b′ > a.
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Ifb′ ≤ a, then a′ ≤ b′ ≤ a ≤ x∗ and

∫ b′

a′
f (x)dx ≤ f (b′)(b′ − a′) ≤ f (a)(b′ − a′)

< f (a)(b− a) ≤ intbaf (x)dx = 1− α.

If b′ > a, then a′ ≤ a < b′ < b. In this case we have

∫ b′

a′
f (x)dx =

∫ b

a

f (x)dx + [

∫ a

a′
f (x)dx−

∫ b

b′
f (x)dx]

= (1− α) + [

∫ a

a′
f (x)dx−

∫ b

b′
f (x)dx]

and the theorem will be proved if we show
∫ a

a′ f (x)dx−∫ b

b′ f (x)dx <

0. Since

∫ a

a′
f (x)dx ≤ f (a)(a− a′), and

∫ b

b′
f (x)dx ≥ f (b)(b− b′).

Thus,
∫ a

a′
f (x)dx−

∫ b

b′
f (x)dx ≤ f (a)(a− a′)− f (b)(b− b′)

= f (a)[(a− a′)− (b− b′)] = f (a)[(b′ − a′)− (b− a)]

which is negative if b′ − a′ < b− a and f (a) > 0. ¤

Example 9.3.2 (Shortest pivotal interval) Suppose X ∼
rmgamma(k, β). The quantity Y = X/β is a pivot, with Y ∼
gamma(k, 1), so we can get a confidence interval by finding con-
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stants a and b to satisfy

P (a ≤ Y ≤ b) = 1− α.

However, a blind application of Theorem 9.3.1 will not give the

shortest confidence interval. That is because, the interval on β

is of the form

{β :
x

b
≤ β ≤ x

a
},

so the length of the interval is (1/a− 1/b)x; that is, it is propor-

tional to (1/a− 1/b and not to b− a.

The shortest pivotal interval can be found by solving the fol-

lowing constrained minimization problem:

Minimize, with respect to a: 1
a − 1

b(a) subject to:
∫ b(a)

a fY (y)dy = 1− α

where b is defined as a function of a.

9.3.2 Test-Related Optimality

Since there is a one-to-one correspondence between confidence sets

and tests of hypotheses, there is some correspondence between opti-

mality of tests and optimality of confidence sets. Usually, test-related

optimality properties of confidence sets do not directly relate to the
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size of the set but rather to the probability of the set covering false

values, or the probability of false coverage.

We first consider the general situation, where X ∼ f (x|θ), and

we construct a 1 − α confidence set for θ, C(x), by inverting an

acceptance region, A(θ). The probability of coverage of C(x), that

is, the probability of true coverage, is the function of θ given by

Pθ(θ ∈ C(X)). The probability of the false coverage is the function

of θ and θ′ defined by

Pθ(θ
′ ∈ C(X)), θ 6= θ′,if C(X) = [L(bX), U(X)]

Pθ(θ
′ ∈ C(X)), θ′ < θ,if C(X) = [L(bX),∞)

Pθ(θ
′ ∈ C(X)), θ′ > θ,if C(X) = (−∞, U(X)]

the probability of covering θ′ when θ is the true parameter.

A 1 − α confidence set that minimizes the probability of false

coverage over a class of 1 − α confidence sets is called a uniformly

most accurate (UMA) confidence set.

Theorem 9.3.2 Let X ∼ f (x|θ), where θ is a real-valued pa-

rameter. For each θ0 ∈ Θ, let A∗(θ0) be the UMP level α accep-

tance region of a test of H0 : θ = θ0 versus H1 : θ > θ0. Let

C∗(x) be the 1− α confidence set formed by inverting the UMP
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acceptance regions. Then for any other 1− α confidence set C,

Pθ(θ
′ ∈ C∗(X)) ≤ Pθ(θ

′ ∈ C(X)) for all θ′ < θ.

Proof: Let θ′ be any value less than θ. Let A(θ′) be the acceptance

region of the level α test of H0 : θ = θ′ obtained by inverting C.

Since A∗(θ′) is the UMP acceptance region for testing H0 : θ = θ′

versus H1 : θ > θ′, and since θ > θ′, we have

Pθ(θ
′ ∈ C∗(X)) = Pθ(X ∈ A∗(θ)) ≤ Pθ(X ∈ A(θ′)) = Pθ(θ

′ ∈ C(X)).

Note that the above inequality is “≤” because we are working with

probabilities of acceptance regions. This is 1-power, so UMP tests

will minimize these acceptance region probabilities. ¤

Note that in Theorem 9.3.2, the alternative hypothesis leads to

lower confidence bounds; that is, if the sets are intervals, they are of

the form [L(X),∞).

Example 9.3.3 (UMA confidence bound) let X1, . . . , Xn be

iid N(µ, σ2), where σ2 is known. The interval

C(x̄) = {µ : µ ≥ x̄− zα
σ√
n
}

is a 1− α UMA lower confidence bound since it can be obtained

by inverting the UMP test of H0 : µ = µ0 versus H1 : µ > µ0.
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The more common two-sided interval,

C(x̄) = {µ : x̄− zα/2
σ√
n
≤ µ ≤ x̄ + zα/2

σ√
n
},

is not UMA, since it is obtained by inverting the two-sided ac-

ceptance region from the test of H0 : µ = µ0 versus H1 : µ 6= µ0,

hypotheses for which no UMP test exists.

In the testing problem, when considering two-sided tests, we found

the property of unbiasedness to be both compelling and useful. In

the confidence interval problem, similar ides apply. When we deal

with two-sided confidence intervals, it is reasonable to restrict con-

sideration to unbiased confidence sets.

Definition 9.3.1 A 1 − α confidence set C(x) is unbiased if

Pθ(θ
′ ∈ C(X)) ≤ 1− α for all θ 6= θ′.

Thus, for an unbiased confidence set, the probability of false cov-

erage is never more than the minimum probability of true coverage.

Unbiased confidence sets can be obtained by inverting unbiased test.

That is, if A(θ0) is an unbiased level α acceptance region of a test of

H0 : θ = θ0 versus H1 : θ 6= θ0 and C(x) is the 1− α confidence set

formed by inverting the acceptance regions, then C(x) is an unbiased

1− α confidence set.
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Example 9.3.4 (Continuation of Example 9.3.3) The two-

sided normal interval

C(x̄) = {µ : x̄− zα/2
σ√
n
≤ µ ≤ x̄ + zα/2

σ√
n
},

is an unbiased interval. It can be obtained by inverting the un-

biased test of H0 : µ = µ0 versus H1 : µ 6= µ0.

9.3.3 Bayesian Optimality

If we have a posterior distribution π(θ|x), the posterior distribution

of θ given X = x, we would like to find the set C(x) that satisfies

(i)

∫

C(x)

π(θ|x)dx = 1− α

(ii) Size(C(x)) ≤ Size(C ′(x))

for any set C ′(x) satisfying
∫

C ′(x) π(θ|x)dx ≥ 1− α.

If we take our measure of size to be length, then we can apply

Theorem 9.3.1 and obtain the following result.

Corollary 9.3.1 If the posterior density π(θ|x) is unimodal, then

for a given value of α, the shortest credible interval for θ is given

by

{θ : π(θ|x) ≥ k} where

∫

{θ:π(θ|x)≥k}
π(θ|x)dθ = 1− α.



9.3. METHODS OF EVALUATING INTERVAL ESTIMATORS 167

Example 9.3.5 (Poisson HPD region) In Example 9.2.10 we

derived a 1 − α credible set for a Poisson parameter. We now

construct an HPD region. By Corollary 9.3.1, this region is given

by {λ : π(λ|∑x) ≥ k}, where k is chosen so that

1− α =

∫

{λ:π(λ|∑x)≥k}
π(λ|

∑
x)dλ.

Recall that the posterior pdf of λ is gamma(a+
∑

x, [n+(1/b)]−1),

so we need to find λL and λU such that

π(λL|
∑

x) = π(λU |
∑

x) and

∫ λU

λL

π(λ|
∑

x)dλ = 1− α.

If we take a = b = 1, the posterior distribution of λ given
∑

X =
∑

x can be expressed as 2(n+1)λ ∼ χ2
2(

∑
x+1) and, if n = 10 and

∑
x = 6, the 90% HPD credible set for λ is given by [0.253, 1.005].

Example 9.3.6 (Normal HPD region) The equal-tailed cred-

ible set derived in Example 9.2.11 is, in fact, an HPD region.

Since the posterior distribution of θ is normal with mean δB, it

follows that {θ : π(θ|x̄) ≥ k} = {θ : θ ∈ δB ± k′} for some k′. So

the HPD region is symmetric about the mean δB(x̄).
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