
Chapter 8

Hypothesis Testing

8.1 Introduction

Definition 8.1.1 A hypothesis is a statement about a population parameter.

The goal of a hypothesis test is to decide, based on a sample from the

population, which of two complementary hypotheses is true.

Definition 8.1.2 The two complementary hypotheses in a hypothesis testing

problem are called the null hypothesis and the alternative hypothesis. They

are denoted by H0 and H1, respectively.

Definition 8.1.3 A hypothesis testing procedure or hypothesis test is a rule

that specifies:

i. For which sample values the decision is made to accept H0 as true.

ii. For which sample values H0 is rejected and H1 is accepted as true.

The subset of the sample space for which H0 will be rejected is called the

rejection region or critical region. The complement of the rejection region is

called the acceptance region.
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8.2 Methods of Finding Tests

8.2.1 Likelihood Ratio Tests

Definition 8.2.1 The likelihood ratio test statistic for testing H0 : θ ∈ Θ0

versus H1 : θ ∈ Θc
0 is

λ(x) =
supΘ0

L(θ|x)

supΘ L(θ|x)
.

A likelihood ratio test (LRT) is any test that has a rejection region of the

form {x : λ(x) ≤ c}, where c is any number satisfying 0 ≤ c ≤ 1.

The rationale behind LRTs can be easily understood in a situation in which

f(x|θ) is the pmf of a discrete random variable. In this case, the numerator

of λ(x) is the maximum probability of the observed sample, the maximum

being computed over parameters in the null hypothesis. The denominator

of λ(x) is the maximum probability of the observed sample over all possible

parameters. The ratio of these two maxima is small if there are parameter

points in the alternative hypothesis for which the observed sample is much

more likely than for any parameter point in the null hypothesis. In this

situation, the LRT criterion says H0 should be rejected and H1 accepted as

true. Suppose θ̂, an MLE of θ, exists; θ̂ is obtained by doing an unrestricted

maximization of L(θ|x). We can also consider the MLE of θ, call it θ̂0,

obtained by doing a restricted maximization, assuming Θ0 is the parameter

space. Then, the LRT statistic is

λ(x) =
L(θ̂0|x)

L(θ̂|x)
.
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Example 8.2.1 (Normal LRT) Let X1, . . . , Xn be a random sample from

a N(θ, 1) population. Considering testing H0 : θ = θ0 versus H1 : θ 6= θ0.

Since there is only one value of θ specified by H0, the numerator of λ(x) is

L(θ0|x). Recall that the MLE of θ is X̄. Thus the denominator of λ(x) is

L(x̄|x). So the LRT statistic is

λ(x) =
(2π)−n/2 exp[−∑n

i=1(xi − θ0)
2/2]

(2π)−n/2 exp[−∑n
i=1(xi − x̄)2/2]

= exp[−n(x̄− θ0)
2/2].

The rejection region, {x : λ(x) ≤ c}, can be written as

{x : |x̄− θ0| ≥
√
−2(log c)/n.

Thus, the LRTs are just those tests that reject H0 : θ = θ0 if the sample mean

differs from the hypothesized value θ0 by more than a specified amount.

Given the intuitive notion that all the information about θ in x is contained

in T (x), a sufficient statistic for θ, the test based on T should be as good as

the test based on the complete sample X. In fact the tests are equivalent.
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Theorem 8.2.1 If T (X) is a sufficient statistic for θ and λ∗(t) and λ(x)

are the LRT statistics based on T and X, respectively, then λ∗(T (x)) = λ(x)

for every x in the sample space.

Proof: From the Factorization Theorem, the pdf or pmf of X can be written

as f(x|θ) = g(T (x)|θ)h(x), where g(t|θ) is the pdf or pmf of T and h(x) does

not depend on θ. Thus

λ(x) =
supΘ0

L(θ|x)

supΘ L(θ|x)
=

supΘ0
g(T (x)|θ)h(x)

supΘ g(T (x)|θ)h(x)

=
supΘ0

g(T (x)|θ)
supΘ g(T (x)|θ) =

supΘ0
L∗(θ|T (x))

supΘ L(θ|T (x))
= λ∗(T (x)).

The theorem is proved. ¤

Example 8.2.2 (LRT and sufficiency) In Example 8.2.1, we can recognize

that X̄ is a sufficient statistic for θ, and X̄ ∼ N(θ, 1
n). Based on that it is

easy to conclude that a likelihood ratio test of H0 : θ = θ0 versus H0 : θ 6= θ0

rejects H0 for large values of |X̄ − θ0|.
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8.2.2 Bayesian Tests

Recall that π(θ|x) is the posterior distribution of θ. The posterior probability

π(θ ∈ Θ0|x) = P (H0 is true|x) and π(θ ∈ Θc
0|x) = P (H1 is true|x) can be

computed for hypothesis testing. H0 will be accepted if π(θ ∈ Θc
0|X) ≥

P (H1 is true|X) and will be rejected otherwise. In the terminology of the

previous sections, the test statistic, a function of the sample, is P (θ ∈ Θc
0|X)

and the rejection region is {x : P (θ ∈ Θc
0|x) > 1/2}. Alternatively, if the

Bayesian hypothesis tester wishes to guard against falsely rejecting H0, he

may decide to reject H0 only if P (θ ∈ Θc
0|X) is greater than some large

number, 0.99 for example.

Example 8.2.3 (Normal Bayesian test) Let X1, . . . , Xn be a random sam-

ple from N(θ, σ2) and let the prior distribution on θ be N(µ, τ 2), where σ2, µ

and τ 2 are known. Consider testing H0 : θ ≤ θ0 versus H1 : θ > θ0. The

posterior π(θ|x) is normal with mean (nτ 2x̄ + σ2µ)/(nτ 2 + σ2) and variance

σ2τ 2/(nτ 2 + σ2).

If we decide to accept H0 if and only if P (θ ∈ Θ0|X) ≥ P (θ ∈ Θx
0 |X),

then we will accept H0 if and only if

1

2
≤ P (θ ∈ Θ0|X) = P (θ ≤ θ0|X).

Therefore h0 will be accepted as true if

X̄ ≤ θ0 +
σ2(θ0 − µ)

nτ 2

and H1 will be accepted as true otherwise.
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8.2.3 Union-Intersection and Intersection-Union tests

The union-intersection method of test construction might be useful when the

null hypothesis is conveniently expressed as an intersection, say

H0 : θ ∈
⋂

γ∈Γ

Θγ.

Here Γ is an arbitrary index set that may be finite or infinite, depending on

the problem. Suppose that tests are available for each of the problems of

testing H0γ : θ ∈ Θγ versus H1γ : θ ∈ Θc
γ. Say the rejection region for the

test of H0γ is {x : Tγ(x) ∈ Rγ}. Then the rejection region for the union-

intersection test is
⋃

γ∈Γ

{x : Tγ(x) ∈ Rγ}.

The rationale is simple. If any one of the hypotheses H0γ is rejected, then H0

must also be rejected.

Example 8.2.4 (Normal union-intersection test) Let X1, . . . , Xn be a

random sample from N(θ, σ2). Consider testing H0 : µ = µ0 versus H1 : µ 6=
µ0, where µ0 is a specified number. We can write H0 as the intersection of

two sets,

H0 : {µ : µ ≤ µ0} ∩ {µ : µ ≥ µ0}.

The LRT of H0L : µ ≤ µ0 versus H1L : µ > µ0 is: reject H0L if X̄−µ0

S/
√

n
≥ tL.

The LRT of H0U : µ ≥ µ0 versus H1U : µ < µ0 is: reject H0U if X̄−µ0

S/
√

n
≤ tU .

Thus, the union-intersection test of H0 versus H1 formed from these two

LRTs is: reject H0 if X̄−µ0

S/
√

n
≥ tL or X̄−µ0

S/
√

n
≤ tU .
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If tL = −tU ≥ 0, the union-intersection test can be more simply expressed

as

reject H0 if
|X̄ − µ0|
S/
√

n
≥ tL.

This test is called the two-sided t test.

The intersection-union method of test construction might be useful when

the null hypothesis is conveniently expressed as a union. Suppose we wish to

test the null hypothesis

H0 : θ ∈
⋃

γ∈Γ

Θγ.

Suppose that for each γ ∈ Γ, {x : Tγ(x) ∈ Rγ} is the rejection region for a

test of H0γ : θ ∈ Θγ versus H1γ : θ ∈ Θc
γ. Then the rejection region for the

test is
⋂

γ∈Γ

{x : Tγ(x) ∈ Rγ}.
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Example 8.2.5 (Acceptance sampling) Two parameters that are impor-

tant in assessing the quality upholstery fabric are θ1, the mean breaking

strength, and θ2, the probability of passing a flammability test. Standards

may dictate that θ1 should be over 50 pounds and θ2 should be over 0.95, and

the fabric is acceptable only if it meets both of these standards. This can be

modeled with the hypothesis test

H0 : {θ1 ≤ 50 or θ2 ≤ .95} versus H1 : {θ1 > 50 and θ2 > .95},

where a batch of material is acceptable only if H1 is acceptable.

Suppose X1, . . . , Xn are measurements of breaking strength for n sample

and are assumed to be iid N(θ1, σ
2). The LRT of H01 : θ1 ≤ 50 will reject

H01 if (X̄ − 50)/(S/
√

n) > t. Suppose that we also have the results of m

flammability test, denoted by Y1, . . . , Ym, where Yi = 1 if the i-th sample passes

the test and Yi = 0 otherwise. If Y1, . . . , Ym are modeled as iid Bernoulli(θ2)

random variables, the LRT will reject H02 : θ2 ≤ .95 if
∑m

i=1 Yi > b. Putting

all of this together, the rejection region will be

{(x, y) :
x̄− 50

s/
√

n
> t and

m∑
i=1

yi > b}.
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Table 8.1: Two types of errors in hypothesis testing

Decision

Accept H0 Reject H0

Truth H0 Correct decision Type I error

H1 Type II error Correct decision

8.3 Methods of Evaluating Tests

8.3.1 Error Probabilities and the Power Function

A hypothesis test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0 might make one of two

types of errors, type I error and type II error. If θ ∈ Θ0 but the hypothesis

test incorrectly decides to reject H0, then the test has made a type I error.

If, on the other hand, θ ∈ Θc
0 but the test decides to ] accept H0, a type II

error has been made. These two different situations are depicted in Table 8.1

Let R denote the rejection region for a test. Then

Pθ(X ∈ R) =





probability of a type I error if θ ∈ Θ0

one minus the probability of a type II error if θ ∈ Θc
0.

Definition 8.3.1 The power function of a hypothesis test with rejection re-

gion R is the function of θ defined by β(θ) = Pθ(X ∈ R).

Qualitatively, a good test has power function near 1 for most θ ∈ Θc
0 and

near 0 for most θ ∈ Θ0.
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Example 8.3.1 (Binomial power function) Let X ∼ binomial(5, θ). Con-

sider testing H0 : θ ≤ 1/2 versus H1 : θ > 1/2. Consider first the test that

rejects H0 if and only if all “successes” are observed. The power function for

this test is

β1(θ) = Pθ(X ∈ R) = Pθ(X = 5) = θ5.

In examining this power function, we might decide that although the proba-

bility of a type I error is acceptably low (β1(θ) ≤ (1/2)5 = 0.0312) for all

θ ≤ 1/2, the probability of a type II error is too high (β1(θ) is too small)

for most θ > 1/2. To achieve smaller type II error probabilities, we might

consider using the test that rejects H0 if X = 3, 4, or 5. The power function

for this test is

β2(θ) = Pθ(X = 3, 4, or 5) =

(
5

3

)
θ3(1−θ)2 +

(
5

4

)
θ4(1−θ)1 +

(
5

5

)
θ5(1−θ)0.

It is easy to see that the second test has achieved a smaller type II error

probability in that β2(θ) is larger for θ > 1/2. But the type I error probability

is larger for the second test; β2(θ) is larger for θ ≤ 1/2.
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Example 8.3.2 (Normal power function) Let X1, . . . , Xn be a random

sample from a N(θ, σ2) population, σ2 known. An LRT of H0 : θ ≤ θ0 versus

H1 : θ > θ0 is a test that rejects H0 if (X̄ − θ0)/(σ/
√

n) > c. The constant c

can be any positive number. The power function of this test is

β(θ) = Pθ

(X̄ − θ0

σ/
√

n
> c

)
= Pθ

(X̄ − θ

σ/
√

n
> c +

θ0 − θ

σ/
√

n

)

= P
(
Z > c +

θ0 − θ

σ/
√

n

)
,

where Z is a standard normal random variable. As θ increases from −∞ to

∞, it is easy to see that

lim
θ→−∞

β(θ) = 0, lim
θ→∞

β(θ) = 1, and β(θ0) = α if P (Z > c) = α).

Suppose that the experimenter wishes to have a maximum Type I Error

probability of 0.1, and a maximum type II error probability of 0.2 if θ ≥ θ0+σ,

that is,

β(θ0) = 0.1 and β(θ0 + σ) = 0.8.

By choosing c = 1.28, we achieve β(θ0) = P (Z > 1.28) = 0.1, regardless of

n. Now we wish to choose n so that β(θ0 + σ) = P (Z > 1.28 − √n) = 0.8.

But, P (Z > −0.84) = 0.8. By setting 1.28 − √n = −0.84 and solving for

n yield n = 4.49. So choosing c = 1.28 and n = 5 yield a test with error

probabilities controlled as specified by the experimenter.
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For a fixed sample size, it is usually impossible to make both types of error

probabilities arbitrarily small. In searching for a good test, it is common to

restrict consideration to tests that control the type I error probability at a

specified level. Within this class of tests we then search for tests that have

type II error probability that is as small as possible.

Definition 8.3.2 For 0 ≤ α ≤ 1, a test with power function β(θ) is a size α

test if supθ∈Θ0
β(θ) = α.

Definition 8.3.3 For 0 ≤ α ≤ 1, a test with power function β(α) is a level

α test if supθ∈Θ0
β(θ) ≤ α.

Note that some authors do not make the distinction between the terms

size and level that we have made, and sometimes these terms are used inter-

changeably. Experimenters commonly specify the level of the test they wish

to use, with typical choices being α = 0.01, 0.05, and 0.1. Be aware that,

in fixing the level of the test, the experimenter is controlling only the type I

error probabilities, not the type II error.

Example 8.3.3 (Size of LRT) In general, a size α LRT is constructed by

choosing c such that supθ∈Θ0
Pθ(λ(X) ≤ c) = α. How that c is determined

depends on the particular problem. For example, in Example 8.2.1, Θ0 con-

sists of the single point θ = θ0 and
√

n(X̄ − θ0) ∼ N(0, 1) if θ = θ0. So the

test

reject H0 if |X̄ − θ0| ≥ zα/2/
√

n,

where zα/2 satisfies P (Z > zα/2) = α/2 with Z ∼ N(0, 1), is the size α LRT.
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Specifically, this corresponds to choosing c = exp(−z2
α/2), this this is not an

important point.
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Example 8.3.4 (Size of union-intersection test) The problem of finding

a size α union-intersection test in Example 8.2.4 involves finding constant tL

and tU such that

sup
θ∈Θ0

Pθ

( X̄ − µ0√
S2/

√
n
≥ tL or

X̄ − µ0√
S2/

√
n
≤ tU

)
= α.

But under H0,
X̄−µ0√
S2/

√
n

has a student’s t distribution with n − 1 degrees of

freedom. So any choice of tU = tn−1,1−α1
and tL = tn−1,α2

, with α1 + α2 = α,

will yield a test with type I error probability of exactly α for all θ ∈ Θ0. The

usual choice is tL = −tU = tn−1,α/2.

Other than α level, there are other features of a test that might also be of

concern. For example, we would like a test to be more likely to reject H0 if

θ ∈ Θc
0 than if θ ∈ Θ0.

Definition 8.3.4 A test with power function β(θ) is unbiased if β(θ′) ≥ β(θ
′′
)

for every θ′ ∈ Θc
0 and θ

′′ ∈ Θ0.

Example 8.3.5 (Continuation of Example 8.3.2) An LRT of H0 : θ ≤ θ0

versus H1 : θ > θ0 has power function

β(θ) = P
(
Z > c +

θ0 − θ

σ/sqrtn

)
,

where Z ∼ N(0, 1). Since β(θ) is an increasing function of θ (for fixed θ0),

it follows that

β(θ) > β(θ0) = max
t≤θ0

β(t) for all θ > θ0

and, hence, that the test is unbiased.
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8.3.2 Most Powerful Tests

Definition 8.3.5 Let C be a class of tests for testing H0 : θ ∈ Θ0 versus

H1 : θ ∈ Θc
0. A test in class C, with power function β(θ), is a uniformly most

powerful (UMP) class C test if β(θ) ≥ β′(θ) for every θ ∈ Θc
0 and every β′(θ)

that is a power function of a test in class C.

In this section, the class C will be the class of all level α tests. The test

described in the above definition is then called a UMP level α test. The

requirements in the definition are so strong that UMP tests do not exist in

many realistic problems. But in problems that have UMP tests, a UMP test

might well be considered the best test in the class. The following famous

theorem clearly describes which test are UMP tests if they exist.

Theorem 8.3.1 (Neyman-Pearson Lemma) Consider testing H0 : θ = θ0

versus H1 : θ = θ1, where the pdf or pmf corresponding to θi is f(x|θi),

i = 0, 1, using a test with rejection region R that satisfies

x ∈ R if f(x|θ1) > kf(x|θ0)

and

x ∈ Rc if f(x|θ1) < kf(x|θ0)

(8.1)

for some k ≥ 0, and

α = Pθ0
(X ∈ R). (8.2)

Then

a. (Sufficiency) Any test that satisfies (8.1) and (8.2) is a UMP level α

test.
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b. (Necessity) If there exists a test satisfying (8.1) and (8.2) with k > 0,

then every UMP level α test is a size α test (satisfying (8.2)) and every

UMP level α test satisfies (8.1) except perhaps on a set A satisfying

Pθ0
(X ∈ A) = Pθ1

(X ∈ A) = 0.

Proof: We will prove the theorem for the case that f(x|θ0) and f(x|θ1)

are pdfs of continuous random variables. The proof for discrete random

variables can be accomplished by replacing integrals with sums. Note first

that any test satisfying (8.2) is a size α and, hence, a level α test because

supθ∈Θ0
Pθ(X ∈ R) = Pθ0

(X ∈ R) = α, since Θ0 has only one point.

To ease notation, we define a test function, a function on the sample space

that is 1 if x ∈ R and 0 if

bx ∈ Rc. That is, it is the indicator function of the rejection region. Let

φ(x) be the test function of a test satisfying (8.1) and (8.2). Let φ′(x) be

the test function of any other level α test, and let β(θ) and β′(θ) be the

power functions corresponding to the tests φ and φ′, respectively. Because

0 ≤ φ′(x) ≤ 1, (8.1) implies that

(φ(x)− φ′(x))(f(x|θ1)− kf(x|θ0)) ≥ 0

for every x (since φ = 1 if f(x|θ1) > kf(x|θ0) and φ = 0 if f(x|θ1) <

kf(x|θ0)). Thus

0 ≤
∫

(φ(x)−φ′(x))(f(x|θ1)−kf(x|θ0))dx = β(θ1)−β′(θ1)−k(β(θ0)−β(θ1)).

(8.3)

Statement (a) is proved by noting that, since φ′ is a level α test and φ is a
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size α test, β(θ0)− β′(θ0) = α− β′(θ0) ≥ 0. Thus (8.3) and k ≥ 0 imply that

0 ≤ β(θ1)− β′(θ1)− k(β(θ0)− β(θ1)) ≤ β(θ1)− β′(θ1),

showing that β(θ) ≥ β′(θ) and hence φ has greater power than φ′. Since φ′

was an arbitrary level α test and θ1 is the only point in Θc
0, φ is a UMP level

α test.

To prove statement (b), let φ′ now be the test function for any UMP level

α test. By part (a), φ, the test satisfying (8.1) and (8.2), is also a UMP level

α test, thus β(θ1) = β′(θ1). This fact, (8.3), and k > 0 imply

α− β′(θ0) = β(θ0)− β′(θ0) ≤ 0.

Now, since φ′ is a level α test, β′(θ) ≤ α. Thus β′(θ0) = α, that is, φ′ is a size

α test, and this also implies that (8.3) is an equality in this case. But the non-

negative integrand (φ(x)−φ′(x))(f(x|θ1)−kf(x|θ0)) will have a zero integral

only if φ′ satisfies (8.1), except perhaps on a set A with
∫

A f(x|θi)dx = 0.

This implies that the last assertion in statement (b) is true. ¤
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The following corollary connects the Neyman-Pearson Lemma to suffi-

ciency.

Corollary 8.3.1 Consider the hypothesis problem posed in Theorem 8.3.1.

Suppose T (X) is a sufficient statistic for θ and g(t|θi) is the pdf or pmf of T

corresponding to θi, i = 0, 1. Then any test based on T with rejection region

S (a subset of the sample space of T ) is a UMP level α test if it satisfies

t ∈ S if g(t|θ1) > kg(t|θ0)

and

t ∈ Sc if g(t|θ1) < kg(t|θ0)

(8.4)

for some k ≥ 0, where

α = Pθ0
(T ∈ S). (8.5)

Proof: In terms of the original sample X, the test based on T has the

rejection region R = {x : T (x) ∈ S}. By the Factorization Theorem, the

pdf or pmf of X can be written as f(x|θi) = g(T (x)|θi)h(x), i = 0, 1, for

some nonnegative function h(x). Multiplying the inequalities in (8.4) by this

nonnegative function, we see that R satisfies

x ∈ R if f(x|θ1) = g(T (x)|θ1)h(x) > kg(T (x)|θ0)h(x) = kf(x|θ0)

and

x ∈ Rc if f(x|θ1) = g(T (x)|theta1)h(x) < kg(T (x)|θ0)h(x) = kf(x|θ0)

Also, by (8.5),

Pθ0
(X ∈ R) = Pθ0

(T (X) ∈ S) = α.

So, by the sufficiency part of the Neyman-Pearson Lemma, the test based on

T is a UMP level α test. ¤
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Example 8.3.6 (UMP binomial test) Let X ∼ Binomial(2, θ). We want

to test H0 : θ = 1
2 versus H1 : θ = 3

4. Calculating the ratios of the pmfs gives

f(0|θ = 3/4)

f(0|θ = 1/2)
=

1

4
,

f(1|θ = 3/4)

f(1|θ = 1/2)
=

3

4
, and

f(2|θ = 3/4)

f(2|θ = 1/2)
=

9

4
.

If we choose 3/4 < k < 9/4, the Neyman-Pearson Lemma says that the test

that rejects H0 if X = 2 is the UMP level α = P (X = 2|θ = 1/2) = 1
4 test. If

we choose 1/4 < k < 3/4, the Neyman-Pearson Lemma says that the test that

rejects H0 if X = 1 or 2 is the UMP level α = P (X = 1 or 2|θ = 1/2) = 3/4

test. Choosing k < 1/4 or k > 9/4 yields the UMP level α = 1 or level α = 0

test.

Note that if k = 3/4, then (8.1) says we must reject H0 for the sample point

x = 2 and accept H0 for x = 0 but leaves our action for x = 1 undetermined.

But if we accept H0 for x = 1, we get the UMP level α = 1/4 test as above.

If we reject H0 for x = 1, we get the UMP level α = 3/4 test as above.
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Example 8.3.7 (UMP normal test) Let X1, . . . , Xn be a random sample

from a N(θ, σ2) population, σ2 known. The sample mean X̄ is a sufficient

statistic for θ. Consider testing H0 : θ = θ0 versus H1 : θ = θ1, where θ0 > θ1.

The inequality (8.4), g(x̄|θ1) > kg(x̄|θ0), is equivalent to

x̄ <
(2σ2 log k)/n− θ2

0 + θ2
1

2(θ1 − θ0)
.

Note that the right-hand side increases from −∞ to ∞ as k increases from

0 to ∞. Thus, by Corollary 8.3.1, the test with rejection region x̄ < c is the

UMP level α test, where α = Pθ0
(X̄ < c). If a particular α is specified, then

the UMP test rejects H0 if X̄ < c = −σzα/
√

n + θ0. The choice of c ensures

that (8.5) is true.
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Hypotheses, such as H0 and H1 in the Neyman-Pearson Lemma, that

specify only one possible distribution for the sample X are called simple

hypotheses. In most realistic problems, the hypotheses of interest specify

more than one possible distribution for the sample. Such hypotheses are

called composite hypotheses. Since Definition 8.3.5 requires a UMP test to be

most powerful against each individual θ ∈ Θc
0, the Neyman-Pearson Lemma

can be used to find UMP tests in problems involving composite hypotheses.

In particular, hypotheses that assert that a univariate parameter is large, for

example, H : θ ≥ θ0, or small, for example, H : θ < θ0, are called one-sided

hypotheses. Hypotheses that assert that a parameter is either large or small,

for example, H : θ 6= θ0, are called two-sided hypotheses. A large class of

problems that admit UMP level α tests involve one-sided hypotheses and

pdfs or pmfs with the monotone likelihood ratio property.

Definition 8.3.6 A family of pdfs or pmfs {g(t|θ) : θ ∈ Θ} for a univariate

random variable T with real-valued parameter θ has a monotone likelihood ra-

tio (MLR) if, for every θ2 > θ1, g(t|θ2)/g(t|θ1) is a monotone (nonincreasing

or nondecreasing) function of t on {t : g(t|θ1) > 0 or g(t|θ2) > 0}. Note that

c/0 is defined as ∞ if c > 0.

Many common families of distributions have an MLR. For example, the

normal (known variance, unknown mean), Poisson, and binomial all have an

MLR. Indeed, any regular exponential family with g(t|θ) = h(t)c(θ)ew(θ)t has

an MLR if w(θ) is a nondecreasing function.
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Theorem 8.3.2 (Karlin-Rubin) Consider testing H0 : θ ≤ θ0 versus H1 :

θ > θ0. Suppose that T is a sufficient statistic for θ and the family of pdfs or

pmfs {g(t|θ) : θ ∈ Θ} of T has an MLR. Then for any t0, the test that rejects

H0 if and only if T > t0 is a UMP level α test, where α = Pθ0
(T > t0).

Proof: Let β(θ) = Pθ(T > t0) be the power function of the test. We first

show that β(θ) is nondecreasing. For θ2 > θ1, we have

d

dt0
[β(θ1)− β(θ2)] = −g(t0|θ1) + g(t0|θ2) = g(t0|θ1)

(g(t0|θ2)

g(t0|θ1)
− 1

)
.

Because g has MLR, the ratio on the right-hand side is nondecreasing, so the

derivative can only change sign from negative to positive showing that any

interior extremum is a minimum. Thus β(θ1) − β(θ2) is maximized by its

value at ∞ or −∞, which is zero.

Fix θ′ > θ0 and consider testing H ′
0 : θ = θ0 versus H ′

0 : θ = θ′. Since β(θ)

is nondecreasing, so

i. supθ≤θ0
β(θ) = β(θ0) = α, and this is a level α test.

ii. If we define

k′ = inf
t∈T

g(t|θ′)
g(t|θ0)

,

where T = {t : t > t0 and either g(t|θ′) > 0 or g(t|θ0) > 0}, it follows

that

T > t0 ⇔ g(t|θ′)
g(t|θ0)

> k′.

Together with Corollary 8.3.1, (i) and (ii) imply that β(θ′) ≥ β∗(θ′), where

β∗(θ) is the power function for any other level α test of H ′
0, that is, any

test satisfying β(θ0) ≤ α. However, any level α test of H0 satisfies β∗(θ0) ≤
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supθ∈Θ0
β∗(θ) ≤ α. Thus, β(θ′) ≥ β∗(θ′) for any level α test of H0. Since θ′

was arbitrary, the test is a UMP level α test. ¤

By an analogous argument, it can be shown that under the conditions of

Theorem 8.3.2, the test that rejects H0 : θ ≥ θ0 in favor of H1 : θ < θ0 if and

only if T < t0 is a UMP level α = Pθ0
(T < t0) test.

Example 8.3.8 (Continuation of Example 8.3.7) Consider testing H ′
0 :

θ ≥ θ0 versus H ′
1 : θ < θ0 using the test that rejects H ′

0 if

X̄ < −σzα√
n

+ θ0.

As X̄ is sufficient and its distribution has an MLR, it follows from Theorem

8.3.2 that the test is a UMP level α test in this problem. The power function

of this test,

β(θ) = Pθ

(
X̄ < −σzα√

n
+ θ0

)
,

is a decreasing function of θ, the value of α is given by supθ≥θ0
β(θ) = β(θ0) =

α.

Although most experimenters would choose to use a UMP level α test if

they knew of one, unfortunately, for many problems there is no UMP level α

test. That is, no UMP test exists because the class of level α tests is so large

that no one test dominates all the others in terms of power. In such cases, a

common method of continuing the search for a good test is to consider some

subset of the class of level α tests and attempt to find a UMP test in this

subset.
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Example 8.3.9 (Nonexistence of UMP test) Let X1, . . . , Xn be iid N(θ, σ2),

σ2 known. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0. For a specified

value of α, a level α test in this problem is any test that satisfies

Pθ0
(reject H0) ≤ α. (8.6)

Consider an alternative parameter point θ1 < θ0. The analysis in Example

8.3.8 shows that, among all tests that satisfy (8.6), the test that rejects H0

if X̄ < −σzα/
√

n + θ0 has the highest possible power at θ1. Call this Test

1. Furthermore, by part (b) (necessity) of the Neyman-Pearson Lemma, any

other level α test that has as high a power as Test 1 at θ1 must have the same

rejection region as Test 1 except possibly for a set A satisfying
∫

A f(x|θi)dx =

0. Thus, if a UMP level α test exists for this problem, it must be Test 1 because

no other test has as high a power as Test 1 at θ1.

Now consider Test 2, which rejects H0 if X̄ > σzα/
√

n+ θ0. Test 2 is also

a level α test. Let βi(θ) denote the power function of Test i. For any θ2 > θ0,

β2(θ2) = Pθ2

(
X̄ >

σzα√
n

+ θ0
)

== Pθ2

(X̄ − θ2

σ/
√

n
> zα +

θ0 − θ2

σ/
√

n

)

> P (Z > zα) = P (Z < −zα)

> Pθ2

(X̄ − θ2

σ/
√

n
< −zα +

θ0 − θ2

σ/
√

n

)
= Pθ2

(
X̄ < −σzα√

n
+ θ0

)
= β1(θ2).

Thus Test 1 is not a UMP level α test because Test 2 has a higher power than

Test 1 at θ2. Earlier we showed that if there were a UMP level α test, it would

have to be Test 1. Therefore, no UMP level α test exists in this problem.

When no UMP level α test exists within the class of all tests, we might try

to find a UMP level α test within the class of unbiased tests. Consider Test
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3, which rejects H0 : θ = θ0 in favor of H1 : θ 6= θ0 if and only if

X̄ > σzα/2/
√

n + θ0 or X̄ < −σzα/2/sqrtn + θ0.

This test is actually a UMP unbiased level α test; that is, it is UMP in the

class of unbiased tests. The following figure shows the power function β1(θ),

β2(θ) and β3(θ). If our interest is in rejecting H0 for both large and small

values of θ, the figure shows that Test 3 is better overall than either Test 1

or Test 2.
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8.3.3 Sizes of Union-Intersection and Intersection-Union tests

Because of the simple way in which they are constructed, the sizes of union-

intersection tests (UIT) and intersection-union tests (IUT) can often be bounded

above by the sizes of some other tests. Such bounds are useful if a level α

test is wanted, but the size if the UIT or IUT is too difficult to evaluate. In

this section we discuss these bounds and give examples in which the bounds

are sharp, that is, the size of the test is equal to the bound.

Theorem 8.3.3 Consider a UIT test H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0, where

Θ0 =
⋂

γ∈Γ Θγ. Let λγ(x) be the LRT statistic for testing H0γ : θ ∈ Θγ versus

H1γ : θ ∈ Θc
γ, and let λ(x) be the LRT statistic for H0 : θ ∈ Θ0 versus

H1 : θ ∈ Θc
0. Define T (x) = infγ∈Γ λγ(x), and form the UIT with rejection

region

{x : λγ(x) < c for some γ ∈ Γ} = {x : T (x) < c}.

Also consider the usual LRT with rejection region {x : λγ(x) < c}. Then

a. T (x) > λ(x) for every x.

b. If βT (θ) and βλ(θ) are the power functions for the tests based on T and

λ, respectively, then βT (θ) ≤ βλ(θ) for every θ ∈ Θ.

c. If the LRT is a level α test, then the UIT is a level α test.

Proof: Since Θ0 =
⋂

γ∈Γ Θγ ⊂ Θγ for any γ, from Definition 8.2.1 we see

that for any x,

λγ(x) ≥ λ(x) for each γ ∈ Γ
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because the region of maximization is bigger for the individual λγ. Thus

T (x) = infγ∈Γ λγ(x) ≥ λ(x), proving (a).

By (a), {x : T (x) < c} ⊂ {x : λ(x) < c}, so

βT (θ) = Pθ(T (X) < c) ≤ Pθ(λ(x) < c) = βλ(θ),

proving (b).

Since (b) holds for every θ, supθ∈Θ0
βT (θ) ≤ supθ∈Θ0

βλ(θ) ≤ α, proving

(c). ¤

Since the LRT is uniformly more powerful than the UIT in Theorem 8.3.3,

we might ask why we should use the UIT. One reason is that the UIT has

a smaller type I error probability for every θ ∈ Θ0. Furthermore, if H0 is

rejected, we may wish to look at the individual tests of H0γ to see why. The

possibility of gaining additional information by looking at the H0γ individu-

ally, rather than looking only at the overall LRT, is evident.

Now we investigate the sizes of IUTs. Recall that in an IUT, we test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0, where Θ0 =

⋂
γ∈Γ Θγ. An IUT has a

rejection region of the form R =
⋂

γ∈Γ Rγ, where Rγ is the rejection region

for a test of H0γ : θ ∈ Θγ.
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Theorem 8.3.4 Let αγ be the size of the test of H0γ with rejection region Rγ.

Then the IUT with rejection region R =
⋂

γ∈Γ Rγ is a level α = supγ∈Γ αγ

test.

Proof: Let θ ∈ Θ0. Then θ ∈ Θγ for some γ and

Pθ(x ∈ R) ≤ Pθ(X ∈ Rγ) ≤ αγ ≤ α.

Since θ ∈ Θ0 was arbitrary, the IUT is a level α test. ¤

Note that Theorem 8.3.3 applies only to UITs constructed from likelihood

ratio tests. In contrast, Theorem 8.3.4 applies to any IUT. The bound in

Theorem 8.3.3 is the size of the LRT, which, in a complicated problem, may

be difficult to compute. In Theorem 8.3.4, however, the LRT need not be

used to obtain the upper bound. Any test of H0γ with known size αγ can be

used, and then the upper bound on the size of the IUT is given in terms of

the known sizes αγ, γ ∈ Γ.

The IUT in Theorem 8.3.4 is a level α test. But the size of the IUT may be

much less than α; the IUT may be very conservative. The following theorem

gives conditions under which the sizes of the IUT is exactly α and the IUT

is not too conservative.
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Theorem 8.3.5 Consider testing H0 : θ ∈ ⋃k
j=1 Θj, where k is a finite pos-

itive integer. For each j = 1, . . . , k, let Rj be the rejection region of a level

α test of H0j. Suppose that for some i = 1, . . . , k, there exists a sequence of

parameter points, θl ∈ Θi, l = 1, 2, . . ., such that

i. liml→∞ Pθl
(X ∈ Ri) = α,

ii. for each j = 1, . . . , k, j 6= i, liml→∞ Pθl
(X ∈ Rj) = 1.

Then, the IUT with rejection region R =
⋂k

j=1 Rj is a size α test.

Proof: By Theorem 8.3.4, R is a level α test, that is,

sup
θ∈Θ0

Pθ(X ∈ R) ≤ α. (8.7)

But, because all the parameter points θl satisfy θl ∈ Θi ⊂ Θ0,

sup
θ∈Θ0

Pθ(X ∈ R) ≥ lim
l→∞

Pθl
(X ∈ R) = lim

l→∞
Pθl

(X ∈
k⋂

j=1

Rj)

≥ lim
l→∞

k∑
j=1

Pθ(X ∈ Rj)− (k − 1) (Bonferroni’s Inequality)

= (k − 1) + α− (k − 1) = α.

This and (8.7) imply the test has size exactly equal to α. ¤
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Example 8.3.10 (Intersection-union test) In Example (8.2.5), let n =

m = 58, t = 1.672, and b = 57. The each of the individual tests has size

α = 0.05 (approximately). Therefore, by Theorem 8.3.4, the IUT is a level

α = 0.05 test. In fact, this test is a size α = 0.05 test. To see this consider a

sequence of parameter points θl = (θ1l, θ2), with θ1l → ∞ and θ2 = 0.95. All

such parameter points are in Θ0 because θ2 ≤ 0.95. Also, Pθl
(X ∈ R1) → 1

as θ1l → ∞, while Pθl
(X ∈ R2) = 0.05 for all l because θ2 = 0.95. Thus, by

Theorem 8.3.5, the IUT is a size α test.

Note that, in Example 8.3.25, only the marginal distributions of the X1, . . . , Xn

and Y1, . . . , Yn were used to find the size of the test. This point is extremely

important and directly relates to the usefulness of IUTs, because the joint

distribution is often difficult to know and, if known, often difficult to work

with.
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8.3.4 p-Values

Definition 8.3.7 A p-value p(X) is a test statistic satisfying 0 ≤ p(x) ≤ 1

for every sample point x. Small values of p(X) gives evidence that H1 is

true. A p-value is valid if, for every θ ∈ Θ0 and every 0 ≤ α ≤ 1,

Pθ(p(x) ≤ α) ≤ α.

If p(X) is a valid p-value, it is easy to construct a level α test based on p(X).

The test that rejects H0 if and only if p(X) ≤ α is a level α test. An advantage

to reporting a test result via a p-value is that each reader can choose the α he

or she considers appropriate and then can compare the reported p(x) to α and

know whether these data lead to acceptance or rejection of H0. Furthermore,

the smaller the p-value, the stronger the evidence for rejecting H0. Hence, a

p-value reports the results of a test on a more continuous scale, rather than

just the dichotomous decision “Accept H0” or “Reject H0”. The following

theorem gives a common way how to define a valid p-value.
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Theorem 8.3.6 let W (X) be a test statistic such that large values of W give

evidence that H1 is true. For each sample point x, define

p(x) = sup
θ∈Θ0

Pθ(W (X) ≥ W (x)). (8.8)

Then, p(X) is a valid p-value.

Proof: Fix θ ∈ Θ0. Let Fθ(w) denote the cdf of −W (X). Define

pθ(x) = Pθ(W (X) ≥ W (x)) = Pθ(−W (X) ≤ −W (x)) = Fθ(−W (x)).

Then the random variable pθ(X) is equal to Fθ(−W (x)). Hence, by Probabil-

ity Integral Transformation, the distribution of pθ(X) is stochastically greater

than or equal to a uniform(0,1) distribution. That is, for every 0 ≤ α ≤ 1,

Pθ(pθ(X) ≤ α) ≤ α. Because p(x) = supθ′∈Θ0
pθ′(x) ≥ pθ(x) for every x,

Pθ(p(X) ≤ α) ≤ Pθ(pθ(X) ≤ α) ≤ α.

This is true for every θ ∈ Θ0 and for every 0 ≤ α ≤ 1, p(X) is a valid

p-value. ¤
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Example 8.3.11 (Two-sided normal p-value) Let X1, . . . , Xn be a ran-

dom sample from a N(µ, σ2) population. Consider testing H0 : µ = µ0 ver-

sus H1 : µ 6= µ0. By Exercise 8.3.4, the LRT rejects H0 for large values

of W (X) = |X̄ − µ0|/(S/
√

n). If µ = µ0, regardless of the value of σ,

(X̄ − µ0)/(S/
√

n) has a Student’s t distribution with n − 1 degrees of free-

dom. Thus, in calculating (8.8), the probability is the same for all values of

θ, ,that is, all values of σ. Thus, the p-value from (8.8) for this two-sided

t test is p(x) = 2P (Tn−1 ≥ |x̄ − µ0|/(s/
√

n)), where Tn−1 has a Student’s t

distribution with n− 1 degrees of freedom.
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Example 8.3.12 (One-sided normal p-value) Again consider the normal

model of Example 8.3.11, but consider testing H0 : µ ≤ µ0 versus H1 : µ >

µ0. By Exercise 8.3.3, the LRT rejects H0 for large values of W (X) =

(X̄−µ0)/(S/
√

n). The following arguments shows that, for this statistic, the

supremum in (8.8) always occurs at a parameter (µ0, σ), and the value of σ

used does not matter. Consider any µ ≤ µ0 and any σ:

Pµ,σ(W (X) ≥ W (x)) = Pµ,σ

(X̄ − µ0

S/
√

n
≥ W (x)

)

= Pµ,σ

(X̄ − µ

S/
√

n
≥ W (x) +

µ0 − µ

S/sqrtn

)
= Pµ,σ

(
Tn−1 ≥ W (x) +

µ0 − µ

S/sqrtn

)

≤ P (Tn−1 ≥ W (x)).

Here again, Tn−1 has a Student’s t distribution with n− 1 degrees of freedom.

The inequality in the last line is true because µ0 ≥ µ. The subscript on P is

dropped here, because this probability does not depend on (µ, σ). Furthermore,

P (Tn−1 ≥ W (x)) = Pµ0,σ

( X̄ − µ0

S/sqrtn
≥ W (x)

)
== Pµ0,σ

(
W (X) ≥ W (x)

)
,

and this probability is one of those considered in the calculation of the supre-

mum in (8.8) because (µ0, σ) ∈ Θ0. Thus, the p-value for this one-sided t test

is p(x) = P (Tn−1 ≥ W (x)) = P (Tn−1 ≥ (x̄− µ0)/(s/
√

n)).

Another method for defining a valid p-value involves conditioning on a

sufficient statistic. Suppose S(X) is a sufficient statistic for the model

{f(x|θ) : θ ∈ Θ0}. If the null hypothesis is true, the conditional distri-

bution of X given S = s does not depend on θ. Again, let W (X) denote a

test statistic for which large values give evidence that H1 is true. Then, for
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each sample point X define

p(x) = P (W (X) ≥ W (x)|S = S(x)). (8.9)

Arguing as in Theorem 8.3.6, but considering only the single distribution

that is the conditional distribution of X given S = s, we see that, for any

0 ≤ α ≤ 1,

P (p(X) ≤ α|S = s) ≤ α.

Then, for any θ ∈ Θ0, unconditionally we have

Pθ(p(X) ≤ α) =
∑

s

P (p(X) ≤ α|S = s)Pθ(S = s) ≤
∑

s

αPθ(S = s) ≤ α.

Thus, p(X) defined in (8.9) is a valid p-value.
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Example 8.3.13 (Fisher’s Exact Test) Let S1 and S2 be independent ob-

servations with S1 ∼ Binomial(n1, p) and S2 ∼ Binomial(n2, p). Consider

testing H0 : p1 = p2 versus H1 : p1 > p2. Under H0, if we let p denote the

common value of p1 = p2, the joint pmf of (S1, S2) is

f(s1, s2|p) =

(
n1

s1

)(
n2

s2

)
ps1+s2(1− p)n1+n2−(s1+s2).

Thus, S1 + S2 is a sufficient statistic under H0. Given the value of S =

s, it is reasonable to use S1 as a test statistic and reject H0 in favor of

H1 for large values of S1, because large values of S1 correspond to small

values of S2 = s − S1. The conditional distribution of S1 given S = s is

hypergeometric(n1 + n2, n1, s). Thus the conditional p-value is

p(s1, s2) =

min{n1,s}∑
j=s1

f(j|s),

the sum of hypergeometric probabilities. The test defined by this p-value is

called Fisher’s Exact Test.


