
Chapter 4

Multiple Random Variables

4.1 Joint and Marginal Distributions

Definition 4.1.1 An n-dimensional random vector is a function

from a sample space S into Rn, n-dimensional Euclidean space.

Suppose, for example, that with each point in a sample space we

associate an ordered pair of numbers, that is, a point (x, y) ∈ R2,

where R2 denotes the plane. Then we have defined a two -dimensional

(or bivariate) random vector (X,Y ).

Example 4.1.1 (Sample space for dice) Consider the experiment

of tossing two fair dice. The sample space for this experiment has

36 equally likely points. Let

X=sum of the two dice and Y =|difference of two dice|.

In this way we have defined then bivariate random vector (X, Y ).
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The random vector (X,Y ) defined above is called a discrete random

vector because it has only a countable (in this case, finite) number of

possible values. The probabilities of events defined in terms of X and

Y are just defined in terms of the probabilities of the corresponding

events in the sample space S. For example,

P (X = 5, Y = 3) = P ({4, 1}, {1, 4}) =
2

36
=

1

18
.
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Definition 4.1.2 Let (X,Y ) be a discrete bivariate random vec-

tor. Then the function f (x, y) from R2 into R defined by f (x, y) =

P (X = x, Y = y) is called the joint probability mass function or

joint pmf of (X, Y ). If it is necessary to stress the fact that f is

the joint pmf of the vector (X,Y ) rather than some other vector,

the notation fX,Y (x, y) will be used.

The joint pmf can be used to compute the probability of any event

defined in terms of (X,Y ). Let A be any subset of R2. Then

P ((X,Y ) ∈ A) =
∑

(x,y)∈A

f (x, y).

Expectations of functions of random vectors are computed just as

with univariate random variables. Let g(x, y) be a real-valued function

defined for all possible values (x, y) of the discrete random vector

(X, Y ). Then g(X,Y ) is itself a random variable and its expected

value Eg(X,Y ) is given by

Eg(X,Y ) =
∑

(x,y)∈R2

g(x, y)f (x, y).
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Example 4.1.2 (Continuation of Example 4.1.1) For the (X,Y )

whose joint pmf is given in the following table

X

2 3 4 5 6 7 8 9 10 11 12

0 1
36

1
36

1
36

1
36

1
36

1
36

1 1
18

1
18

1
18

1
18

1
18

Y 2 1
18

1
18

1
18

1
18

3 1
18

1
18

1
18

4 1
18

1
18

5 1
18

Letting g(x, y) = xy, we have

EXY = (2)(0)
1

36
+ · · · + (7)(5)

1

18
= 13

11

18
.
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The expectation operator continues to have the properties listed in

Theorem 2.2.5 (textbook). For example, if g1(x, y) and g2(x, y) are

two functions and a, b and c are constants, then

E(ag1(X,Y ) + bg2(X, Y ) + c) = aEg1(X, Y ) + bEg2(X, Y ) + c.

For any (x, y), f (x, y) ≥ 0 since f (x, y) is a probability. Also,

since (X,Y ) is certain to be in R2,

∑

(x,y)∈R2

f (x, y) = P ((X,Y ) ∈ R2) = 1.
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Theorem 4.1.1 Let (X,Y ) be a discrete bivariate random vector

with joint pmf fXY (x, y). Then the marginal pmfs of X and Y ,

fX(x) = P (X = x) and fY (y) = P (Y = y), are given by

fX(x) =
∑

y∈R
fX,Y (x, y) and fY (y) =

∑

x∈R
fX,Y (x, y).

Proof: For any x ∈ R, let Ax = {(x, y) : −∞ < y < ∞}. That is,

Ax is the line in the plane with first coordinate equal to x. Then, for

any x ∈ R,

fX(x) = P (X = x)

= P (X = x,−∞ < Y < ∞) (P (−∞ < Y < ∞) = 1)

= P ((X,Y ) ∈ Ax) (definition of Ax)

=
∑

(x,y)∈Ax

fX,Y (x, y)

=
∑

y∈R
fX,Y (x, y).

The proof for fY (y) is similar. ¤
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Example 4.1.3 (Marginal pmf for dice) Using the table given in

Example 4.1.2, compute the marginal pmf of Y . Using Theorem

4.1.1, we have

fY (0) = fX,Y (2, 0) + · · · + fX,Y (12, 0) =
1

6
.

Similarly, we obtain

fY (1) =
5

18
, fY (2) =

2

9
, fY (3) =

1

6
, fY (4) =

1

9
, fY (5) =

1

18
.

Notice that
∑5

i=0 fY (i) = 1.

The marginal distributions of X and Y do not completely describe

the joint distribution of X and Y . Indeed, there are many different

joint distributions that have the same marginal distribution. Thus, it

is hopeless to try to determine the joint pmf from the knowledge of

only the marginal pmfs. The next example illustrates the point.
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Example 4.1.4 (Same marginals, different joint pmf) Consider-

ing the following two joint pmfs,

f (0, 0) =
1

12
, f (1, 0) =

5

12
, , f (0, 1) = f (1, 1) =

3

12
, f (x, y) = 0 for all other values.

and

f (0, 0) = f (0, 1) =
1

6
, f (1, 0) = f (1, 1) =

1

3
, f (x, y) = 0 for all other values.

It is easy to verify that they have the same marginal distributions.

The marginal of X is

fX(0) =
1

3
, fX(1) =

2

3
.

The marginal of Y is

fY (0) =
1

2
, fY (1) =

1

2
.
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In the following we consider random vectors whose components are

continuous random variables.

Definition 4.1.3 A function f (x, y) from R2 into R is called a

joint probability density function or joint pdf of the continuous

bivariate random vector (X,Y ) if, for every A ⊂ R2,

P ((X,Y ) ∈ A) =

∫ ∫

A

f (x, y)dxdy.

If g(x, y) is a real-valued function, then the expected value of

g(X,Y ) is defined to be

Eg(X, Y ) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f (x, y)dxdy.

The marginal probability density functions of X and Y are defined

as

fX(x) =

∫ ∞

−∞
f (x, y)dy, −∞ < x < ∞,

fY (y) =

∫ ∞

−∞
f (x, y)dx, −∞ < y < ∞.

Any function f (x, y) satisfying f (x, y) ≥ 0 for all (x, y) ∈ R2 and

1 =

∫ ∞

−∞

∫ ∞

−∞
f (x, y)dxdy

is the joint pdf of some continuous bivariate random vector (X,Y ).
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Example 4.1.5 (Calculating joint probabilities-I) Define a joint

pdf by

f (x, y) =





6xy2 0 < x < 1 and 0 < y < 1

0 otherwise

Now, consider calculating a probability such as P (X + Y ≥ 1).

Let A = {(x, y) : x + y ≥ 1}, we can re-express A as

A = {(x, y) : x+y ≥ 1, 0 < x < 1, 0 < y < 1} = {(x, y) : 1−y ≤ x < 1, 0 < y < 1}.

Thus, we have

P (X + Y ≥ 1) =

∫

A

∫
f (x, y)dxdy =

∫ 1

0

∫ 1

1−y

6xy2dxdy =
9

10
.

The joint cdf is the function F (x, y) defined by

F (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
f (s, t)dtds.
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4.2 Conditional Distributions and Independence

Definition 4.2.1 Let (X,Y ) be a discrete bivariate random vec-

tor with joint pmf f (x, y) and marginal pmfs fX(x) and fY (y).

For any x such that P (X = x) = fX(x) > 0, the conditional pmf

of Y given that X = x is the function of y denoted by f (y|x) and

defined by

f (y|x) = P (Y = y|X = x) =
f (x, y)

fX(x)
.

For any y such that P (Y = y) = fY (y) > 0, the conditional pmf

of X given that Y = y is the function of x denoted by f (x|y) and

defined by

f (x|y) = P (X = x|Y = y) =
f (x, y)

fY (y)
.

It is easy to verify that f (y|x) and f (x|y) are indeed distributions.

First, f (y|x) ≥ 0 for every y since f (x, y) ≥ 0 and fX(x) > 0.

Second,
∑

y

f (y|x) =

∑
y f (x, y)

fX(x)
=

fX(x)

fX(x)
= 1.
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Example 4.2.1 (Calculating conditional probabilities) Define the

joint pmf of (X, Y ) by

f (0, 10) = f (0, 20) =
2

18
, f (1, 10) = f (1, 30) =

3

18
,

f (1, 20) =
4

18
, f (2, 30) =

4

18
.

The conditional probability

fY |X(10|0) =
f (0, 10)

fX(0)
=

f (0, 10)

f (0, 10) + f (0, 20)
=

1

2
.

Definition 4.2.2 Let (X, Y ) be a continuous bivariate random

vector with joint pdf f (x, y) and marginal pdfs fX(x) and fY (y).

For any x such that fX(x) > 0, the conditional pdf of Y given

that X = x is the function of y denoted by f (y|x) and defined by

f (y|x) =
f (x, y)

fX(x)
.

For any y such that fY (y) > 0, the conditional pdf of X given

that Y = y is the function of x denoted by f (x|y) and defined by

f (x|y) =
f (x, y)

fy(y)
.

If g(Y ) is a function of Y , then the conditional expected value of

g(Y ) given that X = x is denoted by E(g(Y )|x) and is given by

E(g(Y )|x) =
∑

y

g(y)f (y|x) and E(g(Y )|x) =

∫ ∞

−∞
g(y)f (y|x)dy

in the discrete and continuous cases, respectively.
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Example 4.2.2 (Calculating conditional pdfs) Let the continu-

ous random vector (X, Y ) have joint pdf

f (x, y) = e−y, 0 < x < y < ∞.

The marginal of X is

fX(x) =

∫ ∞

−∞
f (x, y)dy =

∫ ∞

x

e−ydy = e6−x.

Thus, marginally, X has an exponential distribution. The condi-

tional distribution of Y is

f (y|x) =
f (x, y)

fX(x)
=





e−y

e−x = e−(y−x), if y > x,

0
e−x = 0, if y ≤ x

The mean of the conditional distribution is

E(Y |X = x) =

∫ ∞

x

ye−(y−x)dy = 1 + x.

The variance of the conditional distribution is

Var(Y |x) = E(Y 2|x)− (E(Y |x))2

=

∫ ∞

x

y2e−(y−x)dy − (

∫ ∞

x

ye−(y−x))2

= 1
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In all the previous examples, the conditional distribution of Y given

X = x was different for different values of x. In some situations, the

knowledge that X = x does not give us any more information about

Y than we already had. This important relationship between X and

Y is called independence.

Definition 4.2.3 Let (X, Y ) be a bivariate random vector with

joint pdf or pmf f (x, y) and marginal pdfs or pmfs fX(x) and

fY (y). Then X and Y are called independent random variables

if, for EVERY x ∈ R and y ∈ mR,

f (x, y) = fX(x)fY (y).

If X and Y are independent, the conditional pdf of Y given X = x is

f (y|x) =
f (x, y)

fX(x)
=

fX(x)fY (y)

fX(x)
= fY (y)

regardless of the value of x.
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Lemma 4.2.1 Let (X, Y ) be a bivariate random vector with joint

pdf or pmf f (x, y). Then X and Y are independent random vari-

ables if and only if there exist functions g(x) and h(y) such that,

for every x ∈ R and y ∈ R,

f (x, y) = g(x)h(y).

Proof: The “only if” part is proved by defining g(x) = fX(x) and

h(y) = fY (y). To proved the “if” part for continuous random vari-

ables, suppose that f (x, y) = g(x)h(y). Define
∫ ∞

−∞
g(x)dx = c and

∫ ∞

−∞
h(y)dy = d,

where the constants c and d satisfy

cd = (

∫ ∞

−∞
g(x)dx)(

∫ ∞

−∞
h(y)dy)

=

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
f (x, y)dxdy = 1

Furthermore, the marginal pdfs are given by

fX(x) =

∫ ∞

−∞
g(x)h(y)dy = g(x)d

and

fY (y) =

∫ ∞

−∞
g(x)h(y)dx = h(y)c.
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Thus, we have

f (x, y) = g(x)h(y) = g(x)h(y)cd = fX(x)fY (y),

showing that X and Y are independent. Replacing integrals with

sums proves the lemma for discrete random vectors. ¤

Example 4.2.3 (Checking independence) Consider the joint pdf

f (x, y) = 1
384x

2y2e−y−(x/2), x > 0 and y > 0. If we define

g(x) =





x2e−x/2 x > 0

0 x ≤ 0

and

h(y) =





y4e−y/384 y > 0

0 y ≤ 0

then f (x, y) = g(x)h(y) for all x ∈ R and all y ∈ R. By Lemma

4.2.1, we conclude that X and Y are independent random vari-

ables.
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Theorem 4.2.1 Let X and Y be independent random variables.

(a) For any A ⊂ R and B ⊂ R, P (X ∈ A, Y ∈ B) = P (X ∈
A)P (Y ∈ B); that is, the events {X ∈ A} and {Y ∈ B} are

independent events.

(b) Let g(x) be a function only of x and h(y) be a function only

of y. Then

E(g(X)h(Y )) = (Eg(X))(Eh(Y )).

Proof: For continuous random variables, part (b) is proved by not-

ing that

E(g(X)h(Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)f (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX(x)fY (y)dxdy

= (

∫ ∞

−∞
g(x)fX(x)dx)(

∫ ∞

−∞
h(y)fY (y)dy)

= (Eg(X))(Eh(Y )).

The result for discrete random variables is proved bt replacing integrals

by sums.

Part (a) can be proved similarly. Let g(x) be the indicator function

of the set A. let h(y) be the indicator function of the set B. Note

that g(x)h(y) is the indicator function of the set C ∈ R2 defined by
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C = {(x, y) : x ∈ A, y ∈ B}. Also note that for an indicator function

such as g(x), Eg(X) = P (X ∈ A). Thus,

P (X ∈ A, Y ∈ B) = P ((X, Y ) ∈ C) = E(g(X)h(Y ))

= (Eg(X))(Eh(Y )) = P (X ∈ A)P (Y ∈ B).

¤
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Example 4.2.4 (Expectations of independent variables) Let X

and Y be independent exponential(1) random variables. So

P (X ≥ 4, Y ≤ 3) = P (X ≥ 4)P (Y ≤ 3) = e−4(1− e−3)/

Letting g(x) = x2 and h(y) = y, we have

E(X2Y ) = E(X2)E(Y ) = (2)(1) = 2.

Theorem 4.2.2 Let X and Y be independent random variables

with moment generating functions MX(t) and MY (t). Then the

moment generating function of the random variable Z = X + Y

is given by

MZ(t) = MX(t)MY (t).

Proof:

MZ(t) = Eet(X+Y ) = (EetX)(EetY ) = MX(t)MY (t).

¤
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Theorem 4.2.3 Let X ∼ N(µ, σ2) and Y ∼ N(γ, τ 2) be inde-

pendent normal random variables. Then the random variable

Z = X + Y has a N(µ + γ, σ2 + τ 2) distribution.

Proof: Using Theorem 4.2.2, we have

MZ(t) = MX(t)MY (t) = exp{(µ + γ)t + (σ2 + τ 2)t2/2}.

Hence, Z ∼ N(µ + γ, σ2 + τ 2). ¤

4.3 Bivariate Transformations

Let (X, Y ) be a bivariate random vector with a known probability

distribution. Let U = g1(X, Y ) and V = g2(X, Y ), where g1(x, y)

and g2(x, y) are some specified functions. If B is any subset of R2,

then (U, V ) ∈ B if and only if (X, Y ) ∈ A, where A = {(x, y) :

(g1(x, y), g2(x, y)) ∈ B}. Thus P ((U, V ) ∈ B) = P ((X, Y ) ∈ A),

and the probability of (U, V ) is completely determined by the proba-

bility distribution of (X, Y ).

If (X,Y ) is a discrete bivariate random vector, then

fU,V (u, v) = P (U = u, V = v) = P ((X, Y ) ∈ Au,v) =
∑

(x,y)∈Auv

fX,Y (x, y),

where Au,v = {(x, y) : g1(x, y) = u, g2(x, y) = v}.
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Example 4.3.1 (Distribution of the sum of Poisson variables)

Let X and Y be independent Poisson random variables with pa-

rameters θ and λ, respectively. Thus, the joint pmf of (X,Y )

is

fX,Y (x, y) =
θxe−θ

x!

λye−λ

y!
, x = 0, 1, 2, . . . , y = 0, 1, 2, . . .

Now define U = X + Y and V = Y , thus,

fU,V (u, v) = fX,V (u−v, v) =
θu−ve−θ

(u− v)!

λve−λ

v!
, v = 0, 1, 2, . . . , u = v, v+1, . . .

The marginal of U is

fU(u) =

u∑
v=0

θu−ve−θ

(u− v)!

λve−λ

v!
= e−(θ+λ)

u∑
v=0

θu−v

(u− v)!

λv

v!

=
e−(θ+λ)

u!

u∑
v=0

(
u

v

)
λvθu−v =

e−(θ+λ)

u!
(θ + λ)u, u = 0, 1, 2, . . .

This is the pmf of a Poisson random variable with parameter θ+λ.
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Theorem 4.3.1 If X ∼ Poisson(θ) and Y ∼ Poisson(λ) and X

and Y are independent, then X + Y ∼ Poisson(θ + λ).

If (X, Y ) is a continuous random vector with joint pdf fX,Y (x, y),

then the joint pdf of (U, V ) can be expressed in terms of FX,Y (x, y) in

a similar way. As before, let A = {(x, y) : fX,Y (x, y) > 0} and B =

{(u, v) : u = g1(x, y) and v = g2(x, y) for some (x, y) ∈ A}. For the

simplest version of this result, we assume the transformation u =

g1(x, y) and v = g2(x, y) defines a one-to-one transformation of A

to B. For such a one-to-one, onto transformation, we can solve the

equations u = g1(x, y) and v = g2(x, y) for x and y in terms of u and

v. We will denote this inverse transformation by x = h1(u, v) and

y = h2(u, v). The role played by a derivative in the univariate case is

now played by a quantity called the Jacobian of the transformation.

It is defined by

J =

∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣
,

where ∂x
∂u = ∂h1(u,v)

∂u , ∂x
∂v = ∂h1(u,v)

∂v , ∂y
∂u = ∂h2(u,v)

∂u , and ∂y
∂v = ∂h2(u,v)

∂v .

We assume that J is not identically 0 on B. Then the joint pdf of

(U, V ) is 0 outside the set B and on the set B is given by

fU,V (u, v) = fX,Y (h1(u, v), h2(u, v))|J |,
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where |J | is the absolute value of J .

Example 4.3.2 (Sum and difference of normal variables) Let X

and Y be independent, standard normal variables. Consider the

transformation U = X + Y and V = X − Y . The joint pdf of X

and Y is, of course,

fX,Y (x, y) = (2π)−1 exp(−x2/2) exp(−y2/2), −∞ < x < ∞,−∞ < y < ∞.

so the set A = R2. Solving the following equations

u = x + y and v = x− y

for x and y, we have

x = h1(x, y) =
u + v

2
, and y = h2(x, y) =

u− v

2
.

Since the solution is unique, we can see that the transformation

is one-to-one, onto transformation from A to B = R2.

J =

∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1
2

1
2

1
2 −1

2

∣∣∣∣∣∣
= −1

2
.

So the joint pdf of (U, V ) is

fU,V (u, v) = fX,Y (h1(u, v), h2(u, v))|J | =
1

2π
e−((u+v)/2)2/2e−((u−v)/2)2/21

2
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for −∞ < u < ∞ and −∞ < v < ∞. After some simplification

and rearrangement we obtain

fU,V (u, v) = (
1√

2p
√

2
e−u2/4)(

1√
2p
√

2
e−v2/4).

The joint pdf has factored into a function of u and a function of

v. That implies U and V are independent.
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Theorem 4.3.2 Let X and Y be independent random variables.

Let g(x) be a function only of x and h(y) be a function only of

y. Then the random variables U = g(X) and V = h(Y ) are

independent.

Proof: We will prove the theorem assuming U and V are continuous

random variables. For any u ∈ mR and v ∈ R, define

Au = {x : g(x) ≤ u} and Bu = {y : h(y) ≤ v}.

Then the joint cdf of (U, V ) is

FU,V (u, v) = P (U ≤ u, V ≤ v)

= P (X ∈ Au, Y ∈ Bv)

P (X ∈ Au)P (Y ∈ Bv).

The joint pdf of (U, V ) is

fU,V (u, v) =
∂2

∂u∂v
FU,V (u, v) = (

d

du
P (X ∈ Au))(

d

dv
P (Y ∈ Bv)),

where the first factor is a function only of u and the second factor is

a function only of v. Hence, U and V are independent. ¤
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In many situations, the transformation of interest is not one-to-one.

Just as Theorem 2.1.8 (textbook) generalized the univariate method

to many-to-one functions, the same can be done here. As before,

A = {(x, y) : fX,Y (x, y) > 0}. Suppose A0, A1, . . . , Ak form a

partition ofA with these properties. The set A0, which may be empty,

satisfies P ((X,Y ) ∈ A0) = 0. The transformation U = g1(X,Y ) and

V = g2(X, Y ) is a one-to-one transformation from Ai onto B for each

i = 1, 2, . . . , k. Then for each i, the inverse function from B to Ai can

be found. Denote the ith inverse by x = h1i(u, v) and y = h2i(u, v).

Let Ji denote the Jacobian computed from the ith inverse. Then

assuming that these Jacobians do not vanish identically on B, we

have

fU,V (u, v) =

k∑
i=1

fX,Y (h1i(u, v), h2i(u, v))|Ji|.
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Example 4.3.3 (Distribution of the ratio of normal variables)

Let X and Y be independent N(0, 1) random variable. Consider

the transformation U = X/Y and V = |Y |. (U and V can be

defined to be any value, say (1,1), if Y = 0 since P (Y = 0) = 0.)

This transformation is not one-to-one, since the points (x, y) and

(−x,−y) are both mapped into the same (u, v) point. Let

A1 = {(x, y) : y > 0}, A2 = {(x, y) : y < 0}, A0 = {(x, y) : y = 0}.

A0, A1 and A2 form a partition of A = R2 and P (A0) = 0. The

inverse transformations from B to A1 and B to A2 are given by

x = h11(u, v) = uv, y = h21(u, v) = v,

and

x = h12(u, v) = −uv, y = h22(u, v) = −v.

The Jacobians from the two inverses are J1 = J2 = v. Using

fX,Y (x, y) =
1

2π
e−x2/2e−y2/2,

we have

fU,V (u, v) =
1

2π
e−(uv)2/2e−v2/2|v| + 1

2π
e−(−uv)2/2e−(−v)2/2|v|

=
v

π
e−(u2+1)v2/2, −∞ < u < ∞, 0 < v < ∞.
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From this the marginal pdf of U can be computed to be

fU(u) =

∫ ∞

0

v

π
e−(u2+1)v2/2dv

=
1

2π

∫ ∞

0

e−(u2+1)z/2dz (z = v2)

=
1

π(u2 + 1)

So we see that the ratio of two independent standard normal ran-

dom variable is a Cauchy random variable.
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4.4 Hierarchical Models and Mixture Distributions

Example 4.4.1 (Binomial-Poisson hierarchy) Perhaps the most

classic hierarchical model is the following. An insect lays a large

number of eggs, each surviving with probability p. On the average,

how many eggs will survive?

The large number of eggs laid is a random variable, often taken

to be Poisson(λ). Furthermore, if we assume that each egg’s sur-

vival is independent, then we have Bernoulli trials. Therefore,,

if we let X=number of survivors and Y =number of eggs laid, we

have

X|Y binomial(Y, p), Y ∼ Poisson(λ),

a hierarchical model.

The advantage of the hierarchy is that complicated process may

be modeled by a sequence of relatively simple models placed in a

hierarchy.



152 CHAPTER 4. MULTIPLE RANDOM VARIABLES

Example 4.4.2 (Continuation of Example 4.4.1) The random

variable X has the distribution given by

P (X = x) =

∞∑
y=0

P (X = x, Y = y) =

∞∑
y=0

P (X = x|Y = y)P (Y = y)

=

∞∑
y=x

[

(
y

x

)
px(1− p)y−x][

e−yλy

y!
] (conditional probability is 0 if y < x)

=
(λp)xe−λ

x!

∞∑
y=x

((1− p)λ)y−x

(y − x)!

=
(λp)xe−λ

x!
e(1−p)λ

=
(λp)x

x!
e−λp,

so X ∼ Poisson(λ). Thus, any marginal inference on X is with

respect to a Poisson(λp) distribution, with Y playing no part at

all. Introducing Y in the hierarchy was mainly to aid our under-

standing of the model. On the average,

EX = λp

eggs will survive.
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Sometimes, calculations can be greatly simplified be using the fol-

lowing theorem.

Theorem 4.4.1 If X and Y are any two random variables, then

EX = E(E(X|Y )),

provided that the expectations exist.

Proof: Let f (x, y) denote the joint pdf of X and Y . By definition,

we have

EX =

∫
inf xf (x, y)dxdy =

∫
[

∫
xf (x|y)dx]fY (y)dy

∫
E(X|y)fY (y)dy = E(E(X|Y ))

Replacing integrals by sums to prove the discrete case. ¤

Using Theorem 4.4.1, we have

EX = E(E(X|Y )) = E(pY ) = pλ

for Example 4.4.2.
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Definition 4.4.1 A random variable X is said to have a mixture

distribution if the distribution of X depends on a quantity that

also has a distribution.

Thus, in Example 4.4.1 the Poisson(λp) distribution is a mixture

distribution since it is the result of combining a binomial(Y, p) with

Y ∼ Poisson(λ).

Theorem 4.4.2 (Conditional variance identity) For any two ran-

dom variables X and Y ,

VarX = E(Var(X|Y )) + Var(E(X|Y )),

provided that the expectations exist.

Proof: By definition, we have

VarX = E([X − EX ]2) = E([X − E(X|Y ) + E(X|Y )− EX ]2)

= E([X − E(X|Y )]2) + E([E(X|Y )− EX ]2) + 2E([X − E(X|Y )][E(X|Y )− EX ]).

The last term in this expression is equal to 0, however, which can

easily be seen by iterating the expectation:

E([X−E(X|Y )][E(X|Y )−EX ]) = E(E{[X−E(X|Y )][E(X|Y )−EX ]|Y })

In the conditional distribution X|Y , X is the random variable. Con-

ditional on Y , E(X—Y) and EX are constants. Thus,

E{[X−E(X|Y )][E(X|Y )−EX ]|Y } = (E(X|Y )−E(X|Y ))(E(X|Y )−EX) = 0
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Since

E([X − E(X|Y )]2) = E(E{[X − E(X|Y )]2|Y }) = E((̄X|Y )).

and

E([E(X|Y )− EX ]2) = Var(E(X|Y )),

Theorem 4.4.2 is proved. ¤
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Example 4.4.3 (Beta-binomial hierarchy) One generalization of

the binomial distribution is to allow the success probability to vary

according to a distribution. A standard model for this situation

is

X|P ∼ binomial(P ), i = 1, . . . , n,

P ∼ beta(α, β).

The mean of X is then

EX = E[E(X|p)] = E[nP ] =
nα

α + β
.

Since P ∼ beta(α, β),

Var(E(X|P )) = Var(np) = n2 αβ

(α + β)2(α + β + 1)
.

Also, since X|P is binomial(n, P ), Var(X|P ) = nP (1 − P ). We

then have

E[Var(X|P )] = nE[P (1− P )] = n
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

p(1− p)pα−1(1− p)β−1dp

= n
Γ(α + β)

Γ(α)Γ(β)

Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
=

nαβ

(α + β)(α + β + 1)
.

Adding together the two pieces, we get

VarX =
nαβ(α + β + n)

(α + β)2(α + β + 1)
.
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4.5 Covariance and Correlation

In earlier sections, we have discussed the absence or presence of a

relationship between two random variables, Independence or nonin-

dependence. But if there is a relationship, the relationship may be

strong or weak. In this section, we discuss two numerical measures

of the strength of a relationship between two random variables, the

covariance and correlation.

Throughout this section, we will use the notation EX = µX , EY =

µY , VarX = σ2
X , and VarY = σ2

Y .

Definition 4.5.1 The covariance of X and Y is the number de-

fined by

Cov(X,Y ) = E((X − µX)(Y − µY )).

Definition 4.5.2 The correlation of X and Y is the number de-

fined by

ρXY =
Cov(X, Y )

σXσY
.

The value ρXY is also called the correlation coefficient.

Theorem 4.5.1 For any random variables X and Y ,

Cov(X,Y ) = EXY − µXµY .
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Theorem 4.5.2 If X and Y are independent random variables,

then Cov(X,Y ) = 0 and ρXY = 0.

Theorem 4.5.3 If X and Y are any two random variables and

a and b are any two constants, then

Var(aX + bY ) = a2VarX + b2VarY + 2abCov(X, Y ).

If X and Y are independent random variables, then

Var(AX + bY ) = a2VarX + b2VarY.

Theorem 4.5.4 For any random variables X and Y ,

a. −1 ≤ ρXY ≤ 1.

b. |ρXY | = 1 if and only if there exist numbers a 6= 0 and b such

that P (Y = aX + b) = 1. If ρXY = 1, then a > 0, and if

ρXY = −1, then a < 0.

Proof: Consider the function h(t) defined by

h(t) = E((X − µX)t + (Y − µY ))2

= t2σ2
X + 2tCov(X,Y ) + σ2

Y .

Since h(t) ≥ 0 and it is quadratic function,

(2Cov(X, Y ))2 − 4σ2
Xσ2

Y ≤ 0.
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This is equivalent to

−σXσY ≤ Cov(X, Y ) ≤ σXσY .

That is,

−1 ≤ ρXY ≤ 1.

Also, |ρXY | = 1 if and only if the discriminant is equal to 0, that is, if

and only if h(t) has a single root. But since ((X−µX)t+(Y −µY ))2 ≥
0, h(t) = 0 if and only if

P ((X − µX)t + (Y − µY ) = 0) = 1.

This P (Y = aX + b) = 1 with a = −t and b = µXt + µY , where

t is the root of h(t). Using the quadratic formula, we see that this

root is t = −Cov(X, Y )/σ2
X . Thus a = −t has the same sign as ρXY ,

proving the final assertion. ¤
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Example 4.5.1 (Correlation-I) Let X have a uniform(0,1) dis-

tribution and Z have a uniform(0,0.1) distribution. Suppose X

and Z are independent. Let Y = X +Z and consider the random

vector (X,Y ). The joint pdf of (X,Y ) is

f (x, y) = 10, 0 < x < 1, x < y < x + 0.1

Note f (x, y) can be obtained from the relationship f (x, y) = f (y|x)f (x).

Then

Cov(X,Y ) = EXY = −(EX)(EY )

= EX(X + Z)− (EX)(E(X + Z))

= σ2
X =

1

12

The variance of Y is σ2
Y = VarX + VarZ = 1

12 + 1
1200. Thus

ρXY =
1/12√

1/12
√

1/12 + 1/1200
=

√
100

101
.

The next example illustrates that there may be a strong relationship

between X and Y , but if the relationship is not linear, the correlation

may be small.



4.5. COVARIANCE AND CORRELATION 161

Example 4.5.2 (Correlation-II) Let X ∼ Unif (−1, 1), Z ∼ Unif (0, 0.1),

and X and Z be independent. Let Y = X2 + Z and consider the

random vector (X, Y ). Since given X = x, Y ∼ Unif (x2, x2+0.1).

The joint pdf of X and Y is

f (x, y) = 5, −1 < x < 1, x2 < y < x2 +
1

10
.

Cov(X, Y ) = E(X(X2 + Z))− (EX)(E(X2 + Z))

= EX3 + EXZ − 0E(X2 + Z)

= 0

Thus, ρXY = Cov(X, Y )/(σXσY ) = 0.

Definition 4.5.3 Let −∞ < µX < ∞, −∞ < µY < ∞, 0 < σX,

0 < σY , and −1 < ρ < 1 be five real numbers. The bivariate

normal pdf with means µX and µY , variances σ2
X and σ2

Y , and

correlation ρ is the bivariate pdf given by

f (x, y) =
1

2πσxσY

√
1− ρ2

exp
{− 1

2(1− ρ2)

(
(
x− µX

σX
)2−2ρ(

x− µX

σX
)(

y − µY

σY
)+(

y − µY

σY
)2

)}

for −∞ < x < ∞ and −∞ < y < ∞.

The many nice properties of this distribution include these:

a. The marginal distribution of X is N(µX , σ2
X).

b. The marginal distribution of Y is N(µY , σ2
Y ).
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c. The correlation between X and Y is ρXY = ρ.

d. For any constants a and b, the distribution of aX+bY is N(aµX+

bµY , a2σ2
X + b2σ2

Y + 2abρσXσY ).

Assuming (a) and (b) are true, we will prove (c). Let

s = (
x− µX

σX
)(

y − µY

σY
) and t = (

x− µX

σX
).

Then x = σXt + µX , y = (σY s/t) + µY , and the Jacobian of the

transformation is J = σXσY /t. With this change of variables, we

obtain

ρXY =

∫ ∞

−∞

∫ ∞

−∞
sf (σXt + µX ,

σY s

t
+ µY )|σXσY

t
|dsdt

=

∫ ∞

−∞

∫ ∞

−∞
s(2πσXσY

√
1− ρ2)−1 exp

(− 1

2(1− ρ)2
(t2 − 2ρs + (

s

t
)2)

)σXσY

|t| dsdt

=

∫ ∞

−∞

1√
2π

exp(−t2

2
)dt

∫ ∞

−∞

s√
2π

√
(1− ρ2)t2

exp
(− (s− ρt2)2

2(1− ρ2)t2
)
ds

The inner integral is ES, where S is a normal random variable with

ES = ρt2 and VarS = (1− ρ2)t2. Thus,

ρXY =

∫ ∞

−∞

ρt2√
2π

exp{−t2/2}dt = ρ.
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4.6 Multivariate Distributions

The random vector X = (X1, . . . , Xn) has a sample space that is

a subset of Rn. If X is discrete random vector, then the joint pmf

of x is the function defined by f (x) = f (x1, . . . , xn) = P (X1 =

x1, . . . , Xn − xn) for each (x1, . . . , xn) ∈ Rn. Then for any A ⊂ Rn,

P (X ∈ A) =
∑

x∈A

f (x).

If X is a continuous random vector, the joint pdf of X is a function

f (x1, . . . , xn) that satisfies

P (X ∈ A) =

∫
· · ·

∫

A

f (x)dx =

∫
· · ·

∫

A

f (x1, . . . , xn)dx1 · · · dxn.

Let g(x) = g(x1, . . . , xn) be a real-valued function defined on the

sample space of X . Then g(X) is a random variable and the expected

value of g(X) is

Eg(X) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x)f (x)dx

and

Eg(X) =
∑

x∈Rn

g(x)f (x)

in the continuous and discrete cases, respectively.

The marginal distribution of (X1, . . . , Xn) , the first k coordinates
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of (X1, . . . , Xn), is given by the pdf or pmf

f (x1, . . . , xk) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f (x1, . . . , xn)dxk+1 · · · dxn

or

f (x1, . . . , xk) =
∑

(xk+1,...,xn)∈Rn−k

f (x1, . . . , xn)

for every (x1, . . . , xk) ∈ Rk.

If f (x1, . . . , xk) > 0, the conditional pdf or pmf of (Xk+1, . . . , Xn)

given X1 = x1, . . . , Xk = xk is the function of (xk+1, . . . , xn) defined

by

f (xk=1, . . . , xn|x1, . . . , xk) =
f (x1, . . . , xn)

f (x1, . . . , xk)
.
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Example 4.6.1 (Multivariate pdfs) Let n = 4 and

f (x1, x2, x3, x4) =





3
4(x

2
1 + x2

2 + x2
3 + x2

4) 0 < xi < 1, i = 1, 2, 3, 4

0 otherwise

The joint pdf can be used to compute probabilities such as

P (X1 <
1

2
, X2 <

3

4
, X4 >

1

2
)

=

∫ 1

1
2

∫ 1

0

∫ 3
4

0

∫ 1
2

0

3

4
(x2

1 + x2
2 + x2

3 + x2
4)dx1dx2dx3dx4 =

151

1024
.

The marginal pdf of (X1, X2) is

f (x1, x2) =

∫ 1

0

∫ 1

0

3

4
(x2

1 + x2
2 + x2

3 + x2
4)dx2dx4 =

3

4
(x2

1 + x2
2) +

1

2

for 0 < x1 < 1 and 0 < x2 < 1.

Definition 4.6.1 Let n and m be positive integers and let p1, . . . , pn

be numbers satisfying 0 ≤ pi ≤ 1, i = 1, . . . , n, and
∑n

i=1 pi = 1.

Then the random vector (X1, . . . , Xn) has a multinomial distribu-

tion with m trials and cell proabilities p1, . . . , pn if the joint pmf

of (X1, . . . , Xn) is

f (x1, . . . , xn) =
m!

x1! · · · xn!
px1

1 · · · pxn
n = m!

n∏
i=1

pxi
i

xi!

on the set of (x1, . . . , xn) such that each xi is a nonnegative integer

and
∑n

i=1 xi = m.
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Example 4.6.2 (Multivariate pmf) Consider tossing a six-sided

die 10 times. Suppose the die is unbalanced so that the probability

of observing an i is i/21. Now consider the vector (X1, . . . , X6),

where Xi counts the number of times i comes up in the 10 tosses.

Then (X1, . . . , X6) has a multinomial distribution with m = 10

and cell probabilities p1 = 1
21, . . . , p6 = 6

21. For example, the prob-

ability of the vector (0, 0, 1, 2, 3, 4) is

f (0, 0, 1, 2, 3, 4) =
10!

0!0!1!2!3!4!
(

1

21
)0(

2

21
)0(

3

21
)1(

4

21
)2(

5

21
)3(

6

21
)4 = 0.0059.

The factor m!
x1!···xn! is called a multinomial coefficient. It is the num-

ber of ways that m objects can be divided into n groups with x1 in

the first group, x2 in the second group, . . ., and xn in the nth group.

Theorem 4.6.1 (Multinomial Theorem) Let m and n be positive

integers. Let A be the set of vectors x = (x1, . . . , xn) such that

each xi is a nonnegative integer and
∑n

i=1 xi = m. Then, for any

real numbers p1, . . . , pn,

(p1 + . . . + pn)m =
∑

x∈A

m!

x1! · · · xn!
px1

1 . . . pxn
n .
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Definition 4.6.2 Let X1, . . . , Xn be random vectors with joint pdf

or pmf f (x1, . . . , xn). Let fX i
(xi) denote the marginal pdf or pmf

of X i. Then X1, . . . , Xn are called mutually independent random

vectors if, for every (x1, . . . , xn),

f (x1, . . . , xn) = fX1
(x1) . . . fXn

(xn) =

n∏
i=1

fX i
(xi).

If the Xi’s are all one dimensional, then X1, . . . , Xn are called

mutually independent random variables.

Mutually independent random variables have many nice properties.

The proofs of the following theorems are analogous to the proofs of

their counterparts in Sections 4.2 and 4.3.

Theorem 4.6.2 (Generalization of Theorem 4.2.1) Let X1, . . . , Xn

be mutually independent random variables. Let g1, . . . , gn be real-

valued functions such that gi(xi) is a function only of xi, i =

1, . . . , n. Then

E(g1(X1) · · · g(Xn)) = (Eg1(X1)) · · · (Egn(Xn)).
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Theorem 4.6.3 (Generalization of Theorem 4.2.2) Let X1, . . . , Xn

be mutually independent random variables with mgfs MX1(t), . . . , MXn(t).

Let Z = X1 + · · · + Xn. Then the mgf of Z is

MZ(t) = MX1(t) · · ·MXn(t).

In particular, if X1, . . . , Xn all have the same distribution with

mgf MX(t), then

MZ(t) = (MX(t))n.

Example 4.6.3 (Mgf of a sum of gamma variables) Suppose X1, . . . , Xn

are mutually independent random variables, and the distribution

of Xi is gamma(αi, β). Thus, if Z = X1 + . . . + Xn, the mgf of Z

is

MZ(t) = MX1(t) · · ·MXn(t) = (1−βt)−α1 · · · (1−βt)−αn = (1−βt)−(α1+···+αn).

This is the mgf of a gamma(α1 + · · · + αn, β) distribution. Thus,

the sum of a independent gamma random variables that have a

common scale parameter β also has a gamma distribution.
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Example 4.6.4 Let X1, . . . , Xn be mutually independent random

variables with Xi ∼ N(µi, σ
2
i ). Let a1, . . . , an and b1, . . . , bn be

fixed constants. Then

Z =

n∑
i=1

(aiXi + bi) ∼ N(

n∑
i=1

(aiµi + bi),

n∑
i=1

a2
iσ

2
i ).

Theorem 4.6.4 (Generalization of Lemma 4.2.1) Let X1, . . . , Xn

be random vectors. Then X1, . . . , Xn are mutually independent

random vectors if and only if there exist functions gi(xi), i =

1, . . . , n, such that the joint pdf or pmf of (X1, . . . , Xn) can be

written as

f (x1, . . . , xn) = g1(x1) · · · gn(xn).
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Theorem 4.6.5 (Generalization of Theorem 4.3.2) Let X1, . . . , Xn

be random vectors. Let gi(xi) be a function only of xi, i =

1, . . . , n. Then the random vectors Ui = gi(X i), i = 1, . . . , n,

are mutually independent.

Let (X1, . . . , Xn) be a random vector with pdf fX(x1, . . . , xn). Let

A = {x : fX(x) > 0}. Consider a new random vector (U1, . . . , Un),

defined by U1 = g1(X1, . . . , Xn), . . ., Un = gn(X1, . . . , Xn). Suppose

that A0, A1, . . . , Ak form a partition of A with these properties. The

set A0, which may be empty, satisfies P ((X1, . . . , Xn) ∈ A0) = 0.

The transformation (U1, . . . , Un) = (g1(X), . . . , gn(X)) is a one-to-

one transformation from Ai onto B for each i = 1, 2, . . . , k. Then for

each i, the inverse functions from B to Ai can be found. Denote the

ith inverse by x1 = h1i(u− 1, . . . , un), . . . , xn = hni(u1, . . . , un). Let

Ji denote the Jacobian computed from the ith inverse. That is,

Ji =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂h1i(u)
∂u1

∂h1i(u)
∂u2

. . . ∂h1i(u)
∂u1

∂h2i(u)
∂u1

∂h2i(u)
∂u2

. . . ∂h2i(u)
∂u1

... ... . . . ...

∂hni(u)
∂u1

∂hni(u)
∂u2

. . . ∂hni(u)
∂u1

∣∣∣∣∣∣∣∣∣∣∣∣∣
the determinant of an n× n matrix. Assuming that these Jacobians

do not vanish identically on B, we have the following representation



4.6. MULTIVARIATE DISTRIBUTIONS 171

of the joint pdf, fU(u1, . . . , un), for u ∈ B:

fu(u1, . . . , un) =

k∑
i=1

fX(h1i(u1, . . . , un), . . . , hni(u1, . . . , un))|Ji|.


