
Chapter 3

Common Families of Distributions

3.1 Discrete Distributions

A random variable X is said to have a discrete distribution if the

range of X , the sample space, is countable. In most situations, the

random variable has integer-valued outcomes.

3.1.1 Discrete Uniform Distribution

A random variable X has a discrete uniform (1, N) distribution if

P (X = x|N) =
1

N
, x = 1, 2, . . . , N,

where N is a specified integer. This distribution puts equal mass on

each of the outcomes 1, 2, . . . , N .

We then have

EX =

N∑
x=1

xP (X = x|N) =

N∑
x=1

x
1

N
=

N + 1

2
,
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and

EX2 =

N∑
x=1

x2 1

N
=

(N + 1)(2N + 1)

6
,

and so,

VarX = EX2−(EX)2 =
(N + 1)(2N + 1)

6
−(

N + 1

2
)2 =

(N + 1)(N − 1)

12
.

3.1.2 Hypergeometric Distribution

Suppose we have a large urn filled with N balls that are identical in

every way except that M are red and N −M are green. We reach in,

blindfolded, and select K balls at random. Let X denote the number

of red balls in a sample of size K, then X has a hypergeometric

distribution given by

P (X = x|N, M, K) =

(
M
x

)(
N−M
K−x

)
(

N
K

) , x = 0, 1, . . . , K.

The requirements for the range of X is

M ≥ x and N −M ≥ K − x,

which can be combined as

M − (N −K) ≤ x ≤ M.

The mean of this distribution is

EX =

K∑
x=0

x

(
M
x

)(
N−M
K−x

)
(

N
K

) =

K∑
x=1

x

(
M
x

)(
N−M
K−x

)
(

N
K

)
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Using the identities,

x

(
M

x

)
= M

(
M − 1

x− 1

)

(
N

K

)
=

N

K

(
N − 1

K − 1

)
,

we obtain

EX =
KM

N

K∑
x=1

(
M−1
x−1

)(
N−M
K−x

)
(

N−1
K−1

) =
KM

N
.

A similar, but more lengthy, calculation will establish that

VarX =
KM

N

((N −M)(N −K)

N(N − 1)

)
.
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Example 3.1.1 The hypergeometric distribution has application

in acceptance sampling. Suppose a retailer buys goods in lots

and each item can be either acceptable or defective. Let N = #

of items in a lot, and M = # of defectives in a lot. Then we

can calculate the probability that a sample of size K contains x

defectives. To be specific, suppose that a lot of 25 machine parts

is delivered, where a part is considered acceptable only if it passes

tolerance. We sample 10 parts and find that none are defective

(all are within tolerance). What is the probability of this event if

there are 6 defectives in the lot of 25?

Applying the hypergeometric distribution with N = 25, M = 6,

and k = 10, we have

P (X = 0) =

(
6
0

)(
19
10

)
(

25
10

) = 0.028,

showing that our observed event is quite unlikely if there 6 defec-

tives in the lot.
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3.1.3 Binomial Distribution

The binomial distribution is based on the idea of a Bernoulli trial.

A Bernoulli trail is an experiment with two, and only two, possible

outcomes. A random variable X has a Bernoulli(p) distribution if

X =





1 with probability p

0 with probability 1− p,

where 0 ≤ p ≤ 1. The value X = 1 is often termed a “success” and

X = 0 is termed a “failure”. The mean and variance of a Bernoulli(p)

random variable are easily seen to be

EX = (1)(p) + (0)(1− p) = p

and

VarX = (1− p)2p + (0− p)2(1− p) = p(1− p).

In a sequence of n identical, independent Bernoulli trials, each with

success probability p, define the random variables X1, . . . , Xn by

Xi =





1 with probability p

0 with probability 1− p.

The random variable

Y =

n∑
i=1

Xi
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has the binomial distribution. For this distribution,

EX = np, VarX = np(1− p), MX(t) = [pet + (1− p)]n.

Theorem 3.1.1 (Binomial theorem) For any real numbers x and

y and integer n ≥ 0,

(x + y)n =

n∑
i=0

(
n

i

)
xiyn−i.

If we take x = p and y = 1− p, we get

1 = (p + (1− p))n =

n∑
i=0

(
n

i

)
pi(1− p)n−i.
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Example 3.1.2 (Dice probabilities) Suppose we are interested in

finding the probability of obtaining at least one 6 in four rolls of

a fair die. This experiment can be modeled as a sequence of four

Bernoulli trials with success probability p = 1
6. Define

X = total number of 6s in four rolls.

Then X ∼ binomial(4, 1
6) and

P (X > 0) = 1− P (X = 0) = 1−
(

4

0

)
(
1

6
)0(

5

6
)4 = 0.518.

Now we consider another game; throw a pair of dice 24 times and

ask for the probability of at least one double 6. This, again, can

be modeled by the binomial distribution with success probability p,

where

p = P (roll a double 6) =
1

36
/

Let Y =number of double 6s in 24 rolls, then Y ∼ binomial(24, 1
36)

and

P (Y > 0) = 1− P (Y = 0) = 1−
(

24

0

)
(

1

36
)0(

35

36
)24 = 0.491.

This is the calculation originally done in the 18th century by Pas-

cal at the request of the gambler de Mere, who thought both events

had the same probability. He began to believe he was wrong when

he started losing money on the second bet.
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3.1.4 Poisson Distribution

The Poisson distribution has a single parameter λ, sometimes called

the intensity parameter. A random variable X , taking values in the

nonnegative integers, has a Poisson(λ) distribution if

P (X = x|λ) =
e−λλx

x!
, x = 0, 1, . . .

The mean of X is

EX =

∞∑
x=0

x
e−λλx

x!
=

∞∑
x=1

x
e−λλx

x!

= λ
∞∑

x=1

e−λλx−1

(x− 1)!

= λ
∞∑

y=0

e−λλy

y!
= λ

A similar calculation will show that

VarX = λ.

The mgf is

MX(t) = eλ(et−1).
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Example 3.1.3 (Waiting time) As an example of a waiting-for-

occurrence application, consider a telephone operator who, on the

average, handles five calls every 3 minutes. What is the proba-

bility that there will be no calls in the next minute? At least two

calls?

If we let X =number of calls in a minute, then X has a Poisson

distribution with EX = λ = 5/3. So

P (no calls in the next minute) = P (X = 0)

=
e−5/3(5

3)
0

0!
= e−5/3 = 0.189

P (at least two calls in the next minute) = P (X ≥ 2)

= 1− P (X = 0)− P (X = 1) = 1− .189− e−5/3(5/3)1

1!
= 0.496.
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Example 3.1.4 (Poisson approximation) A typesetter, on the

average, makes one error in every 500 words typeset. A typi-

cal page contains 300 words. What is the probability that there

will be no more than two errors in five pages?

If we assume that setting a word is a Bernoulli trial with success

probability p = 1
500, then X =number of errors in five pages (1500

words) is binomial(1500, 1
500). Thus,

P (no more than two errors) = P (X ≤ 2)

=

2∑
x=0

(
1500

x

)
(

1

500
)x(

499

500
)1500−x

= .4230.

If we use the Poisson approximation with λ = 1500/500 = 3, we

have

P (X ≤ 2) ≈ e−3(1 + 3 +
32

2
) = 0.4232.
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3.1.5 Negative Binomial Distribution

In a sequence of independent Bernoulli(p) trials, let the random vari-

able X denote the trial at which the rth success occurs, where r is a

fixed integer. Then

P (X = x|r, p) =

(
x− 1

r − 1

)
pr(1− p)x−r, x = r, r + 1, . . . , (3.1)

and we say that X has a negative binomial(r, p) distribution.

The negative binomial distribution is sometimes defined in terms of

the random variable Y =number of failures before rth success. This

formulation is statistically equivalent to the one given above in terms

of X =trial at which the rth success occurs, since Y = X − r. The

alternative form of the negative binomial distribution is

P (Y = y) =

(
r + y − 1

y

)
pr91− p)y, y = 0, 1, . . . .

The negative binomial distribution gets its name from the relation-

ship

(
r + y − 1

y

)
= (−1)y

(−r

y

)
= (−1)y

(−r)(−r − 1) · · · (−r − y + 1)

(y)(y − 1) · · · (2)(1)
,

which is the defining equation for binomial coefficient with negative
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integers.

EY =

∞∑
y=0

y

(
r + y − 1

y

)
pr(1− p)y

=

∞∑
y=1

(r + y − 1)!

(y − 1)!(r − 1)!
pr(1− p)y

=

∞∑
y=1

r(1− p)

p

(
r + y − 1

y − 1

)
pr+1(1− p)y−1

=
r(1− p)

p

∞∑
z=0

(
r + 1 + z − 1

z

)
pr+1(1− p)z

= r
1− p

p
.

A similar calculation will show

VarY =
r(1− p)

p2
.
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3.1.6 Geometric distribution

The geometric distribution is the simplest of the waiting time distri-

butions and is a special case of the negative binomial distribution. Let

r = 1 in (3.1) we have

P (X = x|p) = p(1− p)x−1, x = 1, 2, . . . ,

which defines the pmf of a geometric random variable X with success

probability p.

X can be interpreted as the trial at which the first success occurs,

so we are “waiting for a success”. The mean and variance of X can

be calculated by using the negative binomial formulas and by writing

X = Y + 1 to obtain

EX = EY + 1 =
1

P
and VarX =

1− p

p2
.

The geometric distribution has an interesting property, known as the

“memoryless” property. For integers s > t, it is the case that

P (X > s|X > t) = P (X > s− t), (3.2)

that is, the geometric distribution “forgets” what has occurred. The

probability of getting an additional s− t failures, having already ob-

served t failures, is the same as the probability of observing s − t

failures at the start of the sequence.
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To establish (3.2), we first note that for any integer n,

P (X > n) = P (no success in n trials) = (1− p)n,

and hence,

P (X > s|X > t) =
P (X > s and X > t)

P (X > t)
=

P (X > s)

P (X > t)

= (1− p)s−t = P (X > s− t).
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3.2 Continuous Distributions

3.2.1 Uniform Distribution

The continuous uniform distribution is defined by spreading mass uni-

formly over an interval [a, b]. Its pdf given by

f (x|a, b) =





1
b−a if x ∈ [a, b]

0 otherwise

It is easy to check that
∫ b

a f (x)dx = 1 and

EX =

∫ b

a

x

b− a
dx =

b + a

2

VarX =

∫ b

a

1

b− a
(x− b + a

2
)2dx =

(b− a)2

12
.
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3.2.2 Gamma Distribution

The pdf of gamma(α, β) distribution is defined as

f (x|α, β) =
1

Γ(α)βα
xα−1e−x/beta, 0 < x < ∞, α > 0, β > 0.

The parameter α is known as the shape parameter, since it most

influences the peakedness of the distribution, while the parameter β

is called the scale parameter, since most of its influence is on the

spread of the distribution.

Γ(α) is called the gamma function, it is defined as

Γ(α) =

∫ ∞

0

tα−1e−tdt.

It satisfies the following recursive formula

Γ(α + 1) = αΓ(α), α > 0.

EX =
1

Γ(α)βα

∫ ∞

0

xxα−1e−x/βdx

=
1

Γ(α)Γ(α + 1
βα+1 = αβ

In a manner analogous to the above, we can calculate EX2 and then

get

VarX = αβ2.

The mgf of a gamma(α, β) distribution is

MX(t) = (
1

1− βt
)α, t <

1

β
.
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Example 3.2.1 (Gamma-Poisson relationship) There is an in-

teresting relationship between the gamma and Poisson distribu-

tions. If X is a gamma(α, β) random variable, where α is an

integer, then for any x,

P (X ≤ x) = P (Y ≥ α), (3.3)

where Y ∼ Poisson(x/β).
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There are a number of important special cases of the gamma dis-

tribution.

Chi-squared distribution If we set α = p/2, where p is an integer, and

β = 2, then the gamma pdf becomes

f (x|p) =
1

Γ(p/2)2p/2
x(p/2)−1e−x/2, 0 < x < ∞,

which is the chi-squared pdf with p degrees of freedom.

exponential distribution If we set α = 1, we have

f (x|β) =
1

β
e−x/β, 0 < x < ∞,

the exponential pdf with scale parameter β.

The exponential distribution can be used to model lifetimes, anal-

ogous to the use of the geometric distribution in the discrete case. In

fact, the exponential distribution shares the “memoryless” property

of the geometric.

P (X > s|X > t) =
P (X > s, X > t)

P (X > t)
=

P (X > s)

P (X > t)

=

∫∞
s

1
βe−x/βdx∫∞

t
1
βe−x/βdx

=
e−s/β

e−t/β

= e−(s−t)/β = P (X > s− t).
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Weibull distribution f X ∼ exponential(β), then Y = X1/γ has a

Weibull(γ, β) distribution,

fY (y|γ, β) =
γ

β
yγ−1e−yγ/β, 0 < y < ∞, γ > 0, , β > 0.

The Weibull distribution plays an extremely important role in the

analysis of failure time data.
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3.2.3 Normal Distribution

The normal distribution has several advantages over the other distri-

butions.

a. The normal distribution and distributions associated with it are

very tractable and analytically.

b. The normal distribution has the familiar bell shape, whose sym-

metry makes it an appealing choice for many popular models.

c. There is the Central Limit Theorem, which shows that, under mild

conditions, the normal distribution can be used to approximate a

large variety of distributions in large samples.

The normal distribution has two parameters, usually denoted by µ

and σ2, which are its mean and variance. The pdf is

f (x|µ, σ2) =
1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x < ∞.

If X ∼ N(µ, σ2), then the random variable Z = (X − µ)/σ has a

N(0, 1) distribution, also known as the standard normal.

If Z ∼ N(0, 1),

EZ =
1√
2π

∫ ∞

−∞
ze−z2/2dz = 0,
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and so, if X ∼ N(µ, σ2),

EX = E(µ + σZ) = µ + σEZ = µ.

Similarly, we have that VarZ = 1 and VarX = σ2.

To show

1√
2π

∫ ∞

−∞
e−z2/2dz = 1.

We only need to show

∫ ∞

0

e−z2/2dz =

√
π

2
.

Since

( ∫ ∞

0

e−z2/2dz
)2

=
( ∫ ∞

0

e−t2/2dt
)( ∫ ∞

0

e−u2/2du
)

=

∫ ∞

0

∫ ∞

0

e−(t2+u2)/2dtdu.

Now we convert to polar coordinates. Define

t = r cos θ, u = r sin θ.

Then t2 + u2 = r2 and dtdu = rdθdr and the limits of integration

become 0 < r < ∞, 0 < θ < π/2. We now have
∫ ∞

0

∫ ∞

0

e−(t2+u2)/2dtdu =

∫ ∞

0

∫ ∞

0

re−r2/2dθdr

=
π

2

∫ ∞

0

re−r2/2dr =
π

2
.
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The probability content within 1, 2 or 3 standard deviations of the

mean is

P (|X − µ| ≤ σ) = P (|Z| ≤ 1) = .6826,

P (|X − µ| ≤ 2σ) = P (|Z| ≤ 2) = .9544,

P (|X − µ| ≤ 3σ) = P (|Z| ≤ 3) = .9974,

where X ∼ N(µ, σ2) and Z ∼ N(0, 1).

Among the many uses of the normal distribution, an important one

is its use as an approximation to other distributions. For example, if

X ∼ binomial(n, p), then EX = np and VarX = np(1 − p), and

under suitable conditions, the distribution of X can be approximated

by that of a normal random variable with mean µ = np and variance

σ2 = np(1 − p). The suitable conditions are that n should be large

and p should not be extreme (near 0 or 1). We want n large so

that there are enough values of X to make an approximation by a

continuous distribution reasonable, and p should be “in the middle” so

the binomial is nearly symmetric, as is the normal. A conservative rule

to follow is that the approximation will be good if min(np, n(1−p)) ≥
5.
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3.2.4 Beta Distribution

The beta(α, β) pdf is

f (x|α, β) =
1

B(α, β)
xα−1(1−x)β−1, 0 < x < 1, α > 0, β > 0,

where B(α, β) denotes the beta function,

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)
.

For n > −α, we have

EXn =
1

B(α, β)

∫ 1

0

xnxα−1(1− x)β−1dx

=
B(α + n, β)

B(α, β)
=

Γ(α + n)Γ(α + β)

Γ(α + β + n)Γ(α)
.

Then mean and variance are

EX =
α

α + β
and VarX =

αβ

(α + β)2(α + β + 1)
.
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3.2.5 Cauchy Distribution

The Cauchy distribution is a symmetric, bell-shaped distribution on

(−∞,∞) with pdf

f (x|θ) =
1

π

1

1 + (x− θ)2
, −∞ < x < ∞, −∞ < θ < ∞.

The mean of Cauchy distribution does not exist, that is,

E|X| =

∫ ∞

−∞

1

π

|x|
1 + (x− θ)2

dx = ∞.

Since E|X| = ∞, it follows that no moments of the Cauchy distribu-

tion exist. In particular, the mgf does not exist.
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3.2.6 Lognormal Distribution

If X is a random variable whose logarithm is normally distributed,

then X has a lognormal distribution. The pdf of X can be obtained

by straightforward transformation of the normal pdf, yielding

f (x|µ, σ2) =
1√
2πσ

1

x
e−(log x−µ)2/(2σ2), 0 < x < ∞, −∞ < µ < ∞, σ > 0,

for the lognormal pdf.

EX = Eelog X = EeY = eµ+(σ2/2).

VarX = e2(µ+σ2) − e2µ+σ2
.

3.2.7 Double Exponential Distribution

The double exponential distribution is formed by reflecting the expo-

nential distribution around its mean. The pdf is given by

f (x|µ, σ) =
1

2σ
e−|x−µ|/σ, −∞ < x < ∞, −∞ < µ < ∞, σ > 0.

It is straightforward to calculate

EX = µ and VarX = 2σ2.
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3.3 Exponential Families

A family of pdfs or pmfs is called an exponential family if it can be

expressed as

f (x|θ) = h(x)c(θ) exp
( k∑

i=1

wi(θ)ti(x)
)
. (3.4)

Here h(x) ≥ 0 and t1(x), . . . , tk(x) are real-valued functions of the ob-

servation x (they cannot depend on θ), and c(θ) ≥ 0 and w1(θ), . . . , wk(θ)

are real-valued functions of the possibly vector-valued parameter θ

(they cannot depend on x). Many common families introduced in the

previous section are exponential families. They include the continu-

ous families—normal, gamma, and beta, and the discrete families—

binomial, Poisson, and negative binomial.
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Example 3.3.1 (Binomial exponential family)

Let n be a positive integer and consider the binomial(n, p) fam-

ily with 0 < p < 1. Then the pmf for this family, for x =

0, 1, . . . , n and 0 < p < 1, is

f (x|p) =

(
n

x

)
px(1− p)n−x

=

(
n

x

)
(1− p)n

( p

1− p

)x

=

(
n

x

)
(1− p)n exp

(
log

( p

1− p

)
x
)
.

Define

h(x) =





(
n
x

)
x = 0, 1, . . . , n

0 otherwise,

c(p) = (1− p)n, 0 < p < 1, w1(p) = log(
p

1− p
), 0 < p < 1,

and

t1(x) = x.

Then we have

f (x|p) = h(x)c(p) exp{w1(p)t1(x)}.
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Example 3.3.2 (Normal exponential family) Let f (x|µ, σ2) be

the N(µ, σ2) family of pdfs, where θ = (µ, σ2), −∞ < µ < ∞,

σ > 0. Then

f (x|µ, σ2) =
1√
2πσ

exp
(− (x− µ)2

2σ2

)

=
1√
2πσ

exp
(− µ2

2σ2

)
exp

(− x2

2σ2
+

µx

σ2

)
.

Define

h(x) = 1 for all x;

c(θ) =
1√
2πσ

exp
(− µ2

2σ2

)
,−∞ < µ < ∞, σ > 0;

w1(θ) =
1

σ2
, σ > 0; w2(θ) =

µ

σ2
, σ > 0;

t1(x) = −x2/2; and t2(x) = x.

Then

f (x|µ, σ2) = h(x)c(µ, σ) exp[w1(µ, σ)t1(x) + w2(µ, σ)t2(x)].
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Definition 3.3.1 The indicator function of a set A, most often

denoted by IA(x), is the function

IA(x) =





1 x ∈ A

0 x /∈ A.

An alternative notation is I(x ∈ A).

In general, the set of x values for which f (x|θ > 0 cannot depend

on θ in an exponential family. For example, the set of pdfs given by

f (x|θ) = θ−1 exp(1− x/θ), 0 < θ < x < ∞,

is not an exponential family. We have

f (x|θ) = θ−1 exp(1− x/θ)I[θ,∞)(x).

The indicator function can not be incorporated into any of the func-

tions of (3.4) since it is not a function of x alone, not a function of θ

alone, and cannot be expressed as an exponential.
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Definition 3.3.2 A curved exponential family is a family of den-

sities of the form (3.4) for which the dimension of the vector θ is

equal to d < k. If d = k, the family is a full exponential family.

Example 3.3.3 (A curved exponential family) The normal fam-

ily of Example 3.3.2 is a full exponential family. However, if we

assume that σ2 = µ2, the family becomes curved. We have

f (x|µ) =
1√
2πµ2

exp
(− (x− µ)2

2µ2

)

=
1√
2πµ2

exp(−1

2
) exp(− x2

2µ2
+

x

µ
).

The full exponential family would have parameter space (µ, σ2) =

(−∞,∞)× (0,∞), while the parameter space of the curved family

(µ, σ2) = (µ, µ2) is a parabola.
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3.4 Location and Scale Families

Theorem 3.4.1 let f (x) be any pdf and let µ and σ > 0 be any

given constants. Then the function

g(x|µ, σ) =
1

σ
f (

x− µ

σ
)

is a pdf.

Proof: Since f (x) ≥ 0 for all values of x. So, 1
σf (x−µ

σ ) ≥ 0 for all

values of x, µ and σ. Next,
∫ ∞

−∞

1

σ
f (

x− µ

σ
)dx =

∫ ∞

−∞
f (y)dy = 1.

¤

Definition 3.4.1 Let f (x) be any pdf. Then the family of pdfs

f (x−µ), indexed by the parameter µ, −∞ < µ < ∞, is called the

location family with standard pdf f (x) and µ is called the location

parameter for the family.

The location parameter µ simply shifts the pdf f (x) so that the

shape of the graph is unchanged but the point on the graph that was

above x = 0 for f (x) is above x = µ for f (x− µ).

Example 3.4.1 (Exponential location family) Let f (x) = e−x,

x ≥ 0, and f (x) = 0, x < 0. To form a location family we replace
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x with x− µ to obtain

f (x|µ) =





e−(x−µ) x− µ ≥ 0

0 x− µ < 0.

That is,

f (x|µ) =





e−(x−µ) x ≥ µ

0 x < µ.

In this type of model, where µ denotes a bound on the range of

X, µ is sometimes called a threshold parameter.

Definition 3.4.2 Let f (x) be any pdf. Then for any σ > 0, the

family of pdfs (1/σ)f (x/σ), indexed by the parameter σ, is called

the scale family with standard pdf f (x) and σ is called the scale

parameter of the family.

The effect of introducing the scale parameter σ is either to stretch

(σ > 1) or to contract (σ < 1) the graph of f (x) while still maintain-

ing the same basic shape of the graph.
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Definition 3.4.3 Let f (x) be any pdf. Then for any µ, −∞ <

µ < ∞, and any σ > 0, the family of pdfs (1/σ)f ((x − µ)/σ),

indexed by the parameter (µ, σ), is called the location-scale family

with standard pdf f (x); µ is called the location parameter and σ

is called the scale parameter.

The effect of introducing both the location and scale parameters

is to stretch (σ > 1) or contract (σ < 1) the graph with the scale

parameter and then shift the graph so that the point that was above

0 is now above µ. The normal and double exponential families are

examples of location-scale families.

Theorem 3.4.2 Let f (·) be any pdf. Let µ be any real number,

and let σ be any positive real number. Then X is a random vari-

able with pdf (1/σ)f ((x−µ)/σ) if and only if there exists a random

variable Z with pdf f (z) and X = σZ + µ.
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Theorem 3.4.3 Let Z be a random variable with pdf f (z). Sup-

pose EZ and VarZ exist. If X is a random variable with pdf

(1/σ)f ((x− µ)/σ), then

EX = σEZ + µ and VarX = σ2VarZ.

In particular, if EZ = 0 and VarZ = 1, then EX = µ and

VarX = σ2.
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3.5 Inequalities and Identities

Theorem 3.5.1 (Chebychev’s Inequality) Let X be a random vari-

able and let g(x) be a nonnegative function. Then, for any r > 0,

P (g(X) ≥ r) ≤ Eg(X)

r
.

Proof:

Eg(X) =

∫ ∞

−∞
g(x)fX(x)dx

≥
∫

{x:g(x)≥r}
g(x)fX(x)dx (g is nonnegative)

≥ r

∫

{x:g(x)≥r}
fX(x)dx

= rP (g(X) ≥ r).

Rearranging now produces the desired inequality. ¤
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Example 3.5.1 (Illustrating Chebychev) let g(x) = (x− µ)2/σ2,

where µ = EX and σ2 = VarX. For convenience write r = t2.

Then

P (
(X − µ)2

σ2
≥ t2) ≤ 1

t2
E

(X − µ)2

σ2
=

1

t2
.

Thus,

P (|X − µ| ≥ tσ) ≤ 1

t2
.

For example, taking t = 2, we get

P (|X − µ| ≥ 2σ) ≤ 1

22
= 0.25.

Example 3.5.2 (A normal probability inequality) If Z is stan-

dard normal, then

P (|Z| ≥ t) ≤
√

2

π

e−t2/2

t
, for all t > 0.

Write

P (Z ≥ t) =
1√
2π

∫ ∞

t

e−x2/2dx

≤ 1√
2π

∫ ∞

t

x

t
e−x2/2dx (since x/t > 1)

=
1√
2π

e−t2/2

t

and use the fact that P (|Z| ≥ t) = 2P (Z ≥ t).
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Theorem 3.5.2 Let Xα,β denote a gamma(α, β) random variable

with pdf f (x|α, β), where α > 1. Then for any constants a and b,

P (a < Xα,β < b) = βf (a|α, β)− f (b|α, β) + P (a < Xα−1,β < b).

Lemma 3.5.1 (Stein’s Lemma) Let X ∼ N(θ, σ2), and let g be a

differentiable function satisfying E|g′(X)| < ∞. Then

E[g(X)(X − θ)] = σ2Eg′(X).

Proof: The left-hand side is

E[g(X)(X − θ)] =
1√
2πσ

∫ ∞

−∞
g(x)(x− θ)e−(x−θ)2/(2σ2)dx.

Using integration by parts with u = g(x) and dv = (x−θ)e−(x−θ)2/(2σ2)dx

to get

E[g(X)(X−θ)] =
1√
2πσ

[−σ2g(x)e−(x−θ)2/(2σ2)|∞−∞+σ2

∫ ∞

−∞
g′(x)e−(x−θ)2/(2σ2)dx

]
.

The condition on g′ is enough to ensure that the first term is 0 and

what remains on the right-hand side is σ2Eg′(X). ¤
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Example 3.5.3 (Higher-order normal moments) Stein’s lemma

makes calculation of higher-order moments quite easy/ For ex-

ample, if X ∼ N(θ, σ2), then

EX3 = EX2(X − θ + θ) = EX2(X − θ) + θEX2

= 2σ2EX + θEX2 = 2σ2θ + θ(σ2 + θ2)

= 3θσ2 + θ3.

Theorem 3.5.3 Let χ2
p denote a chi-squared random variable with

p degrees of freedom. For any function h(x),

Eh(χ2
p) = pE

(h(χ2
p+2)

χ2
p+2

)

provided the expectations exist.

Some moment calculations are very easy with Theorem 3.5.3. For

example, the mean of a χ2
p is

Eχ2
p = pE

(χ2
p

χ2
p

)
= pE(1) = p,

and the second moment is

E(χ2
p)

2 = pE
((χ2

p)
2

χ2
p

)
= pE(χ2

p) = p(p + 2).

So Varχ2
p = p(p + 2)− p2 = 2p.
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Theorem 3.5.4 (Hwang) Let g(x) be a function with −∞ <

Eg(X) < ∞ and −∞ < g(−1) < ∞. Then:

a. If X ∼ Poisson(λ),

E(λg(X)) = E(Xg(X − 1)).

b. If X ∼ negative binomial(r, p),

E((1− p)g(X)) = E
( X

r + X − 1
g(X − 1)

)
.
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Example 3.5.4 (Higher-order Poisson moments) For X ∼ Poisson(λ),

take g(x) = x2 and use Theorem 3.5.4:

E(λX2) = E(X(X − 1)2) = E(X3 − 2X2 + X).

Therefore, the third moment of a Poisson(λ) is

EX3 = λEX2 = 2EX2 − EX

= λ(λ + λ2) + 2(λ + λ2)− λ = λ3 + 3λ2 + λ.

For the negative binomial, the mean can be calculated by taking

g(x) = r + x,

E((1− p)(r + X)) = E
( X

r + X − 1
(r + X − 1)

)
= EX,

so, rearranging, we get

EX =
r(1− p)

p
.


