Chapter 9: Multiple Regression: Random \boldsymbol{x} 's

In the random-x case, k + 1 variables y, x_1, x_2, \ldots, x_k are measured on each of the *n* subjects, and we have

$$\operatorname{Cov}((y, x_1, \dots, x_k)^T) = \Sigma,$$

where Σ is not a diagonal matrix.

1 Multivariate Normal Regression Model

Under the normality assumption that $(y, \boldsymbol{x}^T)^T$ is distributed as $N_{k+1}(\boldsymbol{\mu}, \Sigma)$ with

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_y \\ \boldsymbol{\mu}_x \end{pmatrix},$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{yy} & \boldsymbol{\sigma}_{yx}^T \\ \boldsymbol{\sigma}_{yx} & \boldsymbol{\Sigma}_{xx} \end{pmatrix}.$$
 (1)

By the property of the multivariate Gaussian distribution, we have

$$E(y|\boldsymbol{x}) = \mu_y + \boldsymbol{\sigma}_{yx}^T \Sigma_{xx}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_x) = \beta_0 + \boldsymbol{\beta}_1^T \boldsymbol{x},$$

where $\beta_0 = \mu_y - \boldsymbol{\sigma}_{yx}^T \Sigma_{xx}^{-1} \boldsymbol{\mu}_x$ and

$$\boldsymbol{\beta}_1 = \boldsymbol{\Sigma}_{xx}^{-1} \boldsymbol{\sigma}_{yx}.$$
 (2)

We also have

$$\operatorname{Var}(y|\boldsymbol{x}) = \sigma_{yy} - \boldsymbol{\sigma}_{yx}^T \Sigma_{xx}^{-1} \boldsymbol{\sigma}_{yx} := \sigma^2.$$

2 Estimation and Testing in Multivariate Normal Regression

Theorem 2.1. If $(y_1, \boldsymbol{x}_1^T)$, $(y_2, \boldsymbol{x}_2^T)$, ..., $(y_n, \boldsymbol{x}_n^T)$ is a random sample from $N_{k+1}(\boldsymbol{\mu}, \Sigma)$, the maximum likelihood estimators are

$$\hat{\boldsymbol{\mu}} = \begin{pmatrix} \bar{y} \\ \bar{\boldsymbol{x}} \end{pmatrix},$$

$$\hat{\Sigma} = \frac{n-1}{n} \boldsymbol{S} = \frac{n-1}{n} \begin{pmatrix} s_{yy} & \boldsymbol{s}_{yx}^T \\ \boldsymbol{s}_{yx} & \boldsymbol{S}_{xx} \end{pmatrix}.$$
(3)

Theorem 2.2. The MLE of a function of one or more parameters is the same function of the corresponding estimators; that is, if $\hat{\boldsymbol{\theta}}$ is the MLE of the vector or matrix of parameters $\boldsymbol{\theta}$, then $g(\hat{\boldsymbol{\theta}})$ is the MLE of $g(\boldsymbol{\theta})$.

Example 2.1. We illustrate the use of the invariance property in Theorem 2.2 by showing that the sample correlation matrix \mathbf{R} is the MLE of the population correlation matrix \mathbf{P}_{ρ} when sampling from the multivariate Gaussian distribution.

Theorem 2.3. If $(y_1, \boldsymbol{x}_1^T)$, ..., $(y_n, \boldsymbol{x}_n^T)$ is a random sample from $N_{k+1}(\boldsymbol{\mu}, \Sigma)$, the MLEs of β_0 , $\boldsymbol{\beta}_1$ and σ^2 are given by

$$\hat{eta}_0 = ar{y} - oldsymbol{s}_{yx}^T oldsymbol{S}_{xx}^{-1} oldsymbol{ar{x}}$$
 $\hat{oldsymbol{eta}} - 1 = oldsymbol{S}_{xx}^{-1} oldsymbol{s}_{yx},$
 $\hat{\sigma}^2 = rac{n-1}{n} s^2,$

where $s^2 = s_{yy} - \boldsymbol{s}_{yx}^T \boldsymbol{S}_{xx}^{-1} \boldsymbol{s}_{yx}$.

3 Standardized Regression Coefficients

We now show that the regression coefficient vector $\hat{\boldsymbol{\beta}}_1$ can be expressed in terms of sample correlations. The sample correlation matrix can be written in partitioned form as

$$\boldsymbol{R} = \begin{pmatrix} 1 & \boldsymbol{r}_{yx}^T \\ \boldsymbol{r}_{yx} & \boldsymbol{R}_{xx} \end{pmatrix},\tag{4}$$

where r_{yx} is the vector of correlation between y and x's, and \mathbf{R}_{xx} is the correlation matrix for the x's. In particular, we have

$$r_{y,x_j} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_{ij} - \bar{x}_j)}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{b} (x_{ij} - \bar{x}_j)^2}}.$$

 \boldsymbol{R} can be converted to \boldsymbol{S} by

$$S = DRD,$$

where $\boldsymbol{D} = [diag(S)]^{1/2} = \text{diag}(s_y, \sqrt{s_{11}}, \dots, \sqrt{s_{kk}})$. Therefore

$$oldsymbol{S} = egin{pmatrix} s_{yy} & oldsymbol{s}_{yx} \ oldsymbol{s}_{yx} & oldsymbol{S}_{xx} \end{pmatrix} = egin{pmatrix} s_y^2 & s_y oldsymbol{r}_{yx}^T oldsymbol{D}_x \ oldsymbol{s}_y oldsymbol{D}_x & oldsymbol{D}_x oldsymbol{R}_{xx} oldsymbol{D}_x \end{pmatrix},$$

where $D_x = diag(s_1, s_2, \ldots, s_k)$ and $s_i = \sqrt{s_{ii}}$ for $i = 1, 2, \ldots, k$. By the partition of S, we have

$$\boldsymbol{S}_{xx} = \boldsymbol{D}_x \boldsymbol{R}_{xx} \boldsymbol{D}_x, \quad \boldsymbol{s}_{yx} = s_y \boldsymbol{D}_x \boldsymbol{r}_{yx}.$$

Therefore,

$$\hat{\boldsymbol{\beta}}_1 = \boldsymbol{S}_{xx}^{-1} \boldsymbol{s}_{yx} = s_y \boldsymbol{D}_x^{-1} \boldsymbol{R}_{xx}^{-1} \boldsymbol{r}_{yx}.$$

We illustrate the formula for k = 2. Consider the centered the model:

$$\hat{y}_i = \bar{y} + \hat{\beta}_1(x_{i1} - \bar{x}_1) + \hat{\beta}_2(x_{i2} - \bar{x}_2),$$

which can be expressed in terms of standardized variables as

$$\frac{\hat{y}_i - \bar{y}}{s_y} = \frac{s_1}{s_y} \hat{\beta}_1 \left(\frac{x_{i1} - \bar{x}_1}{s_1} \right) + \frac{s_2}{s_y} \hat{\beta}_2 \left(\frac{x_{i2} - \bar{x}_2}{s_2} \right).$$

We this define the standardized coefficient as

$$\hat{\beta}_j^* = \frac{s_1}{s_y} \hat{\beta}_j.$$

In the matrix-vector form, we have

$$\hat{\boldsymbol{\beta}}_1^* = rac{1}{s_y} \boldsymbol{D}_x \hat{\boldsymbol{\beta}}_1,$$

which can be further written as

$$\hat{oldsymbol{eta}}_1^* = oldsymbol{R}_{xx}^{-1}oldsymbol{r}_{yx}$$

4 R² in Multivariate Normal Regression

The population multiple correlation coefficient $\rho_{y|x}$ is defined as the correlation between y and the linear function $w = \mu_y + \sigma_{yx}^T \Sigma_{xx}^{-1} (x - \mu_x)$:

$$\rho_{y|\boldsymbol{x}} = corr(y, w) = \frac{\sigma_{yw}}{\sigma_y \sigma_w},$$

where w is equal to E(y|x). As x varies randomly, w becomes a random variable.

It is easy to establish that

$$\operatorname{Cov}(y,w) = \operatorname{Var}(w) = \boldsymbol{\sigma}_{yx}^T \boldsymbol{\Sigma}_{xx}^{-1} \boldsymbol{\sigma}_{yx},$$

by the fact that y = w + e, and e denotes a random error vector.

Then the population multiple correlation $\rho_{y|x}$ becomes

$$\rho_{y|\boldsymbol{x}} = \frac{\operatorname{Cov}(y, w)}{\operatorname{Var}(y)\operatorname{Var}(w)} = \sqrt{\frac{\boldsymbol{\sigma}_{yx}' \boldsymbol{\Sigma}_{xx}^{-1} \boldsymbol{\sigma}_{yx}}{\boldsymbol{\sigma}_{yx}}},$$

The population coefficient of determination or population squared multiple correlation $\rho_{y|x}^2$ is given by

$$\rho_{y|\boldsymbol{x}}^2 = \frac{\boldsymbol{\sigma}_{yx}' \boldsymbol{\Sigma}_{xx}^{-1} \boldsymbol{\sigma}_{yx}}{\boldsymbol{\sigma}_{yx}}$$

In what follows, we list some properties of $\rho_{y|x}$ and $\rho_{y|x}^2$:

- 1. $\rho_{y|x}$ is the maximum correlation between y and any linear function of x; that is, $\rho_{y|x} = \max_{a} \rho_{y,a'x}$.
- 2. $\rho_{y|x}^2$ can be expressed in terms of determinants:

$$\rho_{y|\boldsymbol{x}}^2 = 1 - \frac{|\boldsymbol{\Sigma}|}{\sigma_{yy}|\boldsymbol{\Sigma}_{xx}|},$$

where Σ and Σ_{xx} are as defined in (??).

- 3. $\rho_{y|x}^2$ is invariant to linear transformations on y or on the x's; that is, if u = ay and v = Bx, where B is nonsingular, then $\rho_{u|v}^2 = \rho_{y|x}^2$.
- 4. Using $\operatorname{Var}(w) = \sigma'_{yx} \sigma_{xx}^{-1} \sigma_{yx}$, $\rho_{y|x}^2$ can be written in the form

$$\rho_{y|\boldsymbol{x}}^2 = \frac{\operatorname{Var}(w)}{\operatorname{Var}(y)}.$$

5. $\operatorname{Var}(y|\boldsymbol{x})$ can be expressed in terms of $\rho_{u|\boldsymbol{x}}^2$:

$$\operatorname{Var}(y|\boldsymbol{x}) = \sigma_{yy} - \boldsymbol{\sigma}_{yx}^T \Sigma_{xx}^{-1} \boldsymbol{\sigma}_{yx} = \sigma_{yy} - \sigma_{yy} \rho_{y|\boldsymbol{x}}^2 = \sigma_{yy} (1 - \rho_{y|\boldsymbol{x}}^2).$$

6. If we consider y - w as a residual or error term, then y - w is uncorrelated with the x's,

$$\operatorname{Cov}(y - w, x) = 0.$$

We can obtain a MLE for $\rho_{y|\pmb{x}}^2,$ which is

$$R^2 = \frac{\boldsymbol{s}_{yx}' S_{xx}^{-1} \boldsymbol{s}_{yx}}{\boldsymbol{s}_{yy}}.$$

R is called the sample multiple correlation coefficient.

We now list several properties of R and R^2 , some of which are analogous to properties of $\rho_{y|x}^2$ above.

- 1. R is equal to the correlation between y and \hat{y} .
- 2. R is equal to the maximum correlation between y and ant linear combination a'x:

$$R = \max_{\boldsymbol{a}} r_{\boldsymbol{y}, \boldsymbol{a}' \boldsymbol{x}}.$$

3. R^2 can be expressed in terms of correlations:

$$R^2 = \boldsymbol{r}_{yx}^T \boldsymbol{R}_{xx}^{-1} \boldsymbol{r}_{yx},$$

where \mathbf{r}_{yx} and \mathbf{R}_{xx} are from the samle correlation matrix \mathbf{R} partitioned as in (4).

4. R^2 can be obtained from \mathbf{R}^{-1} :

$$R^2 = 1 - \frac{1}{r^{yy}}$$

where r^{yy} is the first diagonal element of \mathbf{R}^{-1} .

5. R^2 can be expressed in terms of determinants:

$$R^2 = 1 - \frac{|\boldsymbol{S}|}{s_{yy}|\boldsymbol{S}_{xx}|} = 1 - \frac{|\boldsymbol{R}|}{|\boldsymbol{R}_{xx}|},$$

where \boldsymbol{S}_{xx} are \boldsymbol{R}_{xx} are defined in (3) and (4).

6. If $\rho_{y|x}^2 = 0$, the expected value of R^2 is given by

$$E(R^2) = \frac{k}{n-1}$$

 R^2 is biased when $\rho_{y|x}^2 = 0$.

- 7. $R^2 \ge \max_j r_{yj}^2$, where r_{yj} is an element of $\boldsymbol{r}_{yx} = (r_{y1}, r_{y2}, \dots, r_{yk})^T$.
- 8. R^2 is invariant to full linear transformations on y or on the x's.

5 Tests and Confidence Intervals for R^2

Note that $\rho_{y|\boldsymbol{x}}^2 = 0$ becomes

$$ho_{y|\boldsymbol{x}}^2 = rac{\boldsymbol{\sigma}_{yx}^T \Sigma_{xx}^{-1} \boldsymbol{\sigma}_{yx}}{\sigma_{yy}} = 0.$$

which leads to $\sigma_{yx} = 0$ since Σ_{xx} is positive. Further, by (2), $\beta_1 = \Sigma_{xx}^{-1} \sigma_{yx}$, $H_0 : \rho_{y|x}^2 = 0$ is equivalent to $H_0 : \beta_1 = 0$.

The F statistic for fixed x's is given by

$$F = \frac{(\hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y} - n\bar{y}^2)/k}{(\boldsymbol{y}' \boldsymbol{y} - \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y})/(n - k - 1)}$$

$$= \frac{R^2/k}{(1 - R^2)/(n - k - 1)}.$$
 (5)

The test statistic in (5) can be obtained by the likelihood ratio approach in the case of random x's.

Theorem 5.1. If (y_1, \boldsymbol{x}'_1) , (y_2, \boldsymbol{x}'_2) , ..., (y_n, \boldsymbol{x}'_n) is a random sample from $N_{k+1}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the likelihood ratio test for $H_0: \boldsymbol{\beta}_1 = 0$ or equivalently $H_0: \rho_{y|\boldsymbol{x}}^2 = 0$ can be based on F in (5). We reject H_0 if $F > F_{\alpha,k,n-k-1}$.

When k = 1, F in (5) reduces to $F = (n - 2)r^2/(1 - r^2)$. Hence,

$$t = \frac{\sqrt{n-2}r}{\sqrt{1-r^2}}$$

has a t-distribution with n-2 degrees of freedom when (y, x) has a bivariate normal distribution with $\rho = 0$.

If (y, x) is bivariate normal and $\rho \neq 0$, then $\operatorname{Var}(r) = (1 - \rho^2)^2/n$ and the function

$$u = \frac{\sqrt{n}(r-\rho)}{1-\rho^2},$$

is approximately standard normal for large n. However, the distribution of u approaches normality very slowly as n increases. Fisher (1921) found a function of r

$$z = \frac{1}{2}\log\frac{1+r}{1-r} = \tanh^{-1}(r),$$

approaches normality much faster than does u. The approximated mean and variance of z are

$$E(z) \approx \frac{1}{2} \log \frac{1+\rho}{1-\rho},$$
$$\operatorname{Var}(z) \approx \frac{1}{n-3}.$$

We can use Fisher's transformation to test the hypotheses such as $H_0: \rho = \rho_0$ vs. $H_1: \rho \neq \rho_0$, we calculate

$$v = \frac{z - \tanh^{-1}(\rho_0)}{\sqrt{1/(n-3)}},$$

which is approximately distributed as the standard normal N(0, 1).

6 Sample Partial Correlations

The population partial correlation $\rho_{ij \cdot rs \cdots q}$ is the correlation between y_i and y_j in the conditional distribution of \boldsymbol{y} given \boldsymbol{x} , where y_i and y_j are in \boldsymbol{y} and the subcripts r, s, \ldots, q represent all the variables in \boldsymbol{x} :

$$\rho_{ij\cdot rs\cdots q} = \frac{\sigma_{ij\cdot rs\cdots q}}{\sqrt{\sigma_{ii\cdot rs\cdots q}\sigma_{jj\cdot rs\cdots q}}}$$

where $\sigma_{ij \cdot rs \cdots q}$ is the (ij)th element of $\Sigma_{y \cdot x} = \text{Cov}(y|x)$.

To simplify exposition, we illustrate with $r_{12\cdot3}$. The sample partial correlation of y_1 and y_2 with y_3 held fixed is usually given as

$$r_{12\cdot 3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{(1 - r_{13}^2)(1 - r_{23}^2)}}$$

where r_{12} , r_{13} and r_{23} are the ordinary correlations between y_1 and y_2 , y_1 and y_3 , y_2 and y_3 , respectively.

Theorem 6.1. The expression for $r_{12\cdot 3}$ is equal to $r_{y_1-\hat{y}_1,y_2-\hat{y}_2}$, where $y_1 - \hat{y}_1$ and $y_2 - \hat{y}_2$ are residuals from regression of y_1 on y_3 and y_2 on y_3 .