Chapter 9: Multiple Regression: Random x’s

In the random-x case, k + 1 variables y, x1, 2, . .., ) are measured on each of the n subjects,

and we have
Cov((y, z1, . .. ,:ck)T) =3,

where X is not a diagonal matrix.

1 Multivariate Normal Regression Model

Under the normality assumption that (y,z”)? is distributed as Ny1(p, ) with
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By the property of the multivariate Gaussian distribution, we have
E(yle) = py + 0,55 (x — py) = fo + Bia,

where fo = p, — o}, X, p, and
Bi = Z;arlo'yw- (2)

We also have

Var(y|z) = o,y — UZIZ;;UW = g2,

2 Estimation and Testing in Multivariate Normal Regres-

sion
Theorem 2.1. If (yy, 7)), (y2, L), ..., (Yn,xL) is a random sample from Ny, 1(p, ), the mazi-

mum likelthood estimators are




Theorem 2.2. The MLE of a function of one or more parameters is the same function of the
corresponding estimators; that is, if 0 is the MLE of the vector or matriz of parameters @, then

9(0) is the MLE of g(8).

Example 2.1. We illustrate the use of the invariance property in Theorem|[2.9 by showing that the
sample correlation matriz R is the MLE of the population correlation matriz P, when sampling

from the multivariate Gaussian distribution.

Theorem 2.3. If (y1,x7), ..., (yn, L) is a random sample from Nyy1(p,Y), the MLEs of B,

B, and o? are given by
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where s° = sy, — 8,5, Sya-

3 Standardized Regression Coefficients

We now show that the regression coefficient vector 3, can be expressed in terms of sample corre-

lations. The sample correlation matrix can be written in partitioned form as
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where 1, is the vector of correlation between y and z’s, and R,, is the correlation matrix for the

x’s. In particular, we have
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R can be converted to S by

S — DRD,
where D = [diag(S)]'/? = diag(s,, /511, - - -, \/Skk)- Therefore
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where D, = diag(s1, Sa,...,8k) and s; = /s;; for i = 1,2,... k. By the partition of S, we have

S:v:c = D$Rza:Dzu Syz = SyD.trya:'



Therefore,

Bi=S.ls =5,D, R, }ry,.
We illustrate the formula for k = 2. Consider the centered the model:
Ui =y + Bl(ﬂfil — 7)) + Bz(fﬂiz — Zg),
which can be expressed in terms of standardized variables as
Ui—Y S15 (T — Ty So n [ Tio — T
2 (52 24 (2)
Sy Sy S1 Sy S9

We this define the standardized coeflicient as
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In the matrix-vector form, we have
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which can be further written as
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4 R? in Multivariate Normal Regression

The population multiple correlation coefficient p, is defined as the correlation between y and the
linear function w = p, + o} X x — p,):

Oyw

Pyl = corr(y,w) = .

where w is equal to E(y|x). As x varies randomly, w becomes a random variable.
It is easy to establish that

Cov(y,w) = Var(w) = U;E;;UW,

by the fact that y = w + e, and e denotes a random error vector.

Then the population multiple correlation py|, becomes

_ Colpw) _ [onSdoy
Pule = Var(y)Var(w) Oy

The population coefficient of determination or population squared multiple correlation pi‘m is given

by
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In what follows, we list some properties of py|, and pi‘w:
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1. pye is the maximum correlation between y and any linear function of x; that is, py. =

MaXq Py.a'z-
2. pz‘m can be expressed in terms of determinants:
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where ¥ and ., are as defined in (?7).

3. /)32/\:,: is invariant to linear transformations on y or on the x’s; that is, if u = ay and v = Bz,

where B is nonsingular, then pzw = pz‘m.

4. Using Var(w) = o/ o}

2 . .
o0 2z Oyas Py, Can be written in the form

5. Var(y|x) can be expressed in terms of pz‘m:

Var(ylz) = oy, — a';‘/FxZ;;a'w = Oyy — Uyypg2/|:c = oyy(1 — p§|a:>'

6. If we consider y — w as a residual or error term, then y — w is uncorrelated with the x’s,

Cov(y —w,z) = 0.

We can obtain a MLE for pz‘w, which is

/ -1
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R is called the sample multiple correlation coefficient.
We now list several properties of R and R?, some of which are analogous to properties of pzkn

above.
1. R is equal to the correlation between y and 3.

2. R is equal to the maximum correlation between y and ant linear combination a’x:
R = MaX Ty q/z-
3. R? can be expressed in terms of correlations:
R? = rgwR;;ryx,
where r,, and R, are from the samle correlation matrix R partitioned as in (4]
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4. R? can be obtained from R

RZ=1— 1
rvy’
where 7% is the first diagonal element of R™".
5. R? can be expressed in terms of determinants:
S R
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where S, are R,, are defined in and .
6. If pi‘m = 0, the expected value of R? is given by
k
E(R?) = :
(RY) = ——
R? is biased when p?, = 0.
7. R® > max; 7, where ry; is an element of 7y, = (71,72, ..., 7yx)" .

8. R? is invariant to full linear transformations on y or on the z’s.

5 Tests and Confidence Intervals for R?

Note that p;w = 0 becomes

T yv—-1
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which leads to o,, = 0 since ¥,, is positive. Further, by , B, = Y, oy, Ho: pzkc =0 is

equivalent to Hy : 3, = 0.
The F statistic for fixed z’s is given by

(B X'y — ng?)/k
Yy - BX'y)/(n—k—1)
R%/k
1-R?)/(n—k—-1)

F =

(5)

The test statistic in can be obtained by the likelihood ratio approach in the case of random

)

T S.

Theorem 5.1. If (y1, ), (y2, ), ..., (Yn,x)) is a random sample from Nyi1(p, X), the likeli-
hood ratio test for Hy : 3; = 0 or equivalently Hy : ngflw =0 can be based on F in (@) We reject

Ho of > Fypn—k—1-



When k =1, F in (5] reduces to F = (n — 2)r?/(1 — r?). Hence,

Vn —2r
N
has a t-distribution with n — 2 degrees of freedom when (y, z) has a bivariate normal distribution
with p = 0.
If (y,z) is bivariate normal and p # 0, then Var(r) = (1 — p*)?/n and the function
Vin(r = p)

e

t =

is approximately standard normal for large n. However, the distribution of u approaches normality
very slowly as n increases. Fisher (1921) found a function of r
1+r

1
=3 log = tanh ™ (r),
approaches normality much faster than does u. The approximated mean and variance of z are
1 1+p
FE(z2) =~ —log ——
1
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We can use Fisher’s transformation to test the hypotheses such as Hy : p = pg vs. Hi : p # po, we

calculate
z —tanh™(py)

- 1/(n—-3) "’

which is approximately distributed as the standard normal N (0, 1).

6 Sample Partial Correlations

The population partial correlation p;j.,s...q is the correlation between y; and y; in the conditional
distribution of y given x, where y; and y; are in y and the subcripts 7, s, ..., ¢ represent all the

variables in @:
Oijrs-q

Pijrs-q = )
Uii-rs-~~qgjj-rs---q

where 0;j..5..4 18 the (ij)th element of 3., = Cov(y|x).
To simplify exposition, we illustrate with r15.5. The sample partial correlation of y; and s
with y3 held fixed is usually given as
Fias = 12 — 713723 :
\/(1 —7i5) (1 = 7135)
where 115, 113 and re3 are the ordinary correlations between y; and ys, y; and y3, y» and ys,

respectively.

Theorem 6.1. The expression for ris.s is equal 10 Ty, g yo—go, Where y1 — Y1 and yo — Yo are

residuals from regression of y1 on y3 and y, on ys.
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