
Chapter 9: Multiple Regression: Random x’s

In the random-x case, k + 1 variables y, x1, x2, . . . , xk are measured on each of the n subjects,

and we have

Cov((y, x1, . . . , xk)
T ) = Σ,

where Σ is not a diagonal matrix.

1 Multivariate Normal Regression Model

Under the normality assumption that (y,xT )T is distributed as Nk+1(µ,Σ) with

µ =

(
µy

µx

)
,

Σ =

(
σyy σT

yx

σyx Σxx

)
. (1)

By the property of the multivariate Gaussian distribution, we have

E(y|x) = µy + σT
yxΣ

−1
xx (x− µx) = β0 + βT

1 x,

where β0 = µy − σT
yxΣ

−1
xxµx and

β1 = Σ−1
xxσyx. (2)

We also have

Var(y|x) = σyy − σT
yxΣ

−1
xxσyx := σ2.

2 Estimation and Testing in Multivariate Normal Regres-

sion

Theorem 2.1. If (y1,x
T
1 ), (y2,x

T
2 ), . . ., (yn,x

T
n ) is a random sample from Nk+1(µ,Σ), the maxi-

mum likelihood estimators are

µ̂ =

(
ȳ

x̄

)
,

Σ̂ =
n− 1

n
S =

n− 1

n

(
syy sTyx

syx Sxx

)
.

(3)
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Theorem 2.2. The MLE of a function of one or more parameters is the same function of the

corresponding estimators; that is, if θ̂ is the MLE of the vector or matrix of parameters θ, then

g(θ̂) is the MLE of g(θ).

Example 2.1. We illustrate the use of the invariance property in Theorem 2.2 by showing that the

sample correlation matrix R is the MLE of the population correlation matrix P ρ when sampling

from the multivariate Gaussian distribution.

Theorem 2.3. If (y1,x
T
1 ), . . ., (yn,x

T
n ) is a random sample from Nk+1(µ,Σ), the MLEs of β0,

β1 and σ2 are given by

β̂0 = ȳ − sTyxS
−1
xx x̄,

β̂ − 1 = S−1
xxsyx,

σ̂2 =
n− 1

n
s2,

where s2 = syy − sTyxS
−1
xxsyx.

3 Standardized Regression Coefficients

We now show that the regression coefficient vector β̂1 can be expressed in terms of sample corre-

lations. The sample correlation matrix can be written in partitioned form as

R =

(
1 rT

yx

ryx Rxx

)
, (4)

where ryx is the vector of correlation between y and x’s, and Rxx is the correlation matrix for the

x’s. In particular, we have

ry,xj
=

∑n
i=1(yi − ȳ)(xij − x̄j)√∑n

i=1(yi − ȳ)2
∑b

i=1(xij − x̄j)2
.

R can be converted to S by

S = DRD,

where D = [diag(S)]1/2 = diag(sy,
√
s11, . . . ,

√
skk). Therefore

S =

(
syy sTyx

syx Sxx

)
=

(
s2y syr

T
yxDx

syDx DxRxxDx

)
,

where Dx = diag(s1, s2, . . . , sk) and si =
√
sii for i = 1, 2, . . . , k. By the partition of S, we have

Sxx = DxRxxDx, syx = syDxryx.
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Therefore,

β̂1 = S−1
xxsyx = syD

−1
x R−1

xxryx.

We illustrate the formula for k = 2. Consider the centered the model:

ŷi = ȳ + β̂1(xi1 − x̄1) + β̂2(xi2 − x̄2),

which can be expressed in terms of standardized variables as

ŷi − ȳ

sy
=

s1
sy
β̂1

(
xi1 − x̄1

s1

)
+

s2
sy
β̂2

(
xi2 − x̄2

s2

)
.

We this define the standardized coefficient as

β̂∗
j =

s1
sy
β̂j.

In the matrix-vector form, we have

β̂
∗
1 =

1

sy
Dxβ̂1,

which can be further written as

β̂
∗
1 = R−1

xxryx.

4 R2 in Multivariate Normal Regression

The population multiple correlation coefficient ρy|x is defined as the correlation between y and the

linear function w = µy + σT
yxΣ

−1
xx (x− µx):

ρy|x = corr(y, w) =
σyw

σyσw

,

where w is equal to E(y|x). As x varies randomly, w becomes a random variable.

It is easy to establish that

Cov(y, w) = Var(w) = σT
yxΣ

−1
xxσyx,

by the fact that y = w + e, and e denotes a random error vector.

Then the population multiple correlation ρy|x becomes

ρy|x =
Cov(y, w)

Var(y)Var(w)
=

√
σ′

yxΣ
−1
xxσyx

σyx

.

The population coefficient of determination or population squared multiple correlation ρ2y|x is given

by

ρ2y|x =
σ′

yxΣ
−1
xxσyx

σyx

.

In what follows, we list some properties of ρy|x and ρ2y|x:
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1. ρy|x is the maximum correlation between y and any linear function of x; that is, ρy|x =

maxa ρy,a′x.

2. ρ2y|x can be expressed in terms of determinants:

ρ2y|x = 1− |Σ|
σyy|Σxx|

,

where Σ and Σxx are as defined in (??).

3. ρ2y|x is invariant to linear transformations on y or on the x’s; that is, if u = ay and v = Bx,

where B is nonsingular, then ρ2u|v = ρ2y|x.

4. Using Var(w) = σ′
yxσ

−1
xxσyx, ρ

2
y|x can be written in the form

ρ2y|x =
Var(w)

Var(y)
.

5. Var(y|x) can be expressed in terms of ρ2y|x:

Var(y|x) = σyy − σT
yxΣ

−1
xxσyx = σyy − σyyρ

2
y|x = σyy(1− ρ2y|x).

6. If we consider y − w as a residual or error term, then y − w is uncorrelated with the x’s,

Cov(y − w, x) = 0.

We can obtain a MLE for ρ2y|x, which is

R2 =
s′yxS

−1
xx syx

syy
.

R is called the sample multiple correlation coefficient.

We now list several properties of R and R2, some of which are analogous to properties of ρ2y|x
above.

1. R is equal to the correlation between y and ŷ.

2. R is equal to the maximum correlation between y and ant linear combination a′x:

R = max
a

ry,a′x.

3. R2 can be expressed in terms of correlations:

R2 = rT
yxR

−1
xxryx,

where ryx and Rxx are from the samle correlation matrix R partitioned as in (4).
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4. R2 can be obtained from R−1:

R2 = 1− 1

ryy
,

where ryy is the first diagonal element of R−1.

5. R2 can be expressed in terms of determinants:

R2 = 1− |S|
syy|Sxx|

= 1− |R|
|Rxx|

,

where Sxx are Rxx are defined in (3) and (4).

6. If ρ2y|x = 0, the expected value of R2 is given by

E(R2) =
k

n− 1
.

R2 is biased when ρ2y|x = 0.

7. R2 ≥ maxj r
2
yj, where ryj is an element of ryx = (ry1, ry2, . . . , ryk)

T .

8. R2 is invariant to full linear transformations on y or on the x’s.

5 Tests and Confidence Intervals for R2

Note that ρ2y|x = 0 becomes

ρ2y|x =
σT

yxΣ
−1
xxσyx

σyy

= 0,

which leads to σyx = 0 since Σxx is positive. Further, by (2), β1 = Σ−1
xxσyx, H0 : ρ2y|x = 0 is

equivalent to H0 : β1 = 0.

The F statistic for fixed x’s is given by

F =
(β̂

′
X ′y − nȳ2)/k

(y′y − β̂
′
X ′y)/(n− k − 1)

=
R2/k

(1−R2)/(n− k − 1)
.

(5)

The test statistic in (5) can be obtained by the likelihood ratio approach in the case of random

x’s.

Theorem 5.1. If (y1,x
′
1), (y2,x

′
2), . . ., (yn,x

′
n) is a random sample from Nk+1(µ,Σ), the likeli-

hood ratio test for H0 : β1 = 0 or equivalently H0 : ρ
2
y|x = 0 can be based on F in (5). We reject

H0 if F > Fα,k,n−k−1.
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When k = 1, F in (5) reduces to F = (n− 2)r2/(1− r2). Hence,

t =

√
n− 2r√
1− r2

has a t-distribution with n− 2 degrees of freedom when (y, x) has a bivariate normal distribution

with ρ = 0.

If (y, x) is bivariate normal and ρ ̸= 0, then Var(r) = (1− ρ2)2/n and the function

u =

√
n(r − ρ)

1− ρ2
,

is approximately standard normal for large n. However, the distribution of u approaches normality

very slowly as n increases. Fisher (1921) found a function of r

z =
1

2
log

1 + r

1− r
= tanh−1(r),

approaches normality much faster than does u. The approximated mean and variance of z are

E(z) ≈ 1

2
log

1 + ρ

1− ρ
,

Var(z) ≈ 1

n− 3
.

We can use Fisher’s transformation to test the hypotheses such as H0 : ρ = ρ0 vs. H1 : ρ ̸= ρ0, we

calculate

v =
z − tanh−1(ρ0)√

1/(n− 3)
,

which is approximately distributed as the standard normal N(0, 1).

6 Sample Partial Correlations

The population partial correlation ρij·rs···q is the correlation between yi and yj in the conditional

distribution of y given x, where yi and yj are in y and the subcripts r, s, . . . , q represent all the

variables in x:

ρij·rs···q =
σij·rs···q√

σii·rs···qσjj·rs···q
,

where σij·rs···q is the (ij)th element of Σy·x = Cov(y|x).
To simplify exposition, we illustrate with r12·3. The sample partial correlation of y1 and y2

with y3 held fixed is usually given as

r12·3 =
r12 − r13r23√

(1− r213)(1− r223)
,

where r12, r13 and r23 are the ordinary correlations between y1 and y2, y1 and y3, y2 and y3,

respectively.

Theorem 6.1. The expression for r12·3 is equal to ry1−ŷ1,y2−ŷ2, where y1 − ŷ1 and y2 − ŷ2 are

residuals from regression of y1 on y3 and y2 on y3.
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