
Chapter 8: Multiple Regression: Model Validation and

Diagnostics

1 Residuals

Consider the linear model y = Xβ + ϵ again. The residual is defined as

ϵ̂ = y −Xβ̂ := y − ŷ,

where β̂ = (XTX)−1XTy. The fitted value is given by

ŷ = Xβ̂ = X(XTX)−1XTy = Hy,

where H = X(XTX)−1XT is called the hat matrix. The hat matrix has the following properties:

HX = X,

j = Hj, xi = Hxi, i = 1, 2, . . . , k,

and

ϵ̂ = (I −H)y.

In addition,

ϵ̂ = (I −H)(Xβ + ϵ) = (I −H)ϵ.

The following are some of the properties of ϵ̂:

E(ϵ̂) = 0,

Cov(ϵ̂) = σ2(I −H),

Cov(ϵ̂,y) = σ2(I −H),

Cov(ϵ̂, ŷ) = 0,

¯̂ϵ =
n∑

i=1

ϵ̂i/n = ϵ̂Tj/n = 0,

ϵ̂Ty = SSE = yT (I −X(XTX)−1XT )y = yT (I −H)y,

ϵ̂T ŷ = 0,

ϵ̂TX = 0.
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The above formulas imply that ϵ̂ is orthogonal to ŷ and each column of X, while it is correlated

with y. Therefore, we use the scatter plots ϵ̂ versus ŷ to examine the pattern of the residual.

If the model is incorrect, various plots involving residuals may show departures from the fitted

model such as outliers. curvature, or nonconstant variance.

2 The Hat Matrix

For the centered model,

y = αj +Xcβ1 + ϵ,

where Xc = (I − 1
n
J)X1, and ŷ becomes

ŷ = α̂j +Xcβ̂1,

and we can define

Hc = Xc(X
T
c Xc)

−1XT
c .

Therefore,

ŷ = ȳj +Xc(X
T
c Xc)

−1XT
c y = (

1

n
jTy)j +Hcy = (

1

n
J +Hc)y.

By arbitrariness of y, we have

H =
1

n
J +Hc =

1

n
J +Xc(X

T
c Xc)

−1XT
c .

Theorem 2.1. If X is n× (k + 1) of rank k + 1 < n, and if the first column of X is j, then the

element hij of H = X(XTX)−1XT have the following properties:

• 1/n ≤ hii ≤ 1 for i = 1, 2, . . . , n.

• −0.5 ≤ hij ≤ 0.5 for all j ̸= i.

• hii = 1/n+(x1i−x̄1)
T (XcXc)

−1(x1i−x̄1), where x
T
1i = (xi1, xi2, . . . , xik), x̄

T = (x̄1, x̄2, . . . , x̄k),

and (x1i − x̄1)
T is the ith row of the centered matrix Xc.

• tr(H) =
∑n

i=1 hii = k + 1.

Proof. (i) The lower bound follows from the relationship H = 1
n
J+Hc =

1
n
J+Xc(X

T
c Xc)

−1XT
c ,

where XT
c Xc is positive definite. The upper bound follows from the property H = H2, which

implies

hii = hT
i hi = h2

ii +
∑
j ̸=i

h2
ij,

or, equivalently,

1 = hii +
∑
j ̸=i

h2
ij/hii,
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which implies hii ≤ 1.

(ii) Since hii = hT
i hi = h2

ii + h2
ij +

∑
r ̸=i,j h

2
ir, we have

hii − h2
ii = h2

ij +
∑
r ̸=i,j

h2
ir,

and thus h2
ij ≤ hii−h2

ii. Since the maximum value of hii−h2
ii is 1/4, we have −0.5 ≤ hij ≤ 0.5.

3 Outliers

For outlier analysis, we need to keep in mind that the variance of the residuals is not constant:

Var(ϵ̂) = σ2(1− hii).

An additional verification that large values of hii are accompanied by small residuals is provided

by the property:
1

n
≤ hii +

ϵ̂2i
ϵ̂T ϵ̂

≤ 1.

There are two common methods of scaling of the residuals:

• Standardized residual:

ri =
ϵ̂i

s
√
1− hii

,

where s =
√

SSE/(n− k − 1).

• Studentized residual:

ti =
ϵ̂i

s(i)
√
1− hii

,

where s(i) is the standard error computed with the n − 1 samples remaining after omitting

the ith sample. Such a residual is also called a studentized deleted residual or externally

studentized residual. Alternatively, ti can be calculated as

ti = ri

(
n− p− 1

n− p− r2i

)1/2

,

where p = k + 1 denotes the number of columns of X.

For deleted residuals, we have the following relationships:

ϵ̂(i) = yi − ŷ(i) = yi − xT
i β̂(i),

where β̂(i) = (XT
(i)X(i))

−1XT
(i)y(i), X(i) is an (n− 1)× (k + 1) matrix. In addition, we have

β̂(i) = β̂ − ϵ̂i
1− hii

(XTX)−1xi.
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The deleted residual can also be expressed as

ϵ̂(i) =
ϵ̂i

1− hii

,

and

ti =
ϵ̂(i)
s(i)

.

The deleted sample variance s2(i) can be expressed as

s2(i) =
SSE(i)

n− k − 2
=

SSE − ϵ̂2i /(1− hii)

n− k − 2
.

The n deleted residuals can be used for model validation or selection by defining the prediction

sum of squares (PRESS):

PRESS =
n∑

i=1

ϵ̂2(i) =
n∑

i=1

(
ϵ̂i

1− hii

)2

.

To use PRESS to compare alternative models when the objective is prediction, preference would

be shown to models with small values of PRESS.

4 Influential Observations and Leverage

4.1 Leverage

To investigate the influence of each observation, we begin with ŷ = Hy, the element of which are

ŷi = hiiyi +
∑
j ̸=i

hijyj.

Therefore, if hii is large (close to 1), then hij’s, j ̸= i, are small, and yi contributes much more

than others to ŷi. Hence, hii is called the leverage of yi.

By Theorem 2.1, the average value of hii’s is (k + 1)/n. Hoaglin and Welsch (1978) suggest

that a point with hii > 2(k + 1)/n is a high leverage point. Alternatively, we can simply examine

any observations whose value of hii is unusually lareg relative to the other values of hii.

4.2 Cook’s Distance

To formalize the influence of an observation, we consider the effect of its deletion on β and ŷ.

This is measured by Cook’s distance

Di =
(β̂(i) − β̂)TXTX(β̂(i) − β̂)

(k + 1)s2
=

(ŷ(i) − ŷ)T (ŷ(i) − ŷ)

(k + 1)s2
.

Therefore, if Di is large, the observation i has substantial influence on both β̂ and ŷ. A more

computationally convenience form of Di is given by

Di =
r2i

k + 1

(
hii

1− hii

)
.
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