Chapter 8: Multiple Regression: Model Validation and Diagnostics

1 Residuals

Consider the linear model $\boldsymbol{y} = \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}$ again. The residual is defined as

$$\hat{\boldsymbol{\epsilon}} = \boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}} := \boldsymbol{y} - \hat{\boldsymbol{y}},$$

where $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$. The fitted value is given by

$$\hat{\boldsymbol{y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} = \boldsymbol{H}\boldsymbol{y},$$

where $\boldsymbol{H} = \boldsymbol{X}(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T$ is called the hat matrix. The hat matrix has the following properties:

HX = X,

$$\boldsymbol{j} = \boldsymbol{H} \boldsymbol{j}, \quad \boldsymbol{x}_i = \boldsymbol{H} \boldsymbol{x}_i, \quad i = 1, 2, \dots, k,$$

and

$$\hat{\boldsymbol{\epsilon}} = (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{y}.$$

In addition,

$$\hat{\boldsymbol{\epsilon}} = (\boldsymbol{I} - \boldsymbol{H})(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}) = (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{\epsilon}$$

The following are some of the properties of $\hat{\boldsymbol{\epsilon}}$:

$$E(\hat{\boldsymbol{\epsilon}}) = 0,$$

$$Cov(\hat{\boldsymbol{\epsilon}}) = \sigma^{2}(\boldsymbol{I} - \boldsymbol{H}),$$

$$Cov(\hat{\boldsymbol{\epsilon}}, \boldsymbol{y}) = \sigma^{2}(\boldsymbol{I} - \boldsymbol{H}),$$

$$Cov(\hat{\boldsymbol{\epsilon}}, \hat{\boldsymbol{y}}) = 0,$$

$$\bar{\boldsymbol{\epsilon}} = \sum_{i=1}^{n} \hat{\epsilon}_{i}/n = \hat{\boldsymbol{\epsilon}}^{T} \boldsymbol{j}/n = 0,$$

$$\hat{\boldsymbol{\epsilon}}^{T} \boldsymbol{y} = SSE = \boldsymbol{y}^{T}(\boldsymbol{I} - \boldsymbol{X}(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{X}^{T})\boldsymbol{y} = \boldsymbol{y}^{T}(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{y},$$

$$\hat{\boldsymbol{\epsilon}}^{T} \hat{\boldsymbol{y}} = 0,$$

$$\hat{\boldsymbol{\epsilon}}^{T} \boldsymbol{X} = 0.$$

The above formulas imply that $\hat{\boldsymbol{\epsilon}}$ is orthogonal to $\hat{\boldsymbol{y}}$ and each column of \boldsymbol{X} , while it is correlated with \boldsymbol{y} . Therefore, we use the scatter plots $\hat{\boldsymbol{\epsilon}}$ versus $\hat{\boldsymbol{y}}$ to examine the pattern of the residual.

If the model is incorrect, various plots involving residuals may show departures from the fitted model such as outliers. curvature, or nonconstant variance.

2 The Hat Matrix

For the centered model,

$$\boldsymbol{y} = \alpha \boldsymbol{j} + \boldsymbol{X}_c \boldsymbol{\beta}_1 + \boldsymbol{\epsilon},$$

where $\boldsymbol{X}_c = (\boldsymbol{I} - \frac{1}{n}\boldsymbol{J})\boldsymbol{X}_1$, and $\hat{\boldsymbol{y}}$ becomes

$$\hat{\boldsymbol{y}} = \hat{\alpha} \boldsymbol{j} + \boldsymbol{X}_c \hat{\boldsymbol{\beta}}_1,$$

and we can define

$$\boldsymbol{H}_{c} = \boldsymbol{X}_{c} (\boldsymbol{X}_{c}^{T} \boldsymbol{X}_{c})^{-1} \boldsymbol{X}_{c}^{T}.$$

Therefore,

$$\hat{\boldsymbol{y}} = ar{y} \boldsymbol{j} + \boldsymbol{X}_c (\boldsymbol{X}_c^T \boldsymbol{X}_c)^{-1} \boldsymbol{X}_c^T \boldsymbol{y} = (\frac{1}{n} \boldsymbol{j}^T \boldsymbol{y}) \boldsymbol{j} + \boldsymbol{H}_c \boldsymbol{y} = (\frac{1}{n} \boldsymbol{J} + \boldsymbol{H}_c) \boldsymbol{y}.$$

By arbitrariness of \boldsymbol{y} , we have

$$oldsymbol{H} = rac{1}{n}oldsymbol{J} + oldsymbol{H}_c = rac{1}{n}oldsymbol{J} + oldsymbol{X}_c(oldsymbol{X}_c^Toldsymbol{X}_c)^{-1}oldsymbol{X}_c^T.$$

Theorem 2.1. If \mathbf{X} is $n \times (k+1)$ of rank k+1 < n, and if the first column of \mathbf{X} is \mathbf{j} , then the element h_{ij} of $\mathbf{H} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ have the following properties:

- $1/n \le h_{ii} \le 1$ for $i = 1, 2, \dots, n$.
- $-0.5 \le h_{ij} \le 0.5$ for all $j \ne i$.
- $h_{ii} = 1/n + (\boldsymbol{x}_{1i} \bar{\boldsymbol{x}}_1)^T (\boldsymbol{X}_c \boldsymbol{X}_c)^{-1} (\boldsymbol{x}_{1i} \bar{\boldsymbol{x}}_1)$, where $\boldsymbol{x}_{1i}^T = (x_{i1}, x_{i2}, \dots, x_{ik})$, $\bar{\boldsymbol{x}}^T = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k)$, and $(\boldsymbol{x}_{1i} - \bar{\boldsymbol{x}}_1)^T$ is the *i*th row of the centered matrix \boldsymbol{X}_c .
- $tr(\mathbf{H}) = \sum_{i=1}^{n} h_{ii} = k + 1.$

Proof. (i) The lower bound follows from the relationship $\boldsymbol{H} = \frac{1}{n}\boldsymbol{J} + \boldsymbol{H}_c = \frac{1}{n}\boldsymbol{J} + \boldsymbol{X}_c(\boldsymbol{X}_c^T\boldsymbol{X}_c)^{-1}\boldsymbol{X}_c^T$, where $\boldsymbol{X}_c^T\boldsymbol{X}_c$ is positive definite. The upper bound follows from the property $H = H^2$, which implies

$$h_{ii} = \boldsymbol{h}_i^T \boldsymbol{h}_i = h_{ii}^2 + \sum_{j \neq i} h_{ij}^2$$

or, equivalently,

$$1 = h_{ii} + \sum_{j \neq i} h_{ij}^2 / h_{ii},$$

which implies $h_{ii} \leq 1$.

(ii) Since $h_{ii} = \mathbf{h}_i^T \mathbf{h}_i = h_{ii}^2 + h_{ij}^2 + \sum_{r \neq i,j} h_{ir}^2$, we have

$$h_{ii} - h_{ii}^2 = h_{ij}^2 + \sum_{r \neq i,j} h_{ir}^2,$$

and thus $h_{ij}^2 \leq h_{ii} - h_{ii}^2$. Since the maximum value of $h_{ii} - h_{ii}^2$ is 1/4, we have $-0.5 \leq h_{ij} \leq 0.5$. \Box

3 Outliers

For outlier analysis, we need to keep in mind that the variance of the residuals is not constant:

$$\operatorname{Var}(\hat{\epsilon}) = \sigma^2 (1 - h_{ii}).$$

An additional verification that large values of h_{ii} are accompanied by small residuals is provided by the property:

$$\frac{1}{n} \le h_{ii} + \frac{\hat{\epsilon}_i^2}{\hat{\epsilon}^T \hat{\epsilon}} \le 1$$

There are two common methods of scaling of the residuals:

• Standardized residual:

$$r_i = \frac{\hat{\epsilon}_i}{s\sqrt{1-h_{ii}}},$$

where
$$s = \sqrt{SSE/(n-k-1)}$$
.

• Studentized residual:

$$t_i = \frac{\hat{\epsilon}_i}{s_{(i)}\sqrt{1 - h_{ii}}},$$

where $s_{(i)}$ is the standard error computed with the n-1 samples remaining after omitting the *i*th sample. Such a residual is also called a studentized deleted residual or externally studentized residual. Alternatively, t_i can be calculated as

$$t_i = r_i \left(\frac{n-p-1}{n-p-r_i^2}\right)^{1/2},$$

where p = k + 1 denotes the number of columns of X.

For deleted residuals, we have the following relationships:

$$\hat{\epsilon}_{(i)} = y_i - \hat{y}_{(i)} = y_i - \boldsymbol{x}_i^T \hat{\boldsymbol{\beta}}_{(i)}$$

where $\hat{\boldsymbol{\beta}}_{(i)} = (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_{(i)})^{-1} \boldsymbol{X}_{(i)}^T \boldsymbol{y}_{(i)}, \boldsymbol{X}_{(i)}$ is an $(n-1) \times (k+1)$ matrix. In addition, we have

$$\hat{\boldsymbol{eta}}_{(i)} = \hat{\boldsymbol{eta}} - rac{\hat{\epsilon}_i}{1 - h_{ii}} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_i.$$

The deleted residual can also be expressed as

$$\hat{\epsilon}_{(i)} = \frac{\hat{\epsilon}_i}{1 - h_{ii}}$$

and

$$t_i = \frac{\hat{\epsilon}_{(i)}}{s_{(i)}}.$$

The deleted sample variance $s_{(i)}^2$ can be expressed as

$$s_{(i)}^{2} = \frac{SSE_{(i)}}{n-k-2} = \frac{SSE - \hat{\epsilon}_{i}^{2}/(1-h_{ii})}{n-k-2}.$$

The n deleted residuals can be used for model validation or selection by defining the prediction sum of squares (PRESS):

$$PRESS = \sum_{i=1}^{n} \hat{\epsilon}_{(i)}^{2} = \sum_{i=1}^{n} \left(\frac{\hat{\epsilon}_{i}}{1 - h_{ii}} \right)^{2}.$$

To use PRESS to compare alternative models when the objective is prediction, preference would be shown to models with small values of PRESS.

4 Influential Observations and Leverage

4.1 Leverage

To investigate the influence of each observation, we begin with $\hat{y} = Hy$, the element of which are

$$\hat{y}_i = h_{ii}y_i + \sum_{j \neq i} h_{ij}y_j.$$

Therefore, if h_{ii} is large (close to 1), then h_{ij} 's, $j \neq i$, are small, and y_i contributes much more than others to \hat{y}_i . Hence, h_{ii} is called the leverage of y_i .

By Theorem 2.1, the average value of h_{ii} 's is (k + 1)/n. Hoaglin and Welsch (1978) suggest that a point with $h_{ii} > 2(k + 1)/n$ is a high leverage point. Alternatively, we can simply examine any observations whose value of h_{ii} is unusually large relative to the other values of h_{ii} .

4.2 Cook's Distance

To formalize the influence of an observation, we consider the effect of its deletion on β and \hat{y} . This is measured by Cook's distance

$$D_{i} = \frac{(\hat{\boldsymbol{\beta}}_{(i)} - \hat{\boldsymbol{\beta}})^{T} \boldsymbol{X}^{T} \boldsymbol{X} (\hat{\boldsymbol{\beta}}_{(i)} - \hat{\boldsymbol{\beta}})}{(k+1)s^{2}} = \frac{(\hat{\boldsymbol{y}}_{(i)} - \hat{\boldsymbol{y}})^{T} (\hat{\boldsymbol{y}}_{(i)} - \hat{\boldsymbol{y}})}{(k+1)s^{2}}.$$

Therefore, if D_i is large, the observation *i* has substantial influence on both $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{y}}$. A more computationally convenience form of D_i is given by

$$D_i = \frac{r_i^2}{k+1} \left(\frac{h_{ii}}{1-h_{ii}}\right).$$