Chapter 8: Multiple Regression: Model Validation and Diagnostics

1 Residuals

Consider the linear model $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ again. The residual is defined as

$$
\hat{\boldsymbol{\epsilon}}=\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}:=\boldsymbol{y}-\hat{\boldsymbol{y}}
$$

where $\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$. The fitted value is given by

$$
\hat{\boldsymbol{y}}=\boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}=\boldsymbol{H} \boldsymbol{y}
$$

where $\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}$ is called the hat matrix. The hat matrix has the following properties:

$$
\begin{gathered}
\boldsymbol{H} \boldsymbol{X}=\boldsymbol{X} \\
\boldsymbol{j}=\boldsymbol{H} \boldsymbol{j}, \quad \boldsymbol{x}_{i}=\boldsymbol{H} \boldsymbol{x}_{i}, \quad i=1,2, \ldots, k
\end{gathered}
$$

and

$$
\hat{\boldsymbol{\epsilon}}=(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{y}
$$

In addition,

$$
\hat{\boldsymbol{\epsilon}}=(\boldsymbol{I}-\boldsymbol{H})(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon})=(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{\epsilon}
$$

The following are some of the properties of $\hat{\boldsymbol{\epsilon}}$:

$$
\begin{aligned}
E(\hat{\boldsymbol{\epsilon}}) & =0 \\
\operatorname{Cov}(\hat{\epsilon}) & =\sigma^{2}(I-H), \\
\operatorname{Cov}(\hat{\boldsymbol{\epsilon}}, \boldsymbol{y}) & =\sigma^{2}(\boldsymbol{I}-\boldsymbol{H}), \\
\operatorname{Cov}(\hat{\boldsymbol{\epsilon}}, \hat{\boldsymbol{y}}) & =0 \\
\overline{\hat{\boldsymbol{\epsilon}}}=\sum_{i=1}^{n} \hat{\epsilon}_{i} / n & =\hat{\boldsymbol{\epsilon}}^{T} \boldsymbol{j} / n=0 \\
\hat{\boldsymbol{\epsilon}}^{T} \boldsymbol{y} & =S S E=\boldsymbol{y}^{T}\left(\boldsymbol{I}-\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}\right) \boldsymbol{y}=\boldsymbol{y}^{T}(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{y} \\
\hat{\boldsymbol{\epsilon}}^{T} \hat{\boldsymbol{y}} & =0 \\
\hat{\boldsymbol{\epsilon}}^{T} \boldsymbol{X} & =0
\end{aligned}
$$

The above formulas imply that $\hat{\boldsymbol{\epsilon}}$ is orthogonal to $\hat{\boldsymbol{y}}$ and each column of \boldsymbol{X}, while it is correlated with \boldsymbol{y}. Therefore, we use the scatter plots $\hat{\boldsymbol{\epsilon}}$ versus $\hat{\boldsymbol{y}}$ to examine the pattern of the residual.

If the model is incorrect, various plots involving residuals may show departures from the fitted model such as outliers. curvature, or nonconstant variance.

2 The Hat Matrix

For the centered model,

$$
\boldsymbol{y}=\alpha \boldsymbol{j}+\boldsymbol{X}_{c} \boldsymbol{\beta}_{1}+\boldsymbol{\epsilon}
$$

where $\boldsymbol{X}_{c}=\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{J}\right) \boldsymbol{X}_{1}$, and $\hat{\boldsymbol{y}}$ becomes

$$
\hat{\boldsymbol{y}}=\hat{\alpha} \boldsymbol{j}+\boldsymbol{X}_{c} \hat{\boldsymbol{\beta}}_{1},
$$

and we can define

$$
\boldsymbol{H}_{c}=\boldsymbol{X}_{c}\left(\boldsymbol{X}_{c}^{T} \boldsymbol{X}_{c}\right)^{-1} \boldsymbol{X}_{c}^{T} .
$$

Therefore,

$$
\hat{\boldsymbol{y}}=\bar{y} \boldsymbol{j}+\boldsymbol{X}_{c}\left(\boldsymbol{X}_{c}^{T} \boldsymbol{X}_{c}\right)^{-1} \boldsymbol{X}_{c}^{T} \boldsymbol{y}=\left(\frac{1}{n} \boldsymbol{j}^{T} \boldsymbol{y}\right) \boldsymbol{j}+\boldsymbol{H}_{c} \boldsymbol{y}=\left(\frac{1}{n} \boldsymbol{J}+\boldsymbol{H}_{c}\right) \boldsymbol{y} .
$$

By arbitrariness of \boldsymbol{y}, we have

$$
\boldsymbol{H}=\frac{1}{n} \boldsymbol{J}+\boldsymbol{H}_{c}=\frac{1}{n} \boldsymbol{J}+\boldsymbol{X}_{c}\left(\boldsymbol{X}_{c}^{T} \boldsymbol{X}_{c}\right)^{-1} \boldsymbol{X}_{c}^{T} .
$$

Theorem 2.1. If \boldsymbol{X} is $n \times(k+1)$ of rank $k+1<n$, and if the first column of \boldsymbol{X} is \boldsymbol{j}, then the element $h_{i j}$ of $\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}$ have the following properties:

- $1 / n \leq h_{i i} \leq 1$ for $i=1,2, \ldots, n$.
- $-0.5 \leq h_{i j} \leq 0.5$ for all $j \neq i$.
- $h_{i i}=1 / n+\left(\boldsymbol{x}_{1 i}-\overline{\boldsymbol{x}}_{1}\right)^{T}\left(\boldsymbol{X}_{c} \boldsymbol{X}_{c}\right)^{-1}\left(\boldsymbol{x}_{1 i}-\overline{\boldsymbol{x}}_{1}\right)$, where $\boldsymbol{x}_{1 i}^{T}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}\right), \overline{\boldsymbol{x}}^{T}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{k}\right)$, and $\left(\boldsymbol{x}_{1 i}-\overline{\boldsymbol{x}}_{1}\right)^{T}$ is the i th row of the centered matrix \boldsymbol{X}_{c}.
- $\operatorname{tr}(\boldsymbol{H})=\sum_{i=1}^{n} h_{i i}=k+1$.

Proof. (i) The lower bound follows from the relationship $\boldsymbol{H}=\frac{1}{n} \boldsymbol{J}+\boldsymbol{H}_{c}=\frac{1}{n} \boldsymbol{J}+\boldsymbol{X}_{c}\left(\boldsymbol{X}_{c}^{T} \boldsymbol{X}_{c}\right)^{-1} \boldsymbol{X}_{c}^{T}$, where $\boldsymbol{X}_{c}^{T} \boldsymbol{X}_{c}$ is positive definite. The upper bound follows from the property $H=H^{2}$, which implies

$$
h_{i i}=\boldsymbol{h}_{i}^{T} \boldsymbol{h}_{i}=h_{i i}^{2}+\sum_{j \neq i} h_{i j}^{2},
$$

or, equivalently,

$$
1=h_{i i}+\sum_{j \neq i} h_{i j}^{2} / h_{i i},
$$

which implies $h_{i i} \leq 1$.
(ii) Since $h_{i i}=\boldsymbol{h}_{i}^{T} \boldsymbol{h}_{i}=h_{i i}^{2}+h_{i j}^{2}+\sum_{r \neq i, j} h_{i r}^{2}$, we have

$$
h_{i i}-h_{i i}^{2}=h_{i j}^{2}+\sum_{r \neq i, j} h_{i r}^{2},
$$

and thus $h_{i j}^{2} \leq h_{i i}-h_{i i}^{2}$. Since the maximum value of $h_{i i}-h_{i i}^{2}$ is $1 / 4$, we have $-0.5 \leq h_{i j} \leq 0.5$.

3 Outliers

For outlier analysis, we need to keep in mind that the variance of the residuals is not constant:

$$
\operatorname{Var}(\hat{\epsilon})=\sigma^{2}\left(1-h_{i i}\right) .
$$

An additional verification that large values of $h_{i i}$ are accompanied by small residuals is provided by the property:

$$
\frac{1}{n} \leq h_{i i}+\frac{\hat{\epsilon}_{i}^{2}}{\hat{\boldsymbol{\epsilon}}^{T} \hat{\boldsymbol{\epsilon}}} \leq 1
$$

There are two common methods of scaling of the residuals:

- Standardized residual:

$$
r_{i}=\frac{\hat{\epsilon}_{i}}{s \sqrt{1-h_{i i}}}
$$

where $s=\sqrt{S S E /(n-k-1)}$.

- Studentized residual:

$$
t_{i}=\frac{\hat{\epsilon}_{i}}{s_{(i)} \sqrt{1-h_{i i}}}
$$

where $s_{(i)}$ is the standard error computed with the $n-1$ samples remaining after omitting the i th sample. Such a residual is also called a studentized deleted residual or externally studentized residual. Alternatively, t_{i} can be calculated as

$$
t_{i}=r_{i}\left(\frac{n-p-1}{n-p-r_{i}^{2}}\right)^{1 / 2}
$$

where $p=k+1$ denotes the number of columns of \boldsymbol{X}.
For deleted residuals, we have the following relationships:

$$
\hat{\epsilon}_{(i)}=y_{i}-\hat{y}_{(i)}=y_{i}-\boldsymbol{x}_{i}^{T} \hat{\boldsymbol{\beta}}_{(i)},
$$

where $\hat{\boldsymbol{\beta}}_{(i)}=\left(\boldsymbol{X}_{(i)}^{T} \boldsymbol{X}_{(i)}\right)^{-1} \boldsymbol{X}_{(i)}^{T} \boldsymbol{y}_{(i)}, \boldsymbol{X}_{(i)}$ is an $(n-1) \times(k+1)$ matrix. In addition, we have

$$
\hat{\boldsymbol{\beta}}_{(i)}=\hat{\boldsymbol{\beta}}-\frac{\hat{\epsilon}_{i}}{1-h_{i i}}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{i} .
$$

The deleted residual can also be expressed as

$$
\hat{\epsilon}_{(i)}=\frac{\hat{\epsilon}_{i}}{1-h_{i i}},
$$

and

$$
t_{i}=\frac{\hat{\epsilon}_{(i)}}{s_{(i)}}
$$

The deleted sample variance $s_{(i)}^{2}$ can be expressed as

$$
s_{(i)}^{2}=\frac{S S E_{(i)}}{n-k-2}=\frac{S S E-\hat{\epsilon}_{i}^{2} /\left(1-h_{i i}\right)}{n-k-2} .
$$

The n deleted residuals can be used for model validation or selection by defining the prediction sum of squares (PRESS):

$$
\operatorname{PRESS}=\sum_{i=1}^{n} \hat{\epsilon}_{(i)}^{2}=\sum_{i=1}^{n}\left(\frac{\hat{\epsilon}_{i}}{1-h_{i i}}\right)^{2} .
$$

To use PRESS to compare alternative models when the objective is prediction, preference would be shown to models with small values of PRESS.

4 Influential Observations and Leverage

4.1 Leverage

To investigate the influence of each observation, we begin with $\hat{\boldsymbol{y}}=\boldsymbol{H} \boldsymbol{y}$, the element of which are

$$
\hat{y}_{i}=h_{i i} y_{i}+\sum_{j \neq i} h_{i j} y_{j} .
$$

Therefore, if $h_{i i}$ is large (close to 1), then $h_{i j}$'s, $j \neq i$, are small, and y_{i} contributes much more than others to \hat{y}_{i}. Hence, $h_{i i}$ is called the leverage of y_{i}.

By Theorem 2.1, the average value of $h_{i i}$'s is $(k+1) / n$. Hoaglin and Welsch (1978) suggest that a point with $h_{i i}>2(k+1) / n$ is a high leverage point. Alternatively, we can simply examine any observations whose value of $h_{i i}$ is unusually lareg relative to the other values of $h_{i i}$.

4.2 Cook's Distance

To formalize the influence of an observation, we consider the effect of its deletion on $\boldsymbol{\beta}$ and $\hat{\boldsymbol{y}}$. This is measured by Cook's distance

$$
D_{i}=\frac{\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right)^{T} \boldsymbol{X}^{T} \boldsymbol{X}\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right)}{(k+1) s^{2}}=\frac{\left(\hat{\boldsymbol{y}}_{(i)}-\hat{\boldsymbol{y}}\right)^{T}\left(\hat{\boldsymbol{y}}_{(i)}-\hat{\boldsymbol{y}}\right)}{(k+1) s^{2}}
$$

Therefore, if D_{i} is large, the observation i has substantial influence on both $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{y}}$. A more computationally convenience form of D_{i} is given by

$$
D_{i}=\frac{r_{i}^{2}}{k+1}\left(\frac{h_{i i}}{1-h_{i i}}\right) .
$$

