Chapter 8: Multiple Regression: Model Validation and

Diagnostics

1 Residuals

Consider the linear model y = X3 + € again. The residual is defined as
e=y-XB:=y-9,
where 8 = (XTX)"1X"y. The fitted value is given by
§=XB=X(X"X)"'X"y=Hy,
where H = X (X7 X) ' X" is called the hat matrix. The hat matrix has the following properties:
HX =X,
j=Hj, x; =Hx;, 1=12,...,k,

and
e=(I—-H)y.

In addition,
e=I—-H)(XB+e)={I—-H)e.

The following are some of the properties of €:

E(e) =0,

Cov(é) = o*(I — H),
COV(é7 y) = 02(1 - H)7
Cov(e,g) =0,

€= éi/n:éTj/n:(J,



The above formulas imply that € is orthogonal to 4y and each column of X, while it is correlated
with y. Therefore, we use the scatter plots € versus ¢ to examine the pattern of the residual.
If the model is incorrect, various plots involving residuals may show departures from the fitted

model such as outliers. curvature, or nonconstant variance.

2 The Hat Matrix

For the centered model,
y=oj + X5 +e

where X. = (I — +J)X, and § becomes
§=aj+X.B,

and we can define
H, =X, (X'x,)'xT

Therefore,
. B 1., . 1
g=yj+ X (XIX,)'X]y= (5.7Ty)3 +Hey = (~J + Ho)y.

By arbitrariness of y, we have
1 1
H=-J+H,=-J+X.(XI'x,)"'x".
n n

Theorem 2.1. If X isn x (k+ 1) of rank k+ 1 < n, and if the first column of X is j, then the
element hyj of H = X(XTX)' X" have the following properties:

e 1/n<h;<1fori=12 ... n.

o —0.5<h; <0.5 forall j # 1.

[ ] h“ = 1/7’L+($1i—@1)T(XCXC)71(mli—il), wher’e $£ = (xil,l'ig, Ce ,Jiik), Q_ZT = ([f‘l, ZZ‘Q, e ,[L‘k),

T

and (x1; — @1)" is the ith row of the centered matriz X ..

[ t’I“(H) = Z:’L:l h“ = ]{7—|— 1.

Proof. (i) The lower bound follows from the relationship H = 2tJ+H, = 1 J+ X (X[ X)) ' X[,
where X CTX . is positive definite. The upper bound follows from the property H = H?, which
implies

—_ Ty 12 2

hii=hihi =hi + > hZ,
J#
or, equivalently,
2
1=hi+ Y hii/ha,
J#

2



which implies h; < 1.
ii) Since h;; = hlh; = h2 + h2 + . h2 we have
i i ij r#4,

g )
hii — hy; = hi; + Z his
-y

and thus h; < hy —h;. Since the maximum value of hy; —h3; is 1/4, we have —0.5 < hy; < 0.5. [

3 Outliers

For outlier analysis, we need to keep in mind that the variance of the residuals is not constant:
Var(é) = 0'2(1 — hu)

An additional verification that large values of h;; are accompanied by small residuals is provided

by the property:
1 é2
— < hy+ =2 <1
n €€

There are two common methods of scaling of the residuals:

e Standardized residual:

where s = \/SSE/(n —k — 1).
e Studentized residual:

smv1— hii’
where s(;) is the standard error computed with the n — 1 samples remaining after omitting
the ith sample. Such a residual is also called a studentized deleted residual or externally

studentized residual. Alternatively, ¢; can be calculated as

(n—p—1)1/2
ti=ri| ———>3 ;
n—p-—ri

where p = k + 1 denotes the number of columns of X.

For deleted residuals, we have the following relationships:

A ~

€@ = Yi —Yu) = Yi — x?ﬁ(m
where B(i) = (XE)X(i))*lX?;)y(i), X ) is an (n — 1) x (k + 1) matrix. In addition, we have

A

A E’L

B(i)zﬁ_l—hii

(XTX) ;.



The deleted residual can also be expressed as

and .
t; = @
S(i)
The deleted sample variance 3?1.) can be expressed as
2 SSEy _ SSE —é2/(1— hy)
@O k-2 n—k—2 '
The n deleted residuals can be used for model validation or selection by defining the prediction
sum of squares (PRESS):

n n ~ 2
PRESS =Y & =% (1 _Eh) .
i=1 i=1 v

To use PRESS to compare alternative models when the objective is prediction, preference would
be shown to models with small values of PRESS.

4 Influential Observations and Leverage

4.1 Leverage

To investigate the influence of each observation, we begin with y = Hy, the element of which are
Ui = hiyi + Z hijy;-
J#i
Therefore, if h;; is large (close to 1), then h;;’s, j # ¢, are small, and y; contributes much more
than others to g;. Hence, h;; is called the leverage of ;.
By Theorem [2.1] the average value of h;’s is (k + 1)/n. Hoaglin and Welsch (1978) suggest
that a point with h;; > 2(k + 1)/n is a high leverage point. Alternatively, we can simply examine

any observations whose value of h;; is unusually lareg relative to the other values of h;;.

4.2 Cook’s Distance

To formalize the influence of an observation, we consider the effect of its deletion on B and y.

This is measured by Cook’s distance
By =B X X (B~ B) _ (95 ~9)" @6 — 9)
(k+1)s? (k+1)s?

Therefore, if D; is large, the observation ¢ has substantial influence on both [3 and y. A more

Di:

computationally convenience form of D; is given by

2 i
D; = — i),
k41 <1—hii>
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