Ch7. Multiple Regression: Tests of Hypothesis and Confidence Intervals

In this chapter we consider hypothesis tests and confidence intervals for the parameters β_0, \dots, β_k in β in the model $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$. We will assume throughout the chapter that \boldsymbol{y} is $N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, where \boldsymbol{X} is $n \times (k+1)$ of rank k+1 < n, and the x's are fixed constants.

1 Test of Overall Regression

We begin with a test of the overall regression hypothesis that none of the x's predict y. This hypothesis can be expressed as H_0 : $\beta_1 = 0$, where $\beta_1 = (\beta_1, \dots, \beta_k)'$. Note that we wish to test H_0 : $\beta_1 = 0$, not H_0 : $\beta = 0$, where $\beta = (\beta_0, \beta'_1)'$. Since β_0 is usually not zero, rejection of H_0 : $\beta = 0$ might be due solely to β_0 , and we would not learn if the x's predict y. For this test, we use the centered model

$$\boldsymbol{y} = (\boldsymbol{j}, \boldsymbol{X}_c) \begin{pmatrix} \alpha \\ \boldsymbol{\beta}_1 \end{pmatrix} + \boldsymbol{\epsilon},$$
 (1)

where $X_c = (I - \frac{1}{n}J)X_1$ is the centered matrix and X_1 contains all the columns of X except the first. Note the partition identity

$$\begin{aligned} \boldsymbol{y}'(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J})\boldsymbol{y} &= SSR + SSE \\ &= \boldsymbol{y}'\boldsymbol{X}_c(\boldsymbol{X}_c'\boldsymbol{X}_c)^{-1}\boldsymbol{X}_c'\boldsymbol{y} + \boldsymbol{y}'(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J})\boldsymbol{y} - \boldsymbol{y}'\boldsymbol{X}_c(\boldsymbol{X}_c'\boldsymbol{X}_c)^{-1}\boldsymbol{X}_c'\boldsymbol{y} \\ &= \boldsymbol{y}'\boldsymbol{A}\boldsymbol{y} + \boldsymbol{y}'(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J} - \boldsymbol{A})\boldsymbol{y}, \end{aligned}$$
(2)

where $\boldsymbol{A} = \boldsymbol{X}_c (\boldsymbol{X}_c' \boldsymbol{X}_c)^{-1} \boldsymbol{X}_c'.$

In the following theorem we establish some properties of the matrices of the quadratic forms in (2).

Theorem 1.1 The matrices $I - \frac{1}{n}J$, $A = X_c(X'_cX_c)^{-1}X'_c$, and $I - \frac{1}{n}J - A$ have the following properties:

(i) $A(I - \frac{1}{n}J) = A.$

(ii) \boldsymbol{A} is idempotent of rank k.

(iii) $I - \frac{1}{n}J - A$ is idempotent of rank n - k - 1. (iv) $A(I - \frac{1}{n}J - A) = O$.

PROOF: Part (i) follows from $X'_c j = 0$. The other parts are left as exercises.

Theorem 1.2 If \boldsymbol{y} is $N_n(\boldsymbol{X}\boldsymbol{\beta},\sigma^2\boldsymbol{I})$, then $SSR/\sigma^2 = \hat{\boldsymbol{\beta}}_1'\boldsymbol{X}_c'\boldsymbol{X}_c\hat{\boldsymbol{\beta}}_1/\sigma^2$ and $SSE/\sigma^2 = [\sum_{i=1}^n (y_i - \bar{y})^2 - \hat{\boldsymbol{\beta}}_1'\boldsymbol{X}_c'\boldsymbol{X}_c\hat{\boldsymbol{\beta}}_1]/\sigma^2$ have the following distributions:

(i)
$$SSR/\sigma^2$$
 is $\chi^2(k,\lambda_1)$, where $\lambda_1=\hat{meta}_1'm X_c'm X_c\hat{meta}_1/[2\sigma^2]$.

(ii) SSE/σ^2 is $\chi^2(n-k-1)$.

PROOF: The results follows from (2), theorem 1.1 (ii) and (iii).

The following theorem shows that SSR and SSE are independent.

Theorem 1.3 If y is $N_n(X\beta, \sigma^2 I)$, then SSR and SSE are independent.

PROOF: It follows from equation (2) and theorem 1.1(iv).

Theorem 1.4 If \boldsymbol{y} is $N_n(\boldsymbol{X}\boldsymbol{\beta},\sigma^2\boldsymbol{I})$, the distribution of

$$F = \frac{SSR/(k\sigma^2)}{SSE/[(n-k-1)\sigma^2]} = \frac{SSR/k}{SSE/(n-k-1)}$$

is as follows:

(i) If H_0 : $\beta_1 = 0$ is false, then

F is distributed as $F(k, n-k-1, \lambda_1)$,

where $\lambda_1 = oldsymbol{eta}_1' oldsymbol{X}_c' oldsymbol{X}_c oldsymbol{eta}_1/2\sigma^2$.

(ii) If H_0 : $\boldsymbol{\beta}_1 = 0$ is true, then $\lambda_1 = 0$ and

F is distributed as F(k, n - k - 1).

Table 1: Analysis of Variance (ANOVA) for *F*-test of H_0 : $\beta_1 = 0$.

Source of Variation	d.f.	Sum of Squares	Mean Square	Expected Mean Squa
Due to $oldsymbol{eta}_1$	k	SSR	SSR/k	$\sigma^2 + rac{1}{k}oldsymbol{eta}_1'oldsymbol{X}_c'oldsymbol{X}_coldsymbol{eta}_1'$
Error	n - k - 1	SSE	SSE/(n-k-1)	σ^2
Total	n-1	SST		

PROOF: Exercise.

Note that $\lambda_1 = 0$ if and only if $\beta_1 = 0$, since $X'_c X_c$ is positive definite.

The test for H_0 : $\beta_1 = 0$ is carried out as follows: reject H_0 if $F \ge F_{\alpha,k,n-k-1}$, where $F \ge F_{\alpha,k,n-k-1}$ is the upper α percentile of the central F-distribution. In table 1, we summarize the results leading to the F-test.

If H_0 : $\beta_1 = 0$ is true, both of the expected mean squares in table 1 are equal to σ^2 , and we expect F to be near 1. If $\beta_1 \neq = 0$, then $E(SSR/k) \geq \sigma^2$ since $X'_c X_c$ is positive definite, and we expect F to exceed 1. We therefore reject H_0 for

large value of F.

Example 1.1 For the data in Table 7.1, test H_0 : $\beta_1 = 0$. In this case,

$$\beta_{1} = (\beta_{1}, \beta_{2})',$$

$$X' y = (90, 482, 872)',$$

$$\hat{\beta} = (5.3754, 3.0118, -1.2855)',$$

$$y' y = \sum_{i=1}^{12} y_{i}^{2} = 840,$$

$$\hat{\beta}' X' y = 814.5410,$$

$$n\bar{y}^{2} = 675.$$

Thus, we have

$$SSR = \hat{\beta}' X' y - n\bar{y}^2 = 139.5410,$$

$$SSE = y' y - \hat{\beta}' X' y = 25.4590,$$

$$SST = y' y - n\bar{y}^2 = 165.$$

		•		
Source	d.f.	Sum of Squares	Mean Square	F
Due to $oldsymbol{eta}_1$	2	139.5410	69.7705	24.665
Error	9	25.4590	2.8288	
Total	11	165.0000		

Table 2: ANOVA for overall regression test for the data in Table 7.1

The *F*-test is given in Table 2. Since $24.665 > F_{.05,2,9} = 4.26$, we reject H_0 and conclude that at least one of β_1 or β_2 is not zero.

2 Test on a subset of the β 's

In some cases, we wish to test the hypothesis that a subset of the x's is not useful in predicting y. Without loss of generality, we assume that the β 's to be tested have been arranged last in β , with a corresponding arrangement of the columns of X, i.e., the

model becomes

$$egin{aligned} egin{aligned} egi$$

where β_2 contains the β 's to be tested. The intercept β_0 would ordinarily included in β_1 .

To test H_0 : $\beta_2 = 0$ versus H_1 : $\beta_2 \neq 0$, we use a full-reduced-model approach. The full model is given by (3), the reduced model becomes

$$oldsymbol{y} = oldsymbol{X}_1oldsymbol{eta}_1^* + oldsymbol{\epsilon}^*.$$

Typically, β_1^* and ϵ^* will be different from β_1 and ϵ in the full model (unless X_1 and X_2 are orthogonal). For y'y we have the following partitioning:

$$\boldsymbol{y}'\boldsymbol{y} = (\boldsymbol{y}'\boldsymbol{y} - \hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{y}) + (\hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{y} - \hat{\boldsymbol{\beta}}_{1}^{*'}\boldsymbol{X}_{1}\boldsymbol{y}) + \hat{\boldsymbol{\beta}}_{1}^{*'}\boldsymbol{X}_{1}\boldsymbol{y}$$

= $SSE + SS(\boldsymbol{\beta}_{2}|\boldsymbol{\beta}_{1}) + SS(\boldsymbol{\beta}_{1}^{*})$ (4)

where
$$\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'y$$
 and $\hat{\boldsymbol{\beta}}_{1}^{*} = (X'_{1}X_{1})^{-1}X'_{1}y$. Note that
 $SS(\boldsymbol{\beta}_{2}|\boldsymbol{\beta}_{1}) = (\hat{\boldsymbol{\beta}}'X'y - n\bar{y}^{2}) - (\hat{\boldsymbol{\beta}}_{1}^{*'}X_{1}y - n\bar{y}^{2}) = SSR(full) - SSR(reduced).$
Subtituting $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\beta}}_{1}^{*}$ into equation (4), we have
 $y'y = y'[I - X(X'X)^{-1}X']y + y'[X(X'X)^{-1}X' - X_{1}(X'_{1}X_{1})^{-1}X'_{1}]y + y'X_{1}(X'_{1}Y_{1}) + y'X_{1}(X'_{1}Y_{1}) + y'(X_{1}Y_{1}) + y'X_{1}(X'_{1}Y_{1}) + y'X_{1}(X'_{1}Y_{1}) + y'X_{1}(X'_{1}Y_{1}) + y'X_{1}(X'_{1}Y_{1}) + y'(X_{1}Y_{1}) + y'X_{1}(X'_{1}Y_{1}) + y'X'_{1}(X'_{1}Y_{1}) + y'X'_{1}(X'_{1}Y_{1}) + y'X_{$

where
$$A_1 = X(X'X)^{-1}X'$$
 and $A_2 = X_1(X_1'X_1)^{-1}X_1'$.

Theorem 2.1 The matrix $A_1 - A_2 = X(X'X)^{-1}X' - X_1(X'_1X_1)^{-1}X_1$ is idempotent with rank h, where h is the number of elements in β_2 .

PROOF: Multiplying X by A_1 , we have

$$A_1X = X(X'X)^{-1}X'X = X,$$

or

$$\boldsymbol{X} = \boldsymbol{X} (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{X}. \tag{6}$$

Partitioning X on the left side of (6) and the last X on the right side, we have

$$X_1 = X(X'X)^{-1}X'XX_1,$$

$$X_2 = X(X'X)^{-1}X'XX_2.$$
(7)

Using (7) and its transpose, we have

$$A_1A_2 = A_2$$
 and $A_2A_1 = A_2$.

Note A_1 and A_2 are both idempotent. Thus

$$(A_1 - A_2)^2 = A_1 - A_1A_2 - A_2A_1 + A_2^2$$

= $A_1 - A_2 - A_2 + A_2 = A_1 - A_2.$

Hence, $oldsymbol{A}_1 - oldsymbol{A}_2$ is idempotent.

$$rank(\mathbf{A}_{1} - \mathbf{A}_{2}) = tr(\mathbf{A}_{1} - \mathbf{A}_{2}) = tr(\mathbf{A}_{1}) - tr(\mathbf{A}_{2})$$
$$= tr(I_{k+1}) - tr(I_{k-h+1}) = k + 1 - (k - h + 1) = h.$$

The next theorem gives the distribution of $y'(I - A_1)y$ and $y'(A_1 - A_2)y$ and shows that they are independent.

Theorem 2.2 If y is $N_n(X\beta, \sigma^2 I)$, then (i) $y'(I - A_1)y/\sigma^2$ is $\chi^2(n - k - 1)$. (ii) $y'(A_1 - A_2)y/\sigma^2$ is $\chi^2(h, \lambda_1)$, where $\lambda_1 = \beta'_2[X'_2X_2 - X'_2X_1(X'_1X_1)^{-1}X'_1X_2]\beta_2/2\sigma^2$. (iii) $y'(I - A_1)y$ and $y'(A_1 - A_2)y$ are independent.

PROOF: (i) and (ii) are left for exercises. (iii) Note that $m{A}_2=m{A}_1m{A}_2$, hence

$$(I - A_1)(A_1 - A_2) = (I - A_1)(A_1 - A_1A_2) = O.$$

Since $X'_2 X_2 - X'_2 X_1 (X'_1 X_1)^{-1} X'_1 X_2$ is positive definite (see problem 8.10 of Rencher and Schaalje (2008)), $\lambda_1 = 0$ if and only if $\beta = 0$.

Theorem 2.3 Let \boldsymbol{y} be $N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$ and define an F-statistic as follows:

$$F = \frac{\mathbf{y}'(\mathbf{A}_1 - \mathbf{A}_2)\mathbf{y}/h}{\mathbf{y}'(\mathbf{I} - \mathbf{A})\mathbf{y}/(n - k - 1)} = \frac{SS(\boldsymbol{\beta}_2|\boldsymbol{\beta}_1)/h}{SSE/(n - k - 1)}$$
$$= \frac{[SSR(full) - SSR(reduced)]/h}{SSE/(n - k - 1)}.$$

The distribution of F is as follows:

(i) If H_0 : $\beta_2 = 0$ is false, then

$$F$$
 is distributed as $F(h, n - k - 1, \lambda_1)$,

where
$$\lambda_1 = m{eta}_2' [m{X}_2' m{X}_2 - m{X}_2' (m{X}_1' m{X}_1)^{-1} m{X}_1' m{X}_2] m{eta}_2 / 2 \sigma^2.$$

(ii) If H_0 : $\boldsymbol{\beta}_2 = 0$ is true, then $\lambda_1 = 0$ and

$$F$$
 is distributed as $F(h, n - k - 1)$.

PROOF: Exercise.

Table 3: Analysis of Variance for *F*-test of H_0 : $\beta_2 = 0$.

Source of Variation	d.f.	Sum of Squares	Mean Square	F-statistic
Due to $oldsymbol{eta}_2$ adjusted for $oldsymbol{eta}_1$	h	$SS(\pmb{\beta}_2 \pmb{\beta}_1)$	$SS(\pmb{\beta}_2 \pmb{\beta}_1)/h$	$-rac{SS(oldsymbol{eta}_2 oldsymbol{eta}_1)/\hbar}{SSE/(n-k-1)}$
Error	n - k - 1	SSE	SSE/(n-k-1)	
Total	n-1	SST		

The test for H_0 : $\beta_2 = 0$ is carried as follows: reject H_0 if $F \ge F_{\alpha,h,n-k-1}$, where $F_{\alpha,h,n-k-1}$ is the upper percentile of the central F-distribution. Note

$$E[SS(\beta_2|\beta_1)/h] = \sigma^2 + \frac{1}{h}\beta'_2[X'_2X_2 - X'_2(X'_1X_1)^{-1}X'_1X_2]\beta_2,$$

and

$$E[SSE/(n-k-1)] = \sigma^2,$$

hence, if H_0 is false, F will have a large value. The test is summarized in table 3.

3 The general linear hypothesis tests for H_0 : $C\beta = 0$ and H_0 : $C\beta = t$

3.1 The Test for $H_0 : C\beta = 0$

General linear hypothesis: the hypothesis H_0 : $C\beta = 0$, where C is a $q \times (k+1)$ coefficient matrix of rank $q \leq k+1$, is known as the general linear hypothesis. The alternative hypothesis is H_1 : $C\beta \neq 0$. Note that the formulation H_0 : $C\beta = 0$ includes as special cases the hypotheses in last two sections.

Theorem 3.1 If y is distributed as $N_n(\mathbf{X}\beta, \sigma^2 \mathbf{I})$ and \mathbf{C} is $q \times (k+1)$ of rank $q \leq k+1$, then

(i) $\hat{m{C}eta}$ is $N_q(m{C}m{eta},\sigma^2m{C}(m{X}'m{X})^{-1}m{C}')$.

(ii) $SSH/\sigma^2 = (C\hat{\beta})' [C(X'X)^{-1}C']^{-1} (C\hat{\beta})/\sigma^2$ is $\chi^2(q,\lambda)$, where

 $\lambda = (\boldsymbol{C}\boldsymbol{\beta})' [\boldsymbol{C}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{C}']^{-1} \boldsymbol{C}\boldsymbol{\beta}/2\sigma^2;$

(iii) $SSE/\sigma^2 = y'(I - X(X'X)^{-1}X']y/\sigma^2$ is $\chi^2(n - k - 1)$.

(iv) SSH and SSE are independent.

PROOF: (ii) Since $cov(C\hat{\beta}) = \sigma^2 C(X'X)^{-1}C'$ and $\sigma^2 [C(X'X)^{-1}C']^{-1}C(X'X)^{-1}C'/\sigma^2$ I, which is idempotent.

(iv) Since $SSH = (C\hat{\beta})'[C(X'X)^{-1}C']^{-1}C\hat{\beta} = y'X\cdots X'y$, and $X'(I - X(X'X)^{-1}X') = O$, SSE and SSH are independent.

Theorem 3.2 Let \boldsymbol{y} be $N_n(\boldsymbol{X}\boldsymbol{\beta},\sigma^2\boldsymbol{I})$ and define the statistic

$$F = \frac{SSH/q}{SSE/(n-k-1)}$$
$$= \frac{(\boldsymbol{C}\hat{\boldsymbol{\beta}})'[\boldsymbol{C}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{C}']^{-1}\boldsymbol{C}\hat{\boldsymbol{\beta}}/q}{SSE/(n-k-1)}$$

where C is $q \times (k + 1)$ of ranmk $q \leq k + 1$ and $\hat{\beta} = (X'X)^{-1}X'y$. The distribution of F is as follows:

(i) If $H_0: \boldsymbol{C}\boldsymbol{\beta} = 0$ is false, then

F is distributed as $F(q,n-k-1,\lambda)$,

where
$$\lambda = (\boldsymbol{C}\boldsymbol{\beta})' [\boldsymbol{C}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{C}']^{-1} \boldsymbol{C}\boldsymbol{\beta}/2\sigma^2$$
.

(ii) If $H_0: \boldsymbol{C}\boldsymbol{\beta} = 0$ is true, then

$$F$$
 is distributed as $F(q, n - k - 1)$.

PROOF: Exercise.

This test is usually called the *general linear hypothesis test*. The degrees of freedom q is the number of linear combinations in $C\beta$. Reject H_0 if $F \geq F_{\alpha,q,n-k-1}$, where $F \geq F_{\alpha,q,n-k-1}$ is the upper percentile of the central F-distribution. Since $C(X'X)^{-1}C'$ is positive definite, $\lambda > 0$ if H_0 is false. Hence, we reject H_0 for large values of F. The expected mean squares for the F-test are given by

$$E(\frac{SSH}{q}) = \sigma^2 + \frac{1}{q} (C\beta)' [C(X'X)^{-1}C]^{-1} C\beta,$$
$$E(\frac{SSE}{n-k-1}) = \sigma^2.$$

Theorem 3.3 The *F*-test in theorem 3.2 for the general linear hypothesis H_0 : $C\beta = 0$ is a full-and-reduced-model test.

PROOF: The reduced model under H_0 is

$$y = X\beta + \epsilon$$
 subject to $C\beta = 0$.

Using Lagrange multipliers, it can be shown (problem 8.19 of Rencher and Schaalje (2008)) that the estimator for β in this reduced model is

$$\hat{\boldsymbol{\beta}}_c = \hat{\boldsymbol{\beta}} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{C}'[\boldsymbol{C}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{C}']^{-1}\boldsymbol{C}\hat{\boldsymbol{\beta}},$$

where $\hat{\beta}$ is estimated from the full model unrestricted by the hypothesis. In the reduced model, the X matrix is unchanged from the full model, and the regression sum of squares for the reduced model is therefore $\hat{\beta}'_c X' y$. (since $C\hat{\beta}_c = 0$.) Hence, the regression sum of squares due to the hypothesis is

$$SSH = \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y} - \hat{\boldsymbol{\beta}}_{c}' \boldsymbol{X}' \boldsymbol{y}.$$

By substituting $\hat{\boldsymbol{\beta}}_c$ into SSH, we obtain

$$SSH = (\boldsymbol{C}\hat{\boldsymbol{\beta}})' [\boldsymbol{C}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{C}']^{-1} \boldsymbol{C}\hat{\boldsymbol{\beta}},$$

thus establishing that the *F*-test in theorem 3.2 for H_0 : $C\beta = 0$ is a full-and-reduced-model test.

3.2 The Test for H_0 : $C\beta = t$

We assume that the system $C\beta = t$ is consistent, that is, rank(C)=rank(C,t).

Theorem 3.4 If y is distributed as $N_n(X\beta, \sigma^2 I)$ and C is $q \times (k+1)$ of rank $q \leq k+1$, then

(i)
$$\hat{C\beta} - t \text{ is } N_q (C\beta - t, \sigma^2 C(X'X)^{-1}C').$$

(ii) $SSH/\sigma^2 = (\hat{C\beta} - t)' [C(X'X)^{-1}C']^{-1} (\hat{C\beta} - t)/\sigma^2 \text{ is } \chi^2(q, \lambda), \text{ where}$
 $\lambda = (C\beta - t)' [C(X'X)^{-1}C']^{-1} (C\beta - t)/2\sigma^2;$
(iii) $SSE/\sigma^2 = y' (I - X(X'X)^{-1}X'] y/\sigma^2 \text{ is } \chi^2(n - k - 1).$

(iv) SSH and SSE are independent.

PROOF: (iv) A simple argument is that: sime $\hat{\beta}$ and SSE are independent, SSH and SSE are independent (Seber 1977, pp.17, 33-34). A formal proof is as follows.

First, note that

$$C(X'X)^{-1}X'y - t = C(X'X)^{-1}X'[y - XC'(CC')^{-1}t],$$

so that

$$SSH = [m{y} - m{X}m{C}'(m{C}'m{C})^{-1}m{t}]'m{A}[m{y} - m{X}m{C}'(m{C}m{C}')^{-1}m{t}],$$
 where $m{A} = m{X}(m{X}'m{X})^{-1}m{C}'[m{C}(m{X}'m{X})^{-1}m{C}']^{-1}m{C}(m{X}'m{X})^{-1}m{X}'.$

$$SSE = [\boldsymbol{y} - \boldsymbol{X}\boldsymbol{C}'(\boldsymbol{C}'\boldsymbol{C})^{-1}\boldsymbol{t}]'\boldsymbol{B}[\boldsymbol{y} - \boldsymbol{X}\boldsymbol{C}'(\boldsymbol{C}'\boldsymbol{C})^{-1}\boldsymbol{t}],$$

where $B = I - X(X'X)^{-1}X'$. Since AB = O, SSH and SSE are independent.

Theorem 3.5 Let ${\bm y}$ be $N_n({\bm X}{\bm eta},\sigma^2{\bm I})$ and define the statistic

$$F = \frac{SSH/q}{SSE/(n-k-1)}$$

$$= \frac{(\boldsymbol{C}\hat{\boldsymbol{\beta}} - \boldsymbol{t})'[\boldsymbol{C}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{C}']^{-1}(\boldsymbol{C}\hat{\boldsymbol{\beta}} - \boldsymbol{t})/q}{SSE/(n-k-1)}$$
(8)

where C is $q \times (k + 1)$ of ranmk $q \leq k + 1$ and $\hat{\beta} = (X'X)^{-1}X'y$. The distribution of F is as follows:

(i) If $H_0: Coldsymbol{eta} = t$ is false, then

$$F$$
 is distributed as $F(q,n-k-1,\lambda)$,

where $\lambda = (\boldsymbol{C}\boldsymbol{\beta} - \boldsymbol{t})' [\boldsymbol{C}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{C}']^{-1} (\boldsymbol{C}\boldsymbol{\beta} - \boldsymbol{t})/2\sigma^2.$

(ii) If $H_0: \boldsymbol{C}\boldsymbol{\beta} = \boldsymbol{t}$ is true, then $\lambda = 0$ and

F is distributed as F(q, n - k - 1).

3.3 Tests on β_j and $a' oldsymbol{eta}$

A test for an individual β_j can be obtained using either the full-and-reduced-model approach in section 2 or the general linear hypothesis approach in section 3.

The test statistic for $H_0: \beta_k = 0$ using a full and reduced model is then

$$F = \frac{\hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y} - \hat{\boldsymbol{\beta}}^{*'} \boldsymbol{X}_1 \boldsymbol{y}}{SSE/(n-k-1)},$$
(9)

which is distributed as F(1, n - k - 1) if H_0 is true.

To test H_0 : $a'\beta = 0$ for a single linear combination, for example, a' = (0, 1, -1, 1), we use a' in place of the matrix C in H_0 : $C\beta = 0$. Then q = 1, and the test statistic becomes

$$F = \frac{(a'\hat{\beta})'[a'(X'X)^{-1}a]^{-1}(a'\hat{\beta})}{SSE/(n-k-1)} = \frac{(a'\hat{\beta})^2}{s^2a'(X'X)^{-1}a},$$
 (10)

where $s^2 = SSE/(n-k-1)$. The *F*-statistic is distribuited as F(1, n-k-1) if $H_0: a'\beta = 0$ is true.

One special case of ${m a}'=(0,\cdots,0,1,0,\cdots,0)$, where 1 is in the jth position. This gives

$$F = \frac{\beta_j^2}{s^2 g_{jj}},\tag{11}$$

where g_{jj} is the *j*th diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$. If $H_0 : \beta_j = 0$ is true, F is distributed as F(1, n - k - 1), we reject $H_0 : \beta_j = 0$ if $F \ge F_{\alpha,1,n-k-1}$ or, equivalently, if $p \le \alpha$, where p is the p-value for F. (The p-value is the probability that F(1, n - k - 1) exceeds the observed value of F.)

Since the F -statustic has 1 and n-k-1 degrees of freedom, we can equivalently use the t -statistic

$$t_j = \frac{\beta_j}{s\sqrt{g_{jj}}} \tag{12}$$

to test the effect of β_j .

4 Confidence Intervals and Prediction Intervals

4.1 Confidence Region for β

If C = I in (8), q becomes k + 1, and $t = \beta$, we obtain a central F-distribution and make the probability statement

$$P[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \boldsymbol{X}' \boldsymbol{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) / (k+1)s^2 \le F_{\alpha, k+1, n-k-1}] = 1 - \alpha,$$

where $s^2 = SSH/(n-k-1)$. From this statement, a $100(1-\alpha)\%$ joint confidence region for $\beta_0, \beta_1, \dots, \beta_k$ in β is given by all vectors β that satisfy

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \boldsymbol{X}' \boldsymbol{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \le (k+1) s^2 F_{\alpha, k+1, n-k-1}.$$

For k = 1, this region can be plotted as an ellipse in two dimensions. For k > 1, the elliptical region is unwidely to interpret.

4.2 Confidence Interval for β_j

If $\beta_j \neq 0$, we can subtract β_j in (12) so that

$$t_j = \frac{\hat{\beta}_j - \beta_j}{s\sqrt{g_{jj}}}$$

has the central t -distribution, where g_{jj} is the j th diagonal element of $({m X}'{m X})^{-1}.$ Then

$$P[-t_{\alpha/2,n-k-1} \le \frac{\dot{\beta}_j - \beta_j}{s\sqrt{g_{jj}}} \le t_{\alpha/2,n-k-1}] = 1 - \alpha.$$

i.e.,

$$P(\hat{\beta}_j - t_{\alpha/2, n-k-1}s\sqrt{g_{jj}} \le \beta_j \le \hat{\beta}_j + t_{\alpha/2, n-k-1}s\sqrt{g_{jj}}) = 1 - \alpha.$$

Before taking the sample, the probability that the random interval will contain β_j is $1 - \alpha$. After taking the sample, the $100(1 - \alpha)\%$ confidence interval for β_j ,

$$\hat{\beta}_j \pm t_{\alpha/2, n-k-1} s \sqrt{g_{jj}},$$

is no longer random, and we say that we are $100(1 - \alpha)\%$ confident that the interval contains β_j .

Example 4.1 Example 8.6.2 (Rencher and Schaalje(2008), pp.210).

4.3 Confidence Interval for a'eta

If ${m a}'{m eta}
eq 0$, we can subtract ${m a}'{m eta}$ from ${m a}'{m eta}$ in (11) to obtain

$$F = \frac{(\boldsymbol{a}'\boldsymbol{\beta} - \boldsymbol{a}'\boldsymbol{\beta})^2}{s^2 \boldsymbol{a}' (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{a}},$$

which is distributed as F(1, n - k - 1). Then

$$t = \frac{a'\beta - a'\beta}{s\sqrt{a'(X'X)^{-1}a}},$$

is distributed as t(n-k-1), and a $100(1-\alpha)\%$ confidence interval for a single value of $a'\beta$ is given by

$$\boldsymbol{a}'\hat{\boldsymbol{\beta}} \pm t_{\alpha/2,n-k-1}s\sqrt{\boldsymbol{a}'(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{a}}.$$

4.4 Confidence Interval for $E(\boldsymbol{y})$

Let $x_0 = (1, x_{01}, x_{02}, \dots, x_{0k})'$ denote a particular choice of x. Note that x_0 need not be one of the x's in the sample. Let y_0 be an observation corresponding to x_0 . Then

$$y_0 = \boldsymbol{X}_0' \boldsymbol{\beta} + \boldsymbol{\epsilon},$$

and

$$E(y_0) = \boldsymbol{x}_0' \boldsymbol{\beta}. \tag{13}$$

The minimum variance unbiased estimator of $E(y_0)$ is given by

$$\widehat{E(y_0)} = \boldsymbol{x}_0' \hat{\boldsymbol{\beta}}.$$
(14)

Since (13) and (14) are of the form $a'\beta$ and $a'\hat{\beta}$, respectively, we obtain a $100 \times (1 - \alpha)\%$ confidence interval for $E(y_0)$:

$$\boldsymbol{x}_{0}^{\prime}\hat{\boldsymbol{\beta}} \pm t_{\alpha/2,n-k-1}s\sqrt{\boldsymbol{x}_{0}^{\prime}(\boldsymbol{X}^{\prime}\boldsymbol{X})^{-1}\boldsymbol{x}_{0}}.$$

The confidence interval can also be expressed in terms of the centered model,

$$E(y_0) = \alpha + \beta'_1(\boldsymbol{x}_{01} - \bar{\boldsymbol{x}}_1),$$

$$\widehat{E(y_0)} = \bar{y} + \hat{\beta}'_1(\boldsymbol{x}_{01} - \bar{\boldsymbol{x}}_1),$$

$$\bar{y} + \hat{\beta}'_1(\boldsymbol{x}_{01} - \bar{\boldsymbol{x}}_1) \pm t_{\alpha/2, n-k-1} s \sqrt{\frac{1}{n} + (\boldsymbol{x}_{01} - \bar{\boldsymbol{x}}_1)' (\boldsymbol{X}'_c \boldsymbol{X}_c)^{-1} (\boldsymbol{x}_{01} - \bar{\boldsymbol{x}}_1)}.$$

4.5 Prediction interval for a future observation

For a future observation, we have

$$var(y_0 - \hat{y_0}) = var(y_0) + var(\mathbf{x}'_0 \hat{\boldsymbol{\beta}}) = \sigma^2 + \sigma^2 \mathbf{x}'_0 (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0$$

= $\sigma^2 [1 + \mathbf{x}'_0 (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0],$

which is estimated by $s^2[1+x'_0(X'X)^{-1}x_0]$. Note that in the derivation, we used the fact that y_0 is independent of $\hat{y_0}$. Since s^2 is independent of both y_0 and $\hat{y_0} = x'_0 \hat{\beta}$, we have that

$$t = \frac{y_0 - \hat{y_0}}{s\sqrt{1 + x'_0(X'X)^{-1}x_0}}$$

is distributed as t(n-k-1), and the $100(1-\alpha)\%$ prediction interval is

$$\boldsymbol{x}_{0}^{\prime}\hat{\boldsymbol{\beta}} \pm t_{\alpha/2,n-k-1}s\sqrt{1+\boldsymbol{x}_{0}^{\prime}(\boldsymbol{X}^{\prime}\boldsymbol{X})^{-1}\boldsymbol{x}_{0}}.$$

In terms of the centered model, the 100(1-lpha)% prediction interval becomes

$$\bar{y} + \hat{\beta}'_1(x_{01} - \bar{x}_1) \pm t_{\alpha/2, n-k-1} s \sqrt{1 + \frac{1}{n} + (x_{01} - \bar{x}_1)' (X'_c X_c)^{-1} (x_{01} - \bar{x}_1)}.$$

4.6 Confidence interval for σ^2

Since $(n-k-1)s^2/\sigma^2$ is $\chi^2(n-k-1)$, the $100(1-\alpha)\%$ confidence interval for σ^2 is

$$\frac{(n-k-1)s^2}{\chi^2_{\alpha/2,n-k-1}} \le \sigma^2 \le \frac{(n-k-1)s^2}{\chi^2_{1-\alpha/2,n-k-1}}$$

A 100(1-lpha)% confidence interval for σ is

$$\sqrt{\frac{(n-k-1)s^2}{\chi^2_{\alpha/2,n-k-1}}} \le \sigma \le \sqrt{\frac{(n-k-1)s^2}{\chi^2_{1-\alpha/2,n-k-1}}}$$

5 Likelihood Ratio Tests

Suppose that $\boldsymbol{x} = (x_1, \dots, x_n)$ has density or frequency function $p(\boldsymbol{x}, \theta)$ and we wish to test $H_0 : \theta \in \Theta_0$ versus $H_1 : \theta \in \Theta_1$. The test statistic we want to consider is the *likelihood ratio* given by

$$LR = \frac{\sup\{p(\boldsymbol{x}, \theta) : \theta \in \Theta_0\}}{\sup\{p(\boldsymbol{x}, \theta) : \theta \in \Theta_1\}}.$$

Tests that reject H_0 for small value of LR are called *likelihood ratio tests*.

In the cases we shall consider, $p(x, \theta)$ is a continuous function of θ and Θ_0 is of smaller dimension than $\Theta = \Theta_0 \cap \Theta_1$ so that the likelihood ratio equals the test statistic

$$\lambda(\boldsymbol{x}) = \frac{\sup\{p(\boldsymbol{x}, \theta) : \theta \in \Theta_0\}}{\sup\{p(\boldsymbol{x}, \theta) : \theta \in \Theta\}},$$

whose compitation is often simple. It follows that (Wilks, 1938) for $n
ightarrow \infty$

$$-2\log\lambda(\boldsymbol{x})\to\chi_d^2,$$

where $d = dim(\Theta) - dim(\Theta_0)$. In some cases, the χ^2 approximation is not needed because $\lambda(x)$ turns out to be a function of a familiar test statistic, such as t or F, whose exact distribution is available.

Theorem 5.1 If \boldsymbol{y} is $N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, the likelihood ratio test for $H_0: \boldsymbol{\beta} = 0$ can be test on

$$F = \frac{\hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y} / (k+1)}{(\boldsymbol{y}' \boldsymbol{y} - \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y}) / (n-k-1)}.$$

We reject H_0 if $F > F_{\alpha,k+1,n-k-1}$.

PROOF: To find $\sup L(\beta, \sigma^2)$, we use the MLEs $\hat{\beta} = (X'X)^{-1}X'y$ and $\hat{\sigma}^2 = (y - X\hat{\beta})'(y - X\hat{\beta})/n$. Substituting we have

$$\sup L(\boldsymbol{\beta}, \sigma^2) = \frac{n^{n/2} e^{-n/2}}{(2\pi)^{n/2} [(\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})'(\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})]^{n/2}}$$

To find $\sup L(0,\sigma^2),$ we solve $\partial L(0,\sigma^2)/\partial \sigma^2=0$ to obtain

$$\hat{\sigma}_0^2 = by' \boldsymbol{y}/n.$$

Then

$$\sup_{H_0} L(\boldsymbol{\beta}, \sigma^2) = L(0, \hat{\sigma}_0^2) = \frac{n^{n/2} e^{-n/2}}{(2\pi)^{n/2} (\boldsymbol{y}' \boldsymbol{y})^{n/2}}.$$

Thus, we have

$$\lambda(\boldsymbol{x}) = [\frac{(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})'(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})}{\boldsymbol{y}'\boldsymbol{y}}]^{n/2} = [\frac{1}{1 + (k+1)F/(n-k-1)}]^{n/2},$$

where

$$F = \frac{\hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y} / (k+1)}{(\boldsymbol{y}' \boldsymbol{y} - \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y}) / (n-k-1)}.$$

Thus, rejecting $h_0: \boldsymbol{\beta} = 0$ for a small value of $\lambda(\boldsymbol{x})$ is equivalent to rejecting H_0 for a large value of F.

The four steps of deriving likelihood ratio tests:

- (1) Calculate the MLE $\hat{\theta}$ of θ .
- (2) Calculate the MLE $\hat{\theta}_0$ where θ may vary only over Θ_0 .

(3) Form
$$\lambda(\boldsymbol{x}) = p(\boldsymbol{x}, \hat{\theta}_0) / p(\boldsymbol{x}, \hat{\theta})$$
.

(4) Find a function h which is strictly decreasing on the range of λ such that $h(\lambda(\boldsymbol{x}))$ has a simple form and a tabled distribution under h_0 . Since $h(\lambda(\boldsymbol{x}))$ is equivalent to $\lambda(\boldsymbol{x})$ we specify the size α likelihood rato test through the test statistic $h(\lambda(\boldsymbol{x}))$ and its $(1 - \alpha)$ th quantile obtained from the table.