
Ch7. Multiple Regression: Tests of Hypothesis
and Confidence Intervals

In this chapter we consider hypothesis tests and confidence intervals for the pa-

rameters β0, · · · , βk in β in the model y = Xβ+ ǫ. We will assume throughout the

chapter that y is Nn(Xβ, σ2I), where X is n × (k + 1) of rank k + 1 < n, and

the x’s are fixed constants.

1 Test of Overall Regression

We begin with a test of the overall regression hypothesis that none of the x’s predict y.

This hypothesis can be expressed as H0 : β1 = 0, where β1 = (β1, · · · , βk)
′.

Note that we wish to test H0 : β1 = 0, not H0 : β = 0, where β = (β0,β
′
1)

′.

Since β0 is usually not zero, rejection of H0 : β = 0 might be due solely to β0, and

we would not learn if the x’s predict y.



For this test, we use the centered model

y = (j,Xc)

(

α

β1

)

+ ǫ, (1)

where Xc = (I − 1
nJ)X1 is the centered matrix and X1 contains all the columns

of X except the first. Note the partition identity

y′(I − 1

n
J)y = SSR+ SSE

= y′Xc(X
′
cXc)

−1X ′
cy + y′(I − 1

n
J)y − y′Xc(X

′
cXc)

−1X ′
cy

= y′Ay + y′(I − 1

n
J −A)y,

(2)

where A = Xc(X
′
cXc)

−1X ′
c.

In the following theorem we establish some properties of the matrices of the quadratic

forms in (2).



Theorem 1.1 The matrices I − 1
nJ , A = Xc(X

′
cXc)

−1X ′
c, and I − 1

nJ −A

have the following properties:

(i) A(I − 1
nJ) = A.

(ii) A is idempotent of rank k.

(iii) I − 1
nJ −A is idempotent of rank n− k − 1.

(iv) A(I − 1
nJ −A) = O.

PROOF: Part (i) follows from X ′
cj = 0. The other parts are left as exercises.

Theorem 1.2 Ify isNn(Xβ, σ2I), thenSSR/σ2 = β̂
′

1X
′
cXcβ̂1/σ

2 andSSE/σ2 =

[
∑n

i=1(yi − ȳ)2 − β̂
′

1X
′
cXcβ̂1]/σ

2 have the following distributions:

(i) SSR/σ2 is χ2(k, λ1), where λ1 = β̂
′

1X
′
cXcβ̂1/[2σ

2].

(ii) SSE/σ2 is χ2(n− k − 1).

PROOF: The results follows from (2), theorem 1.1 (ii) and (iii).



The following theorem shows that SSR and SSE are independent.

Theorem 1.3 If y is Nn(Xβ, σ2I), then SSR and SSE are independent.

PROOF: It follows from equation (2) and theorem 1.1(iv).

Theorem 1.4 If y is Nn(Xβ, σ2I), the distribution of

F =
SSR/(kσ2)

SSE/[(n− k − 1)σ2]
=

SSR/k

SSE/(n− k − 1)

is as follows:

(i) If H0 : β1 = 0 is false, then

F is distributed as F (k, n− k − 1, λ1),

where λ1 = β′
1X

′
cXcβ1/2σ

2.

(ii) If H0 : β1 = 0 is true, then λ1 = 0 and

F is distributed as F (k, n− k − 1).



Table 1: Analysis of Variance (ANOVA) for F -test of H0 : β1 = 0.

Source of Variation d.f. Sum of Squares Mean Square Expected Mean Square

Due to β1 k SSR SSR/k σ2 + 1
kβ

′
1X

′
cXcβ1

Error n− k − 1 SSE SSE/(n− k − 1) σ2

Total n− 1 SST

PROOF: Exercise.

Note that λ1 = 0 if and only if β1 = 0, since X ′
cXc is positive definite.

The test forH0 : β1 = 0 is carried out as follows: rejectH0 ifF ≥ Fα,k,n−k−1,

where F ≥ Fα,k,n−k−1 is the upper α percentile of the centrail F -distribution. In ta-

ble 1, we summarize the results leading to the F -test.

If H0 : β1 = 0 is true, both of the expected mean squares in table 1 are equal

to σ2, and we expect F to be near 1. If β1 6== 0, then E(SSR/k) ≥ σ2 since

X ′
cXc is positive definite, and we expect F to exceed 1. We therefore reject H0 for



large value of F .

Example 1.1 For the data in Table 7.1, test H0 : β1 = 0. In this case,

β1 = (β1, β2)
′,

X ′y = (90, 482, 872)′,

β̂ = (5.3754, 3.0118,−1.2855)′,

y′y =
12
∑

i=1

y2i = 840,

β̂
′
X ′y = 814.5410,

nȳ2 = 675.

Thus, we have

SSR = β̂
′
X ′y − nȳ2 = 139.5410,

SSE = y′y − β̂
′
X ′y = 25.4590,

SST = y′y − nȳ2 = 165.



Table 2: ANOVA for overall regression test for the data in Table 7.1

Source d.f. Sum of Squares Mean Square F

Due to β1 2 139.5410 69.7705 24.665

Error 9 25.4590 2.8288

Total 11 165.0000

The F -test is given in Table 2. Since 24.665 > F.05,2,9 = 4.26, we reject H0 and

conclude that at least one of β1 or β2 is not zero.

2 Test on a subset of the β’s

In some cases, we wish to test the hypothesis that a subset of the x’s is not useful in

predicting y. Without loss of generality, we assume that the β’s to be tested have been

arranged last in β, with a corresponding arrangement of the columns of X , i.e., the



model becomes

y = Xβ + ǫ = (X1,X2)

(

β1

β2

)

+ ǫ

= X1β1 +X2β2 + ǫ,

(3)

where β2 contains the β’s to be tested. The intercept β0 would ordinarily included in

β1.

To test H0 : β2 = 0 versus H1 : β2 6= 0, we use a full-reduced-model

approach. The full model is given by (3), the reduced model becomes

y = X1β
∗
1 + ǫ∗.

Typically, β∗
1 and ǫ∗ will be different from β1 and ǫ in the full model (unless X1 and

X2 are orthogonal). For y′y we have the following partitioning:

y′y = (y′y − β̂
′
X ′y) + (β̂

′
X ′y − β̂

∗′

1 X1y) + β̂
∗′

1 X1y

= SSE + SS(β2|β1) + SS(β∗
1)

(4)



where β̂ = (X ′X)−1X ′y and β̂
∗

1 = (X ′
1X1)

−1X ′
1y. Note that

SS(β2|β1) = (β̂
′
X ′y−nȳ2)−(β̂

∗′

1 X1y−nȳ2) = SSR(full)−SSR(reduced).

Subtituting β̂ and β̂
∗

1 into equation (4), we have

y′y = y′[I −X(X ′X)−1X ′]y + y′[X(X ′X)−1X ′ −X1(X
′
1X1)

−1X ′
1]y + y′X1(X

′
1X

= y′(I −A1)y + y′(A1 −A2)y + y′A2y,

(5)

where A1 = X(X ′X)−1X ′
and A2 = X1(X

′
1X1)

−1X ′
1.

Theorem 2.1 The matrix A1 − A2 = X(X ′X)−1X ′ −X1(X
′
1X1)

−1X1 is

idempotent with rank h, where h is the number of elements in β2.

PROOF: Multiplying X by A1, we have

A1X = X(X ′X)−1X ′X = X,



or

X = X(X ′X)−1X ′X. (6)

Partitioning X on the left side of (6) and the last X on the right side, we have

X1 = X(X ′X)−1X ′XX1,

X2 = X(X ′X)−1X ′XX2.
(7)

Using (7) and its transpose, we have

A1A2 = A2 and A2A1 = A2.

Note A1 and A2 are both idempotent. Thus

(A1 −A2)
2 = A1 −A1A2 −A2A1 +A2

2

= A1 −A2 −A2 +A2 = A1 −A2.

Hence, A1 −A2 is idempotent.

rank(A1 −A2) = tr(A1 −A2) = tr(A1)− tr(A2)

= tr(Ik+1)− tr(Ik−h+1) = k + 1− (k − h+ 1) = h.



The next theorem gives the distribution of y′(I−A1)y and y′(A1−A2)y and

shows that they are independent.

Theorem 2.2 If y is Nn(Xβ, σ2I), then

(i) y′(I −A1)y/σ
2 is χ2(n− k − 1).

(ii) y′(A1 −A2)y/σ
2 is χ2(h, λ1), where

λ1 = β′
2[X

′
2X2 −X ′

2X1(X
′
1X1)

−1X ′
1X2]β2/2σ

2.

(iii) y′(I −A1)y and y′(A1 −A2)y are independent.

PROOF: (i) and (ii) are left for exercises. (iii) Note that A2 = A1A2, hence

(I −A1)(A1 −A2) = (I −A1)(A1 −A1A2) = O.

Since X ′
2X2 −X ′

2X1(X
′
1X1)

−1X ′
1X2 is positive definite (see problem 8.10 of

Rencher and Schaalje (2008)), λ1 = 0 if and only if β = 0.



Theorem 2.3 Let y be Nn(Xβ, σ2I) and define an F -statistic as follows:

F =
y′(A1 −A2)y/h

y′(I −A)y/(n− k − 1)
=

SS(β2|β1)/h

SSE/(n− k − 1)

=
[SSR(full)− SSR(reduced)]/h

SSE/(n− k − 1)
.

The distribution of F is as follows:

(i) If H0 : β2 = 0 is false, then

F is distributed as F (h, n− k − 1, λ1),

where λ1 = β′
2[X

′
2X2 −X ′

2(X
′
1X1)

−1X ′
1X2]β2/2σ

2.

(ii) If H0 : β2 = 0 is true, then λ1 = 0 and

F is distributed as F (h, n− k − 1).

PROOF: Exercise.



Table 3: Analysis of Variance for F -test of H0 : β2 = 0.

Source of Variation d.f. Sum of Squares Mean Square F-statistic

Due to β2 adjusted for β1 h SS(β2|β1) SS(β2|β1)/h
SS(β

2
|β

1
)/h

SSE/(n−k−1)

Error n− k − 1 SSE SSE/(n− k − 1)

Total n− 1 SST

The test for H0 : β2 = 0 is carried as follows: reject H0 if F ≥ Fα,h,n−k−1, where

Fα,h,n−k−1 is the upper percentile of the central F -distribution. Note

E[SS(β2|β1)/h] = σ2 +
1

h
β′
2[X

′
2X2 −X ′

2(X
′
1X1)

−1X ′
1X2]β2,

and

E[SSE/(n− k − 1)] = σ2,

hence, if H0 is false, F will have a large value. The test is summarized in table 3.



3 The general linear hypothesis tests for H0 :

Cβ = 0 and H0 : Cβ = t

3.1 The Test for H0 : Cβ = 0

General linear hypothesis: the hypothesis H0 : Cβ = 0, where C is a q× (k+1)

coefficient matrix of rank q ≤ k + 1, is known as the general linear hypothesis. The

alternative hypothesis is H1 : Cβ 6= 0. Note that the formulation H0 : Cβ = 0

includes as special cases the hypotheses in last two sections.

Theorem 3.1 If y is distributed as Nn(Xβ, σ2I) and C is q × (k + 1) of rank

q ≤ k + 1, then

(i) Cβ̂ is Nq(Cβ, σ2C(X ′X)−1C ′).

(ii) SSH/σ2 = (Cβ̂)′[C(X ′X)−1C ′]−1(Cβ̂)/σ2 is χ2(q, λ), where

λ = (Cβ)′[C(X ′X)−1C′]−1Cβ/2σ2;



(iii) SSE/σ2 = y′(I −X(X ′X)−1X ′]y/σ2 is χ2(n− k − 1).

(iv) SSH and SSE are independent.

PROOF: (ii) Since cov(Cβ̂) = σ2C(X ′X)−1C ′
andσ2[C(X ′X)−1C ′]−1C(X ′X)−1C ′/σ2

I , which is idempotent.

(iv) Since SSH = (Cβ̂)′[C(X ′X)−1C′]−1Cβ̂ = y′X · · ·X ′y, and

X ′(I −X(X ′X)−1X ′) = O, SSE and SSH are independent.

Theorem 3.2 Let y be Nn(Xβ, σ2I) and define the statistic

F =
SSH/q

SSE/(n− k − 1)

=
(Cβ̂)′[C(X ′X)−1C ′]−1Cβ̂/q

SSE/(n− k − 1)

where C is q × (k + 1) of ranmk q ≤ k + 1 and β̂ = (X ′X)−1X ′y. The

distribution of F is as follows:

(i) If H0 : Cβ = 0 is false, then



F is distributed as F (q, n− k − 1, λ),

where λ = (Cβ)′[C(X ′X)−1C′]−1Cβ/2σ2.

(ii) If H0 : Cβ = 0 is true, then

F is distributed as F (q, n− k − 1).

PROOF: Exercise.

This test is usually called the general linear hypothesis test. The degrees of freedom

q is the number of linear combinations in Cβ. Reject H0 if F ≥ Fα,q,n−k−1,

where F ≥ Fα,q,n−k−1 is the upper percentile of the central F -distribution. Since

C(X ′X)−1C′
is positive definite, λ > 0 if H0 is false. Hence, we reject H0 for

large values of F . The expected mean squares for the F -test are given by

E(
SSH

q
) = σ2 +

1

q
(Cβ)′[C(X ′X)−1C]−1Cβ,

E(
SSE

n− k − 1
) = σ2.



Theorem 3.3 The F -test in theorem 3.2 for the general linear hypothesisH0 : Cβ =

0 is a full-and-reduced-model test.

PROOF: The reduced model under H0 is

y = Xβ + ǫ subject to Cβ = 0.

Using Lagrange multipliers, it can be shown (problem 8.19 of Rencher and Schaalje

(2008)) that the estimator for β in this reduced model is

β̂c = β̂ − (X ′X)−1C ′[C(X ′X)−1C ′]−1Cβ̂,

where β̂ is estimated from the full model unrestricted by the hypothesis. In the reduced

model, the X matrix is unchanged from the full model, and the regression sum of

squares for the reduced model is therefore β̂
′

cX
′y. (since Cβ̂c = 0.) Hence, the

regression sum of squares due to the hypothesis is

SSH = β̂
′
X ′y − β̂

′

cX
′y.

By substituting β̂c into SSH, we obtain

SSH = (Cβ̂)′[C(X ′X)−1C ′]−1Cβ̂,



thus establishing that theF -test in theorem 3.2 forH0 : Cβ = 0 is a full-and-reduced-

model test.

3.2 The Test for H0 : Cβ = t

We assume that the system Cβ = t is consistent, that is, rank(C)=rank(C,t).

Theorem 3.4 If y is distributed as Nn(Xβ, σ2I) and C is q × (k + 1) of rank

q ≤ k + 1, then

(i) Cβ̂ − t is Nq(Cβ − t, σ2C(X ′X)−1C ′).

(ii) SSH/σ2 = (Cβ̂ − t)′[C(X ′X)−1C ′]−1(Cβ̂ − t)/σ2 is χ2(q, λ), where

λ = (Cβ − t)′[C(X ′X)−1C′]−1(Cβ − t)/2σ2;

(iii) SSE/σ2 = y′(I −X(X ′X)−1X ′]y/σ2 is χ2(n− k − 1).

(iv) SSH and SSE are independent.



PROOF: (iv) A simple argument is that: sime β̂ and SSE are independent, SSH and

SSE are independent (Seber 1977, pp.17, 33-34). A formal proof is as follows.

First, note that

C(X ′X)−1X ′y − t = C(X ′X)−1X ′[y −XC ′(CC ′)−1t],

so that

SSH = [y −XC ′(C ′C)−1t]′A[y −XC′(CC ′)−1t],

where A = X(X ′X)−1C′[C(X ′X)−1C ′]−1C(X ′X)−1X ′
.

SSE = [y −XC ′(C ′C)−1t]′B[y −XC′(C′C)−1t],

where B = I−X(X ′X)−1X ′
. Since AB = O, SSH and SSE are independent.

Theorem 3.5 Let y be Nn(Xβ, σ2I) and define the statistic

F =
SSH/q

SSE/(n− k − 1)

=
(Cβ̂ − t)′[C(X ′X)−1C ′]−1(Cβ̂ − t)/q

SSE/(n− k − 1)

(8)



where C is q × (k + 1) of ranmk q ≤ k + 1 and β̂ = (X ′X)−1X ′y. The

distribution of F is as follows:

(i) If H0 : Cβ = t is false, then

F is distributed as F (q, n− k − 1, λ),

where λ = (Cβ − t)′[C(X ′X)−1C′]−1(Cβ − t)/2σ2.

(ii) If H0 : Cβ = t is true, then λ = 0 and

F is distributed as F (q, n− k − 1).

3.3 Tests on βj and a′β

A test for an individual βj can be obtained using either the full-and-reduced-model

approach in section 2 or the general linear hypothesis approach in section 3.

The test statistic for H0 : βk = 0 using a full and reduced model is then

F =
β̂
′
X ′y − β̂

∗′

X1y

SSE/(n− k − 1)
, (9)



which is distributed as F (1, n− k − 1) if H0 is true.

To test H0 : a′β = 0 for a single linear combination, for example, a′ =

(0, 1,−1, 1), we use a′ in place of the matrix C in H0 : Cβ = 0. Then q = 1, and

the test statistic becomes

F =
(a′β̂)′[a′(X ′X)−1a]−1(a′β̂)

SSE/(n− k − 1)
=

(a′β̂)2

s2a′(X ′X)−1a
, (10)

where s2 = SSE/(n− k− 1). The F -statistic is distribuited as F (1, n− k− 1) if

H0 : a′β = 0 is true.

One special case of a′ = (0, · · · , 0, 1, 0, · · · , 0), where 1 is in the jth position.

This gives

F =
β̂2
j

s2gjj
, (11)

where gjj is the jth diagonal element of (X ′X)−1. If H0 : βj = 0 is true, F is

distributed as F (1, n − k − 1), we reject H0 : βj = 0 if F ≥ Fα,1,n−k−1 or,

equivalently, if p ≤ α, where p is the p-value for F . (The p-value is the probability that

F (1, n− k − 1) exceeds the observed value of F .)



Since the F -statustic has 1 andn−k−1 degrees of freedom, we can equivalently

use the t-statistic

tj =
β̂j

s
√
gjj

(12)

to test the effect of βj .

4 Confidence Intervals and Prediction Inter-

vals

4.1 Confidence Region for β

If C = I in (8), q becomes k + 1, and t = β, we obtain a central F -distribution and

make the probability statement

P [(β̂ − β)′X ′X(β̂ − β)/(k + 1)s2 ≤ Fα,k+1,n−k−1] = 1− α,



where s2 = SSH/(n−k−1). From this statement, a 100(1−α)% joint confidence

region for β0, β1, · · · , βk in β is given by all vectors β that satisfy

(β̂ − β)′X ′X(β̂ − β) ≤ (k + 1)s2Fα,k+1,n−k−1.

For k = 1, this region can be plotted as an ellipse in two dimensions. For k > 1, the

elliptical region is unwidely to interpret.

4.2 Confidence Interval for βj

If βj 6= 0, we can subtract βj in (12) so that

tj =
β̂j − βj

s
√
gjj

has the central t-distribution, where gjj is the jth diagonal element of (X ′X)−1.

Then

P [−tα/2,n−k−1 ≤
β̂j − βj

s
√
gjj

≤ tα/2,n−k−1] = 1− α.



i.e.,

P (β̂j − tα/2,n−k−1s
√
gjj ≤ βj ≤ β̂j + tα/2,n−k−1s

√
gjj) = 1− α.

Before taking the sample, the probability that the random interval will contain βj is

1− α. After taking the sample, the 100(1− α)% confidence interval for βj ,

β̂j ± tα/2,n−k−1s
√
gjj ,

is no longer random, and we say that we are 100(1− α)% confident that the interval

contains βj .

Example 4.1 Example 8.6.2 (Rencher and Schaalje(2008), pp.210).

4.3 Confidence Interval for a′β

If a′β 6= 0, we can subtract a′β from a′β̂ in (11) to obtain

F =
(a′β − a′β)2

s2a′(X ′X)−1a
,



which is distributed as F (1, n− k − 1). Then

t =
a′β − a′β

s
√

a′(X ′X)−1a
,

is distributed as t(n − k − 1), and a 100(1 − α)% confidence interval for a single

value of a′β is given by

a′β̂ ± tα/2,n−k−1s
√

a′(X ′X)−1a.

4.4 Confidence Interval for E(y)

Let x0 = (1, x01, x02, · · · , x0k)
′ denote a particular choice of x. Note that x0 need

not be one of the x’s in the sample. Let y0 be an observation corresponding to x0.

Then

y0 = X ′
0β + ǫ,

and

E(y0) = x′
0β. (13)



The minimum variance unbiased estimator of E(y0) is given by

Ê(y0) = x′
0β̂. (14)

Since (13) and (14) are of the form a′β and a′β̂, respectively, we obtain a 100× (1−
α)% confidence interval for E(y0):

x′
0β̂ ± tα/2,n−k−1s

√

x′
0(X

′X)−1x0.

The confidence interval can also be expressed in terms of the centered model,

E(y0) = α+ β′
1(x01 − x̄1),

Ê(y0) = ȳ + β̂
′

1(x01 − x̄1),

ȳ + β̂
′

1(x01 − x̄1)± tα/2,n−k−1s

√

1

n
+ (x01 − x̄1)′(X

′
cXc)−1(x01 − x̄1).



4.5 Prediction interval for a future observation

For a future observation, we have

var(y0 − ŷ0) = var(y0) + var(x′
0β̂) = σ2 + σ2x′

0(X
′X)−1x0

= σ2[1 + x′
0(X

′X)−1x0],

which is estimated by s2[1+x′
0(X

′X)−1x0]. Note that in the derivation, we used the

fact that y0 is independent of ŷ0. Since s2 is independent of both y0 and ŷ0 = x′
0β̂,

we have that

t =
y0 − ŷ0

s
√

1 + x′
0(X

′X)−1x0

is distributed as t(n− k − 1), and the 100(1− α)% prediction interval is

x′
0β̂ ± tα/2,n−k−1s

√

1 + x′
0(X

′X)−1x0.

In terms of the centered model, the 100(1− α)% prediction interval becomes

ȳ+β̂
′

1(x01−x̄1)±tα/2,n−k−1s

√

1 +
1

n
+ (x01 − x̄1)′(X

′
cXc)−1(x01 − x̄1).



4.6 Confidence interval for σ2

Since (n − k − 1)s2/σ2 is χ2(n − k − 1), the 100(1 − α)% confidence interval

for σ2 is
(n− k − 1)s2

χ2
α/2,n−k−1

≤ σ2 ≤ (n− k − 1)s2

χ2
1−α/2,n−k−1

.

A 100(1− α)% confidence interval for σ is

√

(n− k − 1)s2

χ2
α/2,n−k−1

≤ σ ≤
√

(n− k − 1)s2

χ2
1−α/2,n−k−1

.

5 Likelihood Ratio Tests

Suppose that x = (x1, · · · , xn) has density or frequency function p(x, θ) and we

wish to test H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1. The test statistic we want to consider

is the likelihood ratio given by

LR =
sup{p(x, θ) : θ ∈ Θ0}
sup{p(x, θ) : θ ∈ Θ1}

.



Tests that reject H0 for small value of LR are called likelihood ratio tests.

In the cases we shall consider, p(x, θ) is a continuous function of θ and Θ0 is

of smaller dimension than Θ = Θ0 ∩ Θ1 so that the likelihood ratio equals the test

statistic

λ(x) =
sup{p(x, θ) : θ ∈ Θ0}
sup{p(x, θ) : θ ∈ Θ} ,

whose compitation is often simple. It follows that (Wilks, 1938) for n → ∞

−2 log λ(x) → χ2
d,

where d = dim(Θ)−dim(Θ0). In some cases, the χ2 approximation is not needed

because λ(x) turns out to be a function of a familiar test statistic, such as t or F ,

whose exact distribution is available.

Theorem 5.1 If y is Nn(Xβ, σ2I), the likelihood ratio test for H0 : β = 0 can be

test on

F =
β̂
′
X ′y/(k + 1)

(y′y − β̂
′
X ′y)/(n− k − 1)

.

We reject H0 if F > Fα,k+1,n−k−1.



PROOF: To find supL(β, σ2), we use the MLEs β̂ = (X ′X)−1X ′y and σ̂2 =

(y −Xβ̂)′(y −Xβ̂)/n. Substituting we have

supL(β, σ2) =
nn/2e−n/2

(2π)n/2[(y −Xβ̂)′(y −Xβ̂)]n/2
.

To find supL(0, σ2), we solve ∂L(0, σ2)/∂σ2 = 0 to obtain

σ̂2
0 = by′y/n.

Then

sup
H0

L(β, σ2) = L(0, σ̂2
0) =

nn/2e−n/2

(2π)n/2(y′y)n/2
.

Thus, we have

λ(x) = [
(y −Xβ̂)′(y −Xβ̂)

y′y
]n/2 = [

1

1 + (k + 1)F/(n− k − 1)
]n/2,

where

F =
β̂
′
X ′y/(k + 1)

(y′y − β̂
′
X ′y)/(n− k − 1)

.



Thus, rejecting h0 : β = 0 for a small value of λ(x) is equivalent to rejecting H0 for

a large value of F .

The four steps of deriving likelihood ratio tests:

(1) Calculate the MLE θ̂ of θ.

(2) Calculate the MLE θ̂0 where θ may vary only over Θ0.

(3) Form λ(x) = p(x, θ̂0)/p(x, θ̂).

(4) Find a function h which is strictly decreasing on the range of λ such that

h(λ(x)) has a simple form and a tabled distribution under h0. Since h(λ(x))

is equivalent to λ(x) we specify the size α likelihood rato test through the test

statistic h(λ(x)) and its (1− α)th quantile obtained from the table.


