Ch7. Multiple Regression: Tests of Hypothesis
and Confidence Intervals

In this chapter we consider hypothesis tests and confidence intervals for the pa-
rameters Og, - - - , B in 3 in the model y = X 3 4 €. We will assume throughout the
chapter that y is N,, (X 3,0°I), where X isn x (k+ 1) ofrank k + 1 < n, and

the x’s are fixed constants.

1 Test of Overall Regression

We begin with a test of the overall regression hypothesis that none of the x’s predict v.
This hypothesis can be expressed as Hy : 3, = 0, where 3, = (81, -+, Bk)".
Note that we wish to test Hy : 3; = 0, not Hy : 3 = 0, where 3 = (39, 37)’.
Since By is usually not zero, rejection of Hy : 3 = 0 might be due solely to 5, and

we would not learn if the x’s predict y.



For this test, we use the centered model

y=(J,X.) <;1> + €, (1)

where X . = (I — +J)X is the centered matrix and X1 contains all the columns

of X except the first. Note the partition identity
y' (I — %J)y =SSR+ SSE
=y X (X X)) Xy +y'(I- %J)y — Y X (X, X.) ' XLy
=y' Ay +y'(I - %J — Ay,
(2)

where A = X (X.X )1 X
In the following theorem we establish some properties of the matrices of the quadratic

forms in (2).



(1)
(1)
(iii)
(1v)

(1)
(1)

Theorem 1.1 The matrices I — +J, A = X (X. X )"t X, andI — +J — A
n n
have the following properties:

AI-2J)=A
A is idempotent of rank k.

I — %J — A is idempotent of rankn — k — 1.

AI—-1tJ—-A)=0.
n
PROOF: Part (i) follows from X’Cj = (. The other parts are left as exercises.

Theorem 1.2 Ifyis N, (X 3,0°I),then SSR/c?* = B;X’CXC,Bl/02 and SSE/oc? =
~/ A
D> (yi —9)* — B1X.XB,]/0* have the following distributions:

SSR/o? is x*(k, A1), where \| = B;X’CXC,Bl/[QUQ].
SSE/c?isx*(n —k—1).

PROOF: The results follows from (2), theorem 1.1 (ii) and (iii).



The following theorem shows that S.S R and S'S E are independent.

Theorem 1.3 Ify is N,,(X3,0°I), then SSR and SSE are independent.
PROOF: It follows from equation (2) and theorem 1.1(iv).

Theorem 1.4 Ify is N,,(X 3, 0°I), the distribution of

SSR/(ko?) SSR/k

F = SSE/n—k =107~ SSE/(n—k—1)

is as follows:
(i) If Hy: B, = 0 is false, then
F is distributed as F'(k,n — k — 1, A1),

where \; = 31X . X .3,/202.

(i) IfHy: B, = 0istrue, then A\1 = 0 and

F is distributed as F'(k,n — k — 1).



Table 1: Analysis of Variance (ANOVA) for F'-testof Hy : 3, = 0.

Source of Variation  d.f. Sum of Squares Mean Square Expected Mean Squa
Due to 3, k SSR SSR/k o+ 181X, X .0
Error n—k—1 SSE SSE/(n—k—-1) o2

Total n—1 SST

PROOF: Exercise.

Note that A\; = O if and only if 3; = 0, since X | X . is positive definite.

Thetestfor Hy : (3; = Ois carried out as follows: reject Hy if I' > Fy, g n—k—1,
where ' > F, 1. n—k—1 is the upper « percentile of the centrail £-distribution. In ta-
ble 1, we summarize the results leading to the F'-test.

If Hy : [3; = 0Ois true, both of the expected mean squares in table 1 are equal
to 02, and we expect I to be near 1. If 3; #= 0, then E(SSR/k) > 0 since

X ’CX . is positive definite, and we expect F' to exceed 1. We therefore reject H for



large value of F'.

Example 1.1 For the data in Table 7.1, test Hy : (3, = 0. In this case,

/81 — (61762)/7
X'y = (90,482, 872),

A

B = (5.3754,3.0118, —1.2855)’,
12

y'y =) yi =840,

1=1
3 X'y = 814.5410,
ng* = 675.

Thus, we have

SSR =3 X'y — ng? = 139.5410,
SSE = y'y — 8 X'y = 25.4590,
SST = y'y — ny* = 165.



Table 2: ANOVA for overall regression test for the data in Table 7.1

Source d.f. Sum of Squares Mean Square F
Dueto 3; 2 139.5410 69.7705 24.665
Error 9 25.4590 2.8288

Total 11 165.0000

The F'-test is given in Table 2. Since 24.665 > F o529 = 4.20, we reject Hy and

conclude that at least one of (31 or 35 is not zero.

2 Test on a subset of the 3’s

In some cases, we wish to test the hypothesis that a subset of the x’s is not useful in
predicting 1. Without loss of generality, we assume that the ('s to be tested have been

arranged last in 3, with a corresponding arrangement of the columns of X, i.e., the



model becomes

y=XpB+e= (X1, X5) <Z1> + €

2

:Xlﬁl +X2/62+€7

where 3, contains the ’s to be tested. The intercept 5y would ordinarily included in

B
Totest Hy : B, = Oversus Hy : (3, # 0, we use a full-reduced-model

approach. The full model is given by (3), the reduced model becomes
y=X.08] +¢€"

Typically, 5 and €* will be different from (3, and € in the full model (unless X; and

X 5 are orthogonal). For 'y we have the following partitioning:

~/ ~/ ~ k! ~ %/
vVy=Wy-8Xy +(BXy—-p5 X1y)+ 8, X1y
= SSE + 55(52’51) + SS(BT)

(4)



where 8 = (X'X)"' X'y and B; = (X, X 1)1 X",y. Note that

SS5(8B5|8) = (,3/X/y—n§2)—(8>1k X1y—ny?) = SSR(full)—SSR(reduced).
Subtituting B and BI into equation (4), we have

Yy=y'[I - X(X'X)"'Xly+¢[X(X'X)"' X' - X1(X1X1) ' Xy + v X:1(X]
=y (I-A)y+y' (A — Ay + Yy Asy,
(5)

where A; = X (X' X)X and A; = X (XX )1 X

Theorem 2.1 The matrix A} — Ay = X(X'X)7 ! X' — X (XX 1)1 X is

idempotent with rank h, where h is the number of elements in 3.

PROOF: Multiplying X by A1, we have

AX=XX'X)"'X'X=X,



or

X=XX'X)"'X'X. (6)
Partitioning X on the left side of (6) and the last X on the right side, we have
X =X X'X)"'X'XX,,
X =X(X'X)"'X'XX,.
Using (7) and its transpose, we have
A1As = Ay and A A, = As.
Note A; and A5 are both idempotent. Thus
(A1 — A2 =A; — A Ay — Ay A, + A5
=A1 — Ay, — Ay + Ay = A — A,
Hence, A; — A, is idempotent.
rank(A; — As) =tr(A; — As) =tr(Ay) —tr(As)
— tr(lpr) —tr(Is_ps1) =k +1— (k—h+1) = h.



The next theorem gives the distribution of y'(I — A7)y and y’ (A1 — As)y and

shows that they are independent.
Theorem 2.2 Ify is N,,(X3,0°I), then

i) y' (I —A)y/o%isx*(n—k—1).
(i) y' (A1 — As)y/o? is x?(h, \1), where

M= G5 X5X, - X0 X (XX 1) T X X5)8,/20°.
(i) y' (I — A1)y andy’ (A1 — As)y are independent.
PROOF: (i) and (ii) are left for exercises. (iii) Note that Ay = A As, hence

(I — A (A, — Ay) = (I — A) (A — A As) = O.

Since X5 X, — X5 X (X X 1) 1 X X is positive definite (see problem 8.10 of
Rencher and Schaalje (2008)), Ay = 0 if and only if 3 = 0.



Theorem 2.3 Lety be N,,(X 3, 0°I) and define an I -statistic as follows:

y' (A1 — A2)y/h _ SS5(B41841)/h
yI—-Ay/n—k—-1) SSE/(n—k—1)
(SSR(full) — SSR(reduced)|/h

SSE/(n—k—1) '

F =

The distribution of F' is as follows:
(i) IfHy: By = 0 is false, then
F is distributed as F'(h,n — k — 1, A1),

where A\ = ,B/Q[X,QXQ — X’Q(X’le)_lX’ng],BQ/202

(i) If Hy: By = 0istrue, then A\ = 0 and

F is distributed as F'(h,n — k — 1).

PROOF: Exercise.



Table 3: Analysis of Variance for F'-test of Hy : 35 = 0.

Source of Variation d.f. Sum of Squares Mean Square F-statistic

. SS }
Due to 3, adjusted for 3, h 55(82|81) 55(821B1)/h Ssé'?d'ilf)_/l
Error n—k—1 SSE SSE/(n—k—1)
Total n—1 SST

The test for Hy : (3, = 0 is carried as follows: reject Hy if ' > Fy, 3, ,—k—1, Where

Fa,h,n_k_l is the upper percentile of the central F'-distribution. Note

E[SS(8,18,)/h] = o + 3 B3 X5 X — X5(X1X1)™ X{ X568y,

and
E[SSE/(n—k —1)] = 0%,

hence, if H is false, F' will have a large value. The test is summarized in table 3.



3 The general linear hypothesis tests for /1 :
C,@anndHO: C,@Zt

3.1 TheTestfor Hy: C3 =0

General linear hypothesis: the hypothesis Hy : C3 = 0,where C'isag x (k+1)
coefficient matrix of rank ¢ < k + 1, is known as the general linear hypothesis. The
alternative hypothesis is H; : C3 # 0. Note that the formulation Hy : C3 = 0

includes as special cases the hypotheses in last two sections.

Theorem 3.1 If y is distributed as N,,(X 3,0°I) and C is ¢ x (k + 1) of rank
q < k+1, then

() CBisN,(CB,s2C(X'X)~1C").
(i) SSH/o% = (CB)[C(X'X)"1C'1"1(CB)/o? is x2(q, \), where

A= (CB)[C(X'X)~'C) ' CB/20%



(i) SSE/o* =y’ (I - X(X'X) ' X |y/o%isx*(n —k —1).
(iv) SSH and SSE are independent.

A

PROOF: (i) Since cov(CB) = o*C(X'X) " 'C'and ¢?*|C(X' X))~ C'71C(X'X)~1C' /o?
I, which is idempotent.

(iv) Since SSH = (CB)[C(X'X)"'C'"'CB = y'X--- X'y, and
X'(I - X(X'X) 'X") = O, SSE and SSH are independent.

Theorem 3.2 Lety be N,,(X 3, 02I) and define the statistic

_ SSH/q
 SSE/(n—k—1)
(CBY[C(X'X)"'C'"'CB/q
SSE/(n—k—1)

F

where C' is ¢ X (k + 1) of ranmk ¢ < k + 1 and 3 = (X' X)) 1 X'y. The

distribution of F' is as follows:

(i) If Hy : C3 = 0 is false, then



(1)

F is distributed as F'(qg,n — k — 1, \),

where A = (CB)'[C(X'X)~1C'|7tCB/205>.

If Hy : C3 = 0 is true, then

F is distributed as F'(qg,n — k — 1).
PROOF: Exercise.

This test is usually called the general linear hypothesis test. The degrees of freedom
q is the number of linear combinations in C' 3. Reject Hy if F' > Fy qn—k—1,
where I > I, , n—r—1 is the upper percentile of the central ["-distribution. Since
C(X'X)~1C" is positive definite, \ > 0 if Hy is false. Hence, we reject H for

large values of /. The expected mean squares for the F'-test are given by

2R =t 4 L (CpYle(XX) ey,

SSE |
n—k—l)_a°

E(

E(



Theorem 3.3 The F'-test in theorem 3.2 for the general linear hypothesis Hy : C3 =

0 is a full-and-reduced-model test.
PROOF: The reduced model under Hy is
y = X3+ € subject to C3 = 0.

Using Lagrange multipliers, it can be shown (problem 8.19 of Rencher and Schaalje
(2008)) that the estimator for (3 in this reduced model is

A

B.=p—-(X'X)"'C'lc(X'X)"'C'1CpB,

where B is estimated from the full model unrestricted by the hypothesis. In the reduced

model, the X matrix is unchanged from the full model, and the regression sum of
~ 1 A

squares for the reduced model is therefore 3, X y. (since C3,. = 0.) Hence, the

regression sum of squares due to the hypothesis is
N ~ !
SSH =08 X'y—-3.X"y.
By substituting BC into SSH, we obtain

SSH = (CB)[C(X'X)"1c'1~1CB,



thus establishing that the F'-test in theorem 3.2 for Hy : C' 3 = 0O'is a full-and-reduced-

model test.

3.2 TheTestfor Hy: C3 =1t

We assume that the system C'3 = t is consistent, that is, rank(C')=rank(Ct).

Theorem 3.4 If y is distributed as N,,(X 3,0°I) and C is ¢ x (k + 1) of rank
qg < k+1, then

() CB—tisN,(CB—t,0>°C(X'X)"1C").
(i) SSH/o%=(CB—t)[C(X'X)"1C'1"1(CB —1t)/0% is x%(q, \), where

A= (CB-t)[C(X'X)"'C'|H(CB - t)/20%;

(i) SSE/o* =4y’ (I - X(X'X) ' X |y/o%isx*(n —k —1).

(iv) SSH and SSE are independent.



PROOF: (iv) A simple argument is that: sime B and SSE are independent, SSH and
SSE are independent (Seber 1977, pp.17, 33-34). A formal proof is as follows.

First, note that
CX'X)'X'y-t=C(X'X)"'X'ly—XC'(CC') ',
so that
SSH =[y— XC'(C'C) 't/ Aly — XC'(CC’') '],
where A = X(X'X)"IC'[C(X'X)"'C'"'C(X' X)X’
SSE =[y - XC'(C'C) " 't'Bly — XC'(C'C)™ 4],

where B = [ — X (X'X) ' X'. Since AB = O, SSH and SSE are independent.

Theorem 3.5 Lety be N,,(X3,0%I) and define the statistic
_ SSH/q
~ SSE/(n—k—1)
(CB-t)[C(X'X)'C]" (CB-t)/q
SSE/(n—k—1)

F




(1)

where C' is ¢ X (k + 1) of ranmk ¢ < k + 1 and 3 = (X' X)) 1 X'y. The

distribution of F' is as follows:
If Hy : C3 =t is false, then

F is distributed as F'(qg,n — k — 1, \),
where \ = (C3 —t)[C(X'X)~1C'71(CB - t)/20°.
If Hy : C3 =t is true, then A = 0 and

F is distributed as F'(qg,n — k — 1).

3.3 Testson (3;and a’3

A test for an individual Bj can be obtained using either the full-and-reduced-model
approach in section 2 or the general linear hypothesis approach in section 3.

The test statistic for Hy : 0, = 0 using a full and reduced model is then

_ BX'y—3 Xy
SSE/(n—k—1)’

F



which is distributed as F'(1,n — k — 1) if Hy is true.

To test Hy : a’3 = O for a single linear combination, for example, a’ =
(0,1, —1,1), we use a’ in place of the matrix C'in Hy : C3 = 0. Then ¢ = 1, and
the test statistic becomes

(@'B)'[a/(X'X)ra) ! (a'B) (a'B)?

B T SSE k1) fa(X'X)ta 9

where s = SSE/(n —k — 1). The F-statistic is distribuited as F'(1,n — k — 1) if
Hy : a’3 = Ois true.

One special case ofa’ = (0,---,0,1,0,---,0), where 1 is in the jth position.
This gives
32
F=—, (11)
57055

where g, ; is the jth diagonal element of (X' X)~!'. If Hy : 8; = O'is true, F'is
distributed as F'(1,n — k — 1), wereject Hy : B, = 0if F' > Fi 1 n_k—_1 o,
equivalently, if p < «, where p is the p-value for F'. (The p-value is the probability that
F(1,n — k — 1) exceeds the observed value of [



Since the F'-statustic has 1 and n— k£ — 1 degrees of freedom, we can equivalently

use the t-statistic

(12)

to test the effect of [3;.

4 Confidence Intervals and Prediction Inter-
vals

4.1 Confidence Region for 3

If C' = Iin (8), g becomes k + 1, and t = 3, we obtain a central F'-distribution and

make the probability statement

Pl(B=8)X'X(B—8)/(k+1)s* < Faksimk]=1—a,



where s = SSH/(n—k—1). From this statement, a 100(1 — o) % joint confidence
region for B8y, 81, - - -, Bk in 3 is given by all vectors 3 that satisfy

(B — /8)/X/X(B — B) S (k =+ 1)S2Fa,k—|—1,n—k—1-

For £k = 1, this region can be plotted as an ellipse in two dimensions. For kK > 1, the

elliptical region is unwidely to interpret.

4.2 Confidence Interval for 3,

If B; # 0, we can subtract 3; in (12) so that

B =B
SvV/94i

has the central ¢-distribution, where g;; is the jth diagonal element of (X' X))~
Then

tj =

—Bj_ﬁj<t

P[_toz/Q,n—k—l < ~ a/2,n—k—1] =1-a.
9jj



P(B] - toz/2,n—k—18\/ 9jj < 6]' < Bj T toz/2,n—k—18\/ gjj) =1-oa.

Before taking the sample, the probability that the random interval will contain Bj IS

1 — . After taking the sample, the 100(1 — av) % confidence interval for /3;,

Bj £ta/2mn—k—153j

is no longer random, and we say that we are 100(1 — «) % confident that the interval

contains [3;.

Example 4.1 Example 8.6.2 (Rencher and Schaalje(2008), pp.210).

4.3 Confidence Interval for a’3

If a’ 3 # 0, we can subtract a’3 from a’3 in (11) to obtain

(a'B —a'B)*
s2a/(X'X)1a’

F =



which is distributed as F'(1,n — k — 1). Then

a'S—a'p

t— ,
sv/a' (X' X) la

is distributed as ¢t(n — k — 1), and a 100(1 — «)% confidence interval for a single

value of a’(3 is given by

CL/B + ta/27n_k_18\/a/(X/X)_1a.

4.4 Confidence Interval for [/(y)

Letaxy = (1, x01, To2, - ,Tor) denote a particular choice of x. Note that ¢ need
not be one of the x’s in the sample. Let yg be an observation corresponding to @¢.
Then

y0:X6/6+€7

and
E(yo) = xy0. (13)



The minimum variance unbiased estimator of £'(yq) is given by

/\

E(yo) = x},B. (14)

Since (13) and (14) are of the form a’ 3 and a’,@, respectively, we obtain a 100 x (1 —
«)% confidence interval for E(yg):

z) 3 + ta/gm_k_ls\/a:f)(X’X)—lmo.

The confidence interval can also be expressed in terms of the centered model,




4.5 Prediction interval for a future observation

For a future observation, we have

var(yo — o) = var(yo) + var(xhB) = 0% + oxh (X' X)L,
= 0?[1 + =(( X' X)),

which is estimated by s%[1+x{, (X' X )~ 1z]. Note that in the derivation, we used the

2

fact that /g is independent of 1jy. Since s“ is independent of both 1y and 1y = :c{),@

we have that R
_ Yo — Yo
sv/1+x) (X' X) 1z

is distributed as t(n — k — 1), and the 100(1 — «) % prediction interval is

t

:1363 + ta/2,n—k—18\/1 + $6(X/X)_1CE‘0.

In terms of the centered model, the 100(1 — «) % prediction interval becomes

N ) 1 ) ]
§+,31($01—$1)ita/2,n—k—18\/1 + - + (xo1 — 1) (X.X o) (o1 — T1).



4.6 Confidence interval for o2

Since (n — k — 1)s% /0% is x?(n — k — 1), the 100(1 — )% confidence interval
2

foro“ is

(n—k—1)s? 2 (n—k—1)s?
2 —

— 2 *
on/2,n—k—1 Xl—a/Q,n—k—l

A 100(1 — )% confidence interval for o is

(n—Fk—1)s? (n—Fk—1)s?
2 SO S 2 :
Xa/2,n—k—1 X1—a/2n—k—1

5 Likelihood Ratio Tests

Suppose that * = (x1, - - , T, ) has density or frequency function p(x, 8) and we
wish to test Hy : 0 € O versus H : 6 € ©1. The test statistic we want to consider

is the likelihood ratio given by

sup{p(x,0) : 0 € Oy}

LR = :
sup{p(x,0) : 0 € ©1}




Tests that reject H for small value of L R are called likelihood ratio tests.
In the cases we shall consider, p(x, 6) is a continuous function of 6 and Oy is
of smaller dimension than ©® = ©; N O so that the likelihood ratio equals the test

statistic

sup{p(x,0) : 6 € Oy}
sup{p(x,0): 0 € O}’
whose compitation is often simple. It follows that (Wilks, 1938) for n — o0

ANx) =

—2log A(x) — X?zy

where d = dim(©) — dim(©g). In some cases, the x* approximation is not needed
because \(x) turns out to be a function of a familiar test statistic, such as ¢ or F,

whose exact distribution is available.

Theorem 5.1 Ify is N,,(X 3, 0°I), the likelihood ratio test for Hy : (3 = 0 can be

lest on N
BX'y/(k+1)

~/ *
(Y'y - B X'y)/(n—k—1)
We reject Hy if F' > Fo, k1 n—k—1-

F =



PROOF: To find sup L(8, 62), we use the MLEs 3 = (X'X) "' X'y and 62
(y — XB)'(y — X3)/n. Substituting we have

nn/26—n/2
(2m)"/2[(y — XB)'(y — XB)]"/?

To find sup L(0, 02), we solve L(0, 5?)/0c? = 0 to obtain

sup L(8, 0%) =

65 = by'y/n.

Then /2 /2
L(B,0%) = L(0,62) = — .
sp (8,0%) = L(0, &3) 27 (yly )2

Thus, we have

(y_XB),(y_XB)]n/2 _ [ 1 ]n/2
y'y 14+ (k+1D)F/(n—k—1)

Ax) = |

where

BX'y/(k+1)
(y'y—BX'y)/(n—k-1)

F =



Thus, rejecting hg : 3 = 0 for a small value of A(x) is equivalent to rejecting H, for

a large value of F'.

The four steps of deriving likelihood ratio tests:
(1) Calculate the MLE @ of 6.

(2) Calculate the MLE éo where 6 may vary only over .

(3) Form A\(z) = p(z, 0y) /p(x, 6).

(4) Find a function h which is strictly decreasing on the range of A such that
h(A(x)) has a simple form and a tabled distribution under hg. Since h(A(x))
is equivalent to A(x) we specify the size « likelihood rato test through the test
statistic A(A(x)) and its (1 — «)th quantile obtained from the table.



