Ch6. Multiple Regression: Estimation

1 The model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i, \quad i = 1, 2, \dots, n,$$
 (1)

The assumptions for ϵ_i and y_i are analogous to as those for simple linear regression, namely

1.
$$E(\epsilon_i) = 0$$
 for all $i = 1, 2, \cdots, n$, or, equivalently, $E(y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_k x_{ik}$.

2.
$$var(\epsilon_i) = \sigma^2$$
 for all $i = 1, 2, \cdots, n$, or, equivalently, $var(y_i) = \sigma^2$.

3.
$$cov(\epsilon_i,\epsilon_j)=0$$
 for all $i
eq j$, or, equivalently, $cov(y_i,y_j)=0$.

In matrix form, the model can be written as

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ beta_k \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \cdots \\ \epsilon_n \end{pmatrix}$$

or

$$oldsymbol{y} = Xoldsymbol{eta} + oldsymbol{\epsilon}.$$

The assumption on ϵ_i or y_i can be expressed as

1.
$$E(\boldsymbol{\epsilon}) = 0$$
 or $E(\boldsymbol{y}) = \boldsymbol{X}\boldsymbol{\beta}$.

2.
$$cov(\boldsymbol{\epsilon}) = \sigma^2 I$$
 or $cov(\boldsymbol{y}) = \sigma^2 \boldsymbol{I}$.

The matrix is $n \times (k+1)$ and is called the design matrix. In this chapter, we assume that n > k+1 and rank(X)=k+1.

2 Estimation of β and σ^2

2.1 Least squares estimator for β

The least squares approach is to seek the estimators of β which minimize the sums of squares if deviations of the *n* observed *y*'s from their predicted values \hat{y} , i.e., minimize

$$\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}.$$

Theorem 2.1 If $y = X\beta + \epsilon$, where X is $n \times (k+1)$ of rank k+1 < n, then the least squares estimator of β is

$$\hat{oldsymbol{eta}} = (oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{y}$$

PROOF: Exercise.

2.2 Properties of the least squares estimator \hat{eta}

Theorem 2.2 If $E(\boldsymbol{y}) = \boldsymbol{X}\boldsymbol{\beta}$, then $\hat{\boldsymbol{\beta}}$ is an unbiased estimator for $\boldsymbol{\beta}$.

PROOF:

$$E(\hat{\boldsymbol{\beta}}) = E[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}]$$
$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'E(\boldsymbol{y})$$
$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta}$$
$$= \boldsymbol{\beta}.$$

Theorem 2.3 If $cov(y) = \sigma^2 I$, the covariance matrix for β is given by $\sigma^2(X'X)^{-1}$.

PROOF: Exercise.

Theorem 2.4 (Gauss-Markov Theorem) If $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$ and $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, the least squares estimators $\hat{\beta}_j$, $j = 0, 1, \dots, k$, have minimum variance among all linear unbiased estimators, i.e., the least squares estimators $\hat{\beta}_j$, $j = 0, 1, \dots, k$ are best linear unbiased estimators (BLUE).

PROOF: We consider a linear estimator Ay of β and seek the matrix A for which Ay is a minimum variance unbiased estimator of β . Since Ay is to be unbiased for β , we have

$$E(Ay) = AE(y) = AX\beta = \beta,$$

which gives the unbiasedness condition

$$AX = I$$

since the relationship $AX\beta = \beta$ must hold for any positive value of β .

The covariance matrix for $\boldsymbol{A} \boldsymbol{y}$ is

$$cov(Ay) = A(\sigma^2 I)A' = \sigma^2 AA'.$$

The variance of the β_j 's are on the diagonal of $\sigma^2 A A'$, and therefore we need to choose A (subject to

bAX = I) so that the diagonal elements of AA' are minimized. Since

$$\begin{split} \boldsymbol{A}\boldsymbol{A}' &= [\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'][\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}']' \\ &= [\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'][\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}']' + (\boldsymbol{X}'\boldsymbol{X})^{-1}. \end{split}$$

Note in the last equality, AX = I is used. Since $[A - (X'X)^{-1}X'][A - (X'X)^{-1}X']'$ is positive semidefinite, the diagonal elements are great than or equal to zero. These diagonal elements can be made equal to zero by choosing $A = (X'X)^{-1}X'$. (This value of A also satisfies the unbiasedness condition AX = I). The resulting minimum variance estimator of β is

$$Ay = (X'X)^{-1}X'y,$$

which is equal to the least square estimator $\hat{oldsymbol{eta}}$.

Remark: The remarkable feature of the Gauss-Markov theorem is its distributional generality. The result holds for any distribution of \boldsymbol{y} ; normality is not required. The only assumptions used in the proof are $E(\boldsymbol{y}) = \boldsymbol{X}\boldsymbol{\beta}$ and $cov(\boldsymbol{y}) = \sigma^2 \boldsymbol{I}$. If these assumptions do not hold, $\hat{\boldsymbol{\beta}}$ may be biased or each $\hat{\beta}_j$ may have a larger variance than that of some other estimator.

Corollary 2.1 If $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$ and $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, the best linear unbiased estimator of $\mathbf{a}'\boldsymbol{\beta}$ is $\mathbf{a}'\hat{\boldsymbol{\beta}}$, where $\boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.

A fourth property of $\hat{\beta}$ is the following: the predicted value $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \cdots + \hat{\beta}_k x_k = \hat{\beta}' x$ is invariant to simple linear changes of scale on the *x*'s, where $\boldsymbol{x} = (1, x_1, x_2, \cdots, x_k)'$.

Theorem 2.5 If $\boldsymbol{x} = (1, x_1, \dots, x_k)'$ and $\boldsymbol{z} = (1, c_1 x_1, \dots, c_k x_k)$, then $\hat{\boldsymbol{y}} = \hat{\boldsymbol{\beta}}'_{\boldsymbol{x}} \boldsymbol{z} = \hat{\boldsymbol{\beta}}'_{\boldsymbol{z}} \boldsymbol{z}$, where $\hat{\boldsymbol{\beta}}'_{\boldsymbol{z}}$ is the least squares estimator from the regression of \boldsymbol{y} on \boldsymbol{z} .

PROOF: We can write Z = XD, where $D = diag(1, c_1, c_2, \cdots, c_k)$. Substituting Z = XD into $\hat{\beta}_z$, we have

$$\hat{\boldsymbol{eta}}_z = [(\boldsymbol{X}\boldsymbol{D})'(\boldsymbol{X}\boldsymbol{D})]^{-1}(\boldsymbol{X}\boldsymbol{D})'\boldsymbol{y}$$

= $\boldsymbol{D}^{-1}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$
= $\boldsymbol{D}^{-1}\hat{\boldsymbol{eta}}.$

Hence,

$$\hat{\boldsymbol{\beta}}_{z}^{\prime}\boldsymbol{z} = (\boldsymbol{D}^{-1}\hat{\boldsymbol{\beta}})^{\prime}\boldsymbol{D}\boldsymbol{x} = \hat{\boldsymbol{\beta}}^{\prime}\boldsymbol{x}.$$

2.3 An estimator for σ^2

By assumption 1, $E(y_i) = x'_i \beta$, and by assumption 2, $\sigma^2 = E[y_i - E(y_i)]^2$, we have

$$\sigma^2 = E(y_i - \boldsymbol{x}'_i \boldsymbol{\beta})^2.$$

Hence, σ^2 can be estimated by

$$s^{2} = \frac{1}{n-k-1} \sum_{i=1}^{n} (y_{i} - \boldsymbol{x}_{i}'\boldsymbol{\beta})^{2}$$
$$= \frac{1}{n-k-1} (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})' (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})$$
$$= \frac{SSE}{n-k-1}.$$

With the denominator n-k-1, s^2 is an unbiased estimator of σ^2 .

Theorem 2.6 If $E({m y})={m X}{m eta}$ and $cov({m y})=\sigma^2 {m I}$, then

$$E(s^2) = \sigma^2.$$

PROOF: Exercise.

Corollary 2.2 An unbiased estimator of $cov(\hat{\beta})$ is given by

$$\widehat{cov}(\hat{\boldsymbol{\beta}}) = s^2 (\boldsymbol{X}' \boldsymbol{X})^{-1}.$$

Theorem 2.7 If $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$, $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, and $E(\epsilon_i^4) = 3\sigma^4$ for the linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, then s^2 is the best (minimum variance) quadratic unbiased estimator of σ^2 .

PROOF: See Graybill (1954) or Wang and Chow (1994, pp.161-163).

3 The model in centered form

In matrix form, the centered model for the linear multiple regression becomes

$$oldsymbol{y} = (oldsymbol{j}, oldsymbol{X}_c) \begin{pmatrix} lpha \\ oldsymbol{eta}_1 \end{pmatrix} + oldsymbol{\epsilon},$$

where $oldsymbol{j}$ is a vector of 1's, $oldsymbol{eta}_1=(eta_1,eta_2,\cdots,eta_k)'$,

$$\boldsymbol{X}_{c} = (\boldsymbol{I} - \frac{1}{n}\boldsymbol{J})\boldsymbol{X}_{1} = \begin{pmatrix} x_{11} - \bar{x}_{1} & x_{12} - \bar{x}_{2} & \cdots & x_{1k} - \bar{x}_{k} \\ x_{21} - \bar{x}_{1} & x_{22} - \bar{x}_{2} & \cdots & x_{2k} - \bar{x}_{k} \\ \vdots & \vdots & & \vdots \\ x_{n1} - \bar{x}_{1} & x_{n2} - \bar{x}_{2} & \cdots & x_{nk} - \bar{x}_{k} \end{pmatrix}$$

The matrix $I - \frac{1}{n}J$ is sometimes called the centering matrix. The corresponding least squares estimator becomes

$$\begin{split} \begin{pmatrix} \hat{\alpha} \\ \hat{\beta}_1 \end{pmatrix} &= [(\boldsymbol{j}, \boldsymbol{X}_c)'(\boldsymbol{j}, \boldsymbol{X}_c)]^{-1} (\boldsymbol{j}, \boldsymbol{X}_c)' \boldsymbol{y} \\ &= \begin{pmatrix} n & 0 \\ 0 & \boldsymbol{X}_c' \boldsymbol{X}_c \end{pmatrix}^{-1} \begin{pmatrix} n \bar{y} & \boldsymbol{X}_c' \boldsymbol{y} \end{pmatrix} \\ &= \begin{pmatrix} \bar{y} \\ (\boldsymbol{X}_c' \boldsymbol{X}_c)^{-1} \boldsymbol{X}_c' \boldsymbol{y} \end{pmatrix}. \end{split}$$

4 Normal model

4.1 Assumptions

Normality assumption:

$$\boldsymbol{y} \text{ is } N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}) \text{ or } \boldsymbol{\epsilon} \text{ is } N_n(0, \sigma^2 \boldsymbol{I}).$$

Under normality, $cov(y) = cov(\epsilon) = \sigma^2 I$ implies that the *y*'s are independent as well as uncorrelated.

4.2 Maximum likelihood estimators for β and σ^2

Theorem 4.1 If \boldsymbol{y} is $N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, where \boldsymbol{X} is $n \times (k+1)$ of rank k+1 < n, the maximum likelihood estimators of $\boldsymbol{\beta}$ and σ^2 are

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y},$$
$$\hat{\sigma}^2 = \frac{1}{n}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})'(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}).$$

PROOF: Exercise.

The maximum likelihood estimator $\hat{\beta}$ is the same as the least squares estimator $\hat{\beta}$. The estimator $\hat{\sigma}^2$ is biased since the denominator is n rather n - k - 1. We often use the unbiased estimator s^2 to estimate σ^2 .

4.3 Properties of $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$

Theorem 4.2 Suppose \boldsymbol{y} is $N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, where \boldsymbol{X} is $n \times (k+1)$ of rank k+1 < n and $\boldsymbol{\beta} = (\beta_0, \dots, \beta_k)'$. Then the maximum likelihood estimators $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ have the following distributional properties:

(i)
$$\hat{\boldsymbol{\beta}}$$
 is $N_{k+1}(\hat{\boldsymbol{\beta}}, \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}).$

(ii) $n\hat{\sigma}^2/\sigma^2$ is $\chi^2(n-k-1)$, or equivalently, $(n-k-1)s^2/\sigma^2$ is $\chi^2(n-k-1)$. (iii) $\hat{\beta}$ and $\hat{\sigma}^2$ (or s^2) are independent.

PROOF: (i) Since \boldsymbol{y} is normal, $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$ is a linear function of \boldsymbol{y} , $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ and $cov(\hat{\boldsymbol{\beta}}) = \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}$, $\hat{\boldsymbol{\beta}} \sim N_{k+1}(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1})$.

(ii)

$$n\hat{\sigma}^2/\sigma^2 = \frac{\boldsymbol{y}'}{\sigma}(\boldsymbol{I} - \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})\boldsymbol{X}')\frac{\boldsymbol{y}}{\sigma},$$

and $\boldsymbol{I} - \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})\boldsymbol{X}'$ is idempotent, hence $n\hat{\sigma}^2/\sigma^2$ is $\chi^2(n-k-1)$. (iii) Since $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$ and

$$n\hat{\sigma}^2 = \boldsymbol{y}'(\boldsymbol{I} - \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})\boldsymbol{X}')\boldsymbol{y},$$

and that $(X'X)^{-1}X'(I - X(X'X)X') = O$, we have $\hat{\beta}$ and $\hat{\sigma}^2$ (or s^2) are independent.

Theorem 4.3 If \boldsymbol{y} is $N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, then $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ are jointly sufficient for $\boldsymbol{\beta}$ and σ^2 .

PROOF: Using the Neyman factorization theorem. For details, see Rencher and Schaalje (2008, pp.159-160).

Since $\hat{\beta}$ and $\hat{\sigma}^2$ are jointly sufficient for β and σ^2 , no other estimators can improve on the information they extract from the sample to estimate β and σ^2 . Thus, it is not surprising that $\hat{\beta}$ and s^2 are minimum variance unbiased estimators. **Theorem 4.4** If \boldsymbol{y} is $N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, then $\hat{\boldsymbol{\beta}}$ and s^2 have minimum variance among all unbiased estimators.

PROOF: See Graybill (1976, P.176) or Christensen (1996, pp.25-27).

5 R^2 in fixed-*x* regression

The proportion of the total sum of squares due to regression is measured by

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST},$$

where $SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$, $SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y} - n\bar{y}^2$, and SST = SSR + SSE.

where $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$.

The R^2 is called the *coefficient of determination* or the *squared multiple correlation*. The positive square root R is called the *multiple correlation coefficient*. If the x's were random, R would estimate a population multiple correlation. We list some properties of R^2 and R.

- 1. The range of R^2 is $0 \le R^2 \le 1$. If all the $\hat{\beta}_j$'s were zero, except for $\hat{\beta}_0$, R^2 would be zero. (This event has probability zero for continuous data.) If all the y-values fell on the fitted surface, that is, if $y_i = \hat{y}_i$, $i = 1, 2, \cdots, n$, then R^2 would be 1.
- 2. $R = r_{y\hat{y}}$; that is, the multiple correlation is equal to the simple correlation between the observed y_i 's and the fitted \hat{y}_i 's.
- 3. Adding a variable x to the model increases (can not decrease) the value of R^2 .
- 4. If $\beta_1=\beta_2=\dots=\beta_k=0$, then

$$E(R^2) = \frac{k}{n-1}.$$

Note that the $\hat{\beta}_j$'s will not be zero when the β_j 's are zero.

- 5. R^2 cannot be partitioned into k components, each of which is uniquely attributable to an x_j , unless the x's are mutually orthogonal, that is, unless $\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{im} - \bar{x}_m) = 0$ for $j \neq m$.
- 6. R^2 is invariant to full-rank linear transformations on the *x*'s and to a scale change on *y* (but not invariant to a joint linear transformation including *y* and the *x*'s).

Adjusted R^2 (Adj R^2)

$$R_a^2 = Adj R^2 = \frac{(R^2 - k/(n-1))(n-1)}{n-k-1}$$
$$= \frac{(n-1)R^2 - k}{n-k-1}$$
$$= 1 - \frac{SSE/(n-k-1)}{SST/(n-1)}$$

 R^2 can also be expressed in terms of sample variances and covariances:

$$R^{2} = \frac{\hat{\beta}_{1}' X_{c}' X_{c} \hat{\beta}_{1}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
$$= \frac{s_{yx}' S_{xx}^{-1} (n - 1) S_{xx} S_{xx}^{-1} s_{yx}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
$$= \frac{s_{yx}' S_{xx}^{-1} s_{yx}}{s_{y}^{2}}$$

Note that $\hat{\boldsymbol{\beta}}_1 = (n-1)(\boldsymbol{X}_c'\boldsymbol{X}_c)^{-1}\frac{\boldsymbol{X}_c'\boldsymbol{y}}{n-1} = (\frac{\boldsymbol{X}_c'\boldsymbol{X}_c}{n-1})^{-1}\frac{\boldsymbol{X}_c'\boldsymbol{y}}{n-1} = \boldsymbol{S}_{xx}^{-1}\boldsymbol{s}_{yx}$. This form of R^2 will facilitate a comparison with R^2 for the random-x case.

Geometrically, R is the cosine of the angle θ between y and \hat{y} corrected for their means. The mean of \hat{y} is \bar{y} , the same as the mean of y. Thus, the centered form of y and \hat{y} are $y - \bar{y}j$ and $\hat{y} - \bar{y}j$.

$$\cos\theta = \frac{(\boldsymbol{y} - \bar{y}\boldsymbol{j})'(\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j})}{\sqrt{[(\boldsymbol{y} - \bar{y}\boldsymbol{j})'(\boldsymbol{y} - \bar{y}\boldsymbol{j})][(\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j})'(\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j})]]}}.$$

Note that

$$(\boldsymbol{y} - \bar{y}\boldsymbol{j})'(\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j}) = [(\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j}) + (\boldsymbol{y} - \hat{\boldsymbol{y}})]'(\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j})$$
$$= (\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j})'(\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j}) + (\boldsymbol{y} - \hat{\boldsymbol{y}})'(\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j})$$
$$= (\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j})'(\hat{\boldsymbol{y}} - \bar{y}\boldsymbol{j}) + 0.$$

Hence,

$$\cos\theta = \frac{\sqrt{(\hat{\boldsymbol{y}} - \bar{\boldsymbol{y}}\boldsymbol{j})'(\hat{\boldsymbol{y}} - \bar{\boldsymbol{y}}\boldsymbol{j})}}{(\boldsymbol{y} - \bar{\boldsymbol{y}}\boldsymbol{j})'(\boldsymbol{y} - \bar{\boldsymbol{y}}\boldsymbol{j})} = \sqrt{\frac{SSR}{SST}} = R.$$

6 Generalized least squares: $cov(\boldsymbol{y}) = \sigma^2 \boldsymbol{V}$

The model

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad E(\boldsymbol{y}) = \boldsymbol{X}\boldsymbol{\beta}, \quad cov(\boldsymbol{y}) = \Sigma = \sigma^2 \boldsymbol{V},$$

Theorem 6.1 Let $y = X\beta + \epsilon$, $E(y) = X\beta$, and $cov(y) = cov(\epsilon) = \sigma^2 V$, where X is a full-rank matrix and V is a known positive definite matrix. For this model, we obtain the following results:

(i) The best linear unbiased estimator (BLUE) of β is

$$\hat{\boldsymbol{eta}} = (\boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{y}.$$

(ii) The covariance matrix for $\hat{oldsymbol{eta}}$ is

$$cov(\boldsymbol{\beta}) = \sigma^2 (\boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X})^{-1}.$$

(iii) An unbiased estimator of σ^2 is

$$s^{2} = \frac{(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})'\boldsymbol{V}^{-1}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})}{n - k - 1}$$

PROOF: (i) Since V is positive definite, there exists an $n \times n$ nonsingular matrix P such that V = PP'. Multiplying $y = X\beta + \epsilon$ by P^{-1} , we obtain

$$P^{-1}y = P^{-1}X\beta + P^{-1}\epsilon,$$

Applying the least square approach to this transformed model, we get

$$\hat{\boldsymbol{\beta}} = [\boldsymbol{X}'(\boldsymbol{P}^{-1})'\boldsymbol{P}^{-1}\boldsymbol{X}]^{-1}\boldsymbol{X}'(\boldsymbol{P}^{-1})'\boldsymbol{P}^{-1}\boldsymbol{y} = (\boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{y}.$$

Note that since X is full rank, $X'V^{-1}X$ is positive definite. The estimator $\hat{\beta} = (X'V^{-1}X)^{-1}X'V^{-1}y$ is usually called the **generalized least squares** estimator. (ii) and (iii) are left as exercises.

Theorem 6.2 If \boldsymbol{y} is $N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{V})$, where \boldsymbol{X} is $n \times (k+1)$ of rank k+1 and \boldsymbol{V} is a known positive definite matrix, then the maximum likelihood estimators for $\boldsymbol{\beta}$ and σ^2 are

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{y},$$
$$\hat{\sigma}^2 = \frac{1}{n} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})' \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}).$$

PROOF: Exercise.