
Ch6. Multiple Regression: Estimation

1 The model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ǫi, i = 1, 2, · · · , n, (1)

The assumptions for ǫi and yi are analogous to as those for simple linear regression,

namely

1. E(ǫi) = 0 for all i = 1, 2, · · · , n, or, equivalently, E(yi) = β0 + β1xi1 +

β2xi2 + · · ·+ βkxik .

2. var(ǫi) = σ2 for all i = 1, 2, · · · , n, or, equivalently, var(yi) = σ2.

3. cov(ǫi, ǫj) = 0 for all i 6= j, or, equivalently, cov(yi, yj) = 0.



In matrix form, the model can be written as
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or

y = Xβ + ǫ.

The assumption on ǫi or yi can be expressed as

1. E(ǫ) = 0 or E(y) = Xβ.

2. cov(ǫ) = σ2I or cov(y) = σ2I .

The matrix is n × (k + 1) and is called the design matrix. In this chapter, we

assume that n > k + 1 and rank(X)=k + 1.



2 Estimation of β and σ2

2.1 Least squares estimator for β

The least squares approach is to seek the estimators of β which minimize the sums of

squares if deviations of the n observed y’s from their predicted values ŷ, i.e., minimize

n∑

i=1

ǫ̂2i =

n∑

i=1

(yi − ŷi)
2.

Theorem 2.1 If y = Xβ + ǫ, where X is n × (k + 1) of rank k + 1 < n, then

the least squares estimator of β is

β̂ = (X ′X)−1X ′y.

PROOF: Exercise.

2.2 Properties of the least squares estimator β̂

Theorem 2.2 If E(y) = Xβ, then β̂ is an unbiased estimator for β.



PROOF:

E(β̂) = E[(X ′X)−1X ′y]

= (X ′X)−1X ′E(y)

= (X ′X)−1X ′Xβ

= β.

Theorem 2.3 If cov(y) = σ2I , the covariance matrix for β is given byσ2(X ′X)−1.

PROOF: Exercise.

Theorem 2.4 (Gauss-Markov Theorem) If E(y) = Xβ and cov(y) = σ2I , the

least squares estimators β̂j , j = 0, 1, · · · , k, have minimum variance among all

linear unbiased estimators, i.e., the least squares estimators β̂j , j = 0, 1, · · · , k are

best linear unbiased estimators (BLUE).



PROOF: We consider a linear estimator Ay of β and seek the matrix A for which Ay

is a minimum variance unbiased estimator of β. Since Ay is to be unbiased for β, we

have

E(Ay) = AE(y) = AXβ = β,

which gives the unbiasedness condition

AX = I

since the relationship AXβ = β must hold for any positive value of β.

The covariance matrix for Ay is

cov(Ay) = A(σ2I)A′ = σ2AA′.

The variance of the βj ’s are on the diagonal of σ2AA′
, and therefore we need to

choose A (subject to

bAX = I) so that the diagonal elements of AA′
are minimized. Since

AA′ = [A− (X ′X)−1X ′ + (X ′X)−1X ′][A− (X ′X)−1X ′ + (X ′X)−1X ′]′

= [A− (X ′X)−1X ′][A− (X ′X)−1X ′]′ + (X ′X)−1.



Note in the last equality, AX = I is used. Since [A − (X ′X)−1X ′][A −

(X ′X)−1X ′]′ is positive semidefinite, the diagonal elements are great than or equal

to zero. These diagonal elements can be made equal to zero by choosing A =

(X ′X)−1X ′
. (This value of A also satisfies the unbiasedness condition AX = I).

The resulting minimum variance estimator of β is

Ay = (X ′X)−1X ′y,

which is equal to the least square estimator β̂.

Remark: The remarkable feature of the Gauss-Markov theorem is its distributional

generality. The result holds for any distribution of y; normality is not required. The

only assumptions used in the proof are E(y) = Xβ and cov(y) = σ2I . If these

assumptions do not hold, β̂ may be biased or each β̂j may have a larger variance than

that of some other estimator.

Corollary 2.1 If E(y) = Xβ and cov(y) = σ2I , the best linear unbiased estima-

tor of a′β is a′β̂, where β = (X ′X)−1X ′y.



A fourth property of β̂ is the following: the predicted value ŷ = β̂0 + β̂1x1 +

· · · + β̂kxk = β̂
′

x is invariant to simple linear changes of scale on the x’s, where

x = (1, x1, x2, · · · , xk)
′.

Theorem 2.5 If x = (1, x1, · · · , xk)
′ and z = (1, c1x1, · · · , ckxk), then ŷ =

β̂
′

x = β̂
′

zz, where β̂
′

z is the least squares estimator from the regression of y on z.

PROOF: We can write Z = XD, where D = diag(1, c1, c2, · · · , ck). Substitut-

ing Z = XD into β̂z , we have

β̂z = [(XD)′(XD)]−1(XD)′y

= D−1(X ′X)−1X ′y

= D−1β̂.

Hence,

β̂
′

zz = (D−1β̂)′Dx = β̂
′

x.



2.3 An estimator for σ2

By assumption 1, E(yi) = x′

iβ, and by assumption 2, σ2 = E[yi − E(yi)]
2, we

have

σ2 = E(yi − x′

iβ)
2.

Hence, σ2 can be estimated by

s2 =
1

n− k − 1

n∑

i=1

(yi − x′

iβ)
2

=
1

n− k − 1
(y −Xβ̂)′(y −Xβ̂)

=
SSE

n− k − 1
.

With the denominator n− k − 1, s2 is an unbiased estimator of σ2.

Theorem 2.6 If E(y) = Xβ and cov(y) = σ2I , then

E(s2) = σ2.



PROOF: Exercise.

Corollary 2.2 An unbiased estimator of cov(β̂) is given by

ĉov(β̂) = s2(X ′X)−1.

Theorem 2.7 If E(y) = Xβ, cov(y) = σ2I , and E(ǫ4i ) = 3σ4 for the linear

model y = Xβ + ǫ, then s2 is the best (minimum variance) quadratic unbiased

estimator of σ2.

PROOF: See Graybill (1954) or Wang and Chow (1994, pp.161-163).

3 The model in centered form

In matrix form, the centered model for the linear multiple regression becomes

y = (j,Xc)

(
α

β1

)
+ ǫ,



where j is a vector of 1’s, β1 = (β1, β2, · · · , βk)
′,

Xc = (I −
1

n
J)X1 =




x11 − x̄1 x12 − x̄2 · · · x1k − x̄k

x21 − x̄1 x22 − x̄2 · · · x2k − x̄k

.

.

.
.
.
.

.

.

.

xn1 − x̄1 xn2 − x̄2 · · · xnk − x̄k




.

The matrix I − 1

n
J is sometimes called the centering matrix.

The corresponding least squares estimator becomes

(
α̂

β̂1

)
= [(j,Xc)

′(j,Xc)]
−1(j,Xc)

′y

=

(
n 0

0 X ′

cXc

)
−1 (

nȳ X ′

cy

)

=

(
ȳ

(X ′

cXc)
−1X ′

cy

)
.



4 Normal model

4.1 Assumptions

Normality assumption:

y is Nn(Xβ, σ2I) or ǫ is Nn(0, σ
2I).

Under normality, cov(y) = cov(ǫ) = σ2I implies that the y’s are independent as

well as uncorrelated.

4.2 Maximum likelihood estimators for β and σ2

Theorem 4.1 If y is Nn(Xβ, σ2I), where X is n × (k + 1) of rank k + 1 < n,

the maximum likelihood estimators of β and σ2 are

β̂ = (X ′X)−1X ′y,

σ̂2 =
1

n
(y −Xβ̂)′(y −Xβ̂).



PROOF: Exercise.

The maximum likelihood estimator β̂ is the same as the least squares estimator

β̂. The estimator σ̂2 is biased since the denominator is n rather n− k − 1. We often

use the unbiased estimator s2 to estimate σ2.

4.3 Properties of β̂ and σ̂2

Theorem 4.2 Suppose y is Nn(Xβ, σ2I), where X is n×(k+1) of rank k+1 <

n and β = (β0, · · · , βk)
′. Then the maximum likelihood estimators β̂ and σ̂2 have

the following distributional properties:

(i) β̂ is Nk+1(β̂, σ
2(X ′X)−1).

(ii) nσ̂2/σ2 is χ2(n− k − 1), or equivalently, (n− k − 1)s2/σ2 is χ2(n− k − 1).

(iii) β̂ and σ̂2 (or s2) are independent.

PROOF: (i) Since y is normal, β̂ = (X ′X)−1X ′y is a linear function of y, E(β̂) =

β and cov(β̂) = σ2(X ′X)−1, β̂ ∼ Nk+1(β, σ
2(X ′X)−1).



(ii)

nσ̂2/σ2 =
y

σ

′

(I −X(X ′X)X ′)
y

σ
,

and I −X(X ′X)X ′
is idempotent, hence nσ̂2/σ2 is χ2(n− k − 1).

(iii) Since β̂ = (X ′X)−1X ′y and

nσ̂2 = y′(I −X(X ′X)X ′)y,

and that (X ′X)−1X ′(I − X(X ′X)X ′) = O, we have β̂ and σ̂2 (or s2) are

independent.

Theorem 4.3 If y is Nn(Xβ, σ2I), then β̂ and σ̂2 are jointly sufficient for β and

σ2.

PROOF: Using the Neyman factorization theorem. For details, see Rencher and Schaalje

(2008, pp.159-160).

Since β̂ and σ̂2 are jointly sufficient for β and σ2, no other estimators can improve

on the information they extract from the sample to estimate β and σ2. Thus, it is not

surprising that β̂ and s2 are minimum variance unbiased estimators.



Theorem 4.4 If y is Nn(Xβ, σ2I), then β̂ and s2 have minimum variance among

all unbiased estimators.

PROOF: See Graybill (1976, P.176) or Christensen (1996, pp.25-27).

5 R2 in fixed-x regression

The proportion of the total sum of squares due to regression is measured by

R2 =
SSR

SST
= 1−

SSE

SST
,

where SST =
∑n

i=1
(yi − ȳ)2, SSR =

∑n

i=1
(ŷi − ȳ)2 = β̂

′

X ′y − nȳ2, and

SST = SSR+ SSE,

where SSE =
∑n

i=1
(yi − ŷi)

2.

The R2 is called the coefficient of determination or the squared multiple correla-

tion. The positive square root R is called the multiple correlation coefficient. If the x’s

were random, R would estimate a population multiple correlation.



We list some properties of R2 and R.

1. The range of R2 is 0 ≤ R2 ≤ 1. If all the β̂j ’s were zero, except for β̂0, R2

would be zero. (This event has probability zero for continuous data.) If all the

y-values fell on the fitted surface, that is, if yi = ŷi, i = 1, 2, · · · , n, then R2

would be 1.

2. R = ryŷ ; that is, the multiple correlation is equal to the simple correlation

between the observed yi’s and the fitted ŷi’s.

3. Adding a variable x to the model increases (can not decrease) the value of R2.

4. If β1 = β2 = · · · = βk = 0, then

E(R2) =
k

n− 1
.

Note that the β̂j ’s will not be zero when the βj ’s are zero.



5. R2 cannot be partitioned into k components, each of which is uniquely at-

tributable to an xj , unless the x’s are mutually orthogonal, that is, unless∑n

i=1
(xij − x̄j)(xim − x̄m) = 0 for j 6= m.

6. R2 is invariant to full-rank linear transformations on the x’s and to a scale

change on y (but not invariant to a joint linear transformation including y and

the x’s).

Adjusted R2 (AdjR2)

R2
a = AdjR2 =

(R2 − k/(n− 1))(n− 1)

n− k − 1

=
(n− 1)R2 − k

n− k − 1

= 1−
SSE/(n− k − 1)

SST/(n− 1)



R2 can also be expressed in terms of sample variances and covariances:

R2 =
β̂
′

1X
′

cXcβ̂1∑n

i=1
(yi − ȳ)2

=
s′yxS

−1
xx (n− 1)SxxS

−1
xx syx∑n

i=1
(yi − ȳ)2

=
s′yxS

−1
xx syx

s2y

Note that β̂1 = (n− 1)(X ′

cXc)
−1X

′

c
y

n−1
= (

X ′

c
Xc

n−1
)−1X

′

c
y

n−1
= S−1

xx syx. This

form of R2 will facilitate a comparison with R2 for the random-x case.

Geometrically, R is the cosine of the angle θ between y and ŷ corrected for their

means. The mean of ŷ is ȳ, the same as the mean of y. Thus, the centered form of y

and ŷ are y − ȳj and ŷ − ȳj.

cos θ =
(y − ȳj)′(ŷ − ȳj)√

[(y − ȳj)′(y − ȳj)][(ŷ − ȳj)′(ŷ − ȳj)]
.



Note that

(y − ȳj)′(ŷ − ȳj) = [(ŷ − ȳj) + (y − ŷ)]′(ŷ − ȳj)

= (ŷ − ȳj)′(ŷ − ȳj) + (y − ŷ)′(ŷ − ȳj)

= (ŷ − ȳj)′(ŷ − ȳj) + 0.

Hence,

cos θ =

√
(ŷ − ȳj)′(ŷ − ȳj)

(y − ȳj)′(y − ȳj)
=

√
SSR

SST
= R.

6 Generalized least squares: cov(y) = σ2V

The model

y = Xβ + ǫ, E(y) = Xβ, cov(y) = Σ = σ2V ,

Theorem 6.1 Let y = Xβ + ǫ, E(y) = Xβ, and cov(y) = cov(ǫ) = σ2V ,

where X is a full-rank matrix and V is a known positive definite matrix. For this model,

we obtain the following results:



(i) The best linear unbiased estimator (BLUE) of β is

β̂ = (X ′V −1X)−1X ′V −1y.

(ii) The covariance matrix for β̂ is

cov(β) = σ2(X ′V −1X)−1.

(iii) An unbiased estimator of σ2 is

s2 =
(y −Xβ̂)′V −1(y −Xβ̂)

n− k − 1
.

PROOF: (i) Since V is positive definite, there exists an n × n nonsingular matrix P

such that V = PP ′
. Multiplying y = Xβ + ǫ by P−1

, we obtain

P−1y = P−1Xβ + P−1ǫ,

Applying the least square approach to this transformed model, we get

β̂ = [X ′(P−1)′P−1X]−1X ′(P−1)′P−1y

= (X ′V −1X)−1X ′V −1y.



Note that since X is full rank, X ′V −1X is positive definite. The estimator β̂ =

(X ′V −1X)−1X ′V −1y is usually called the generalized least squares estimator.

(ii) and (iii) are left as exercises.

Theorem 6.2 If y is Nn(Xβ, σ2V ), where X is n× (k+1) of rank k+1 and V

is a known positive definite matrix, then the maximum likelihood estimators for β and

σ2 are

β̂ = (X ′V −1X)−1X ′V −1y,

σ̂2 =
1

n
(y −Xβ̂)′V −1(y −Xβ̂).

PROOF: Exercise.


