Ch6. Multiple Regression: Estimation

1 The model

yi = Bo + Bixin + Paxio + -+ Brxik €, t=1,2,---,n, (1)

The assumptions for €; and y; are analogous to as those for simple linear regression,

namely

1. FE(e;) =0forallt =1,2,---,n, or, equivalently, E(y;) = By + S1xi1 +
Bowio + -+ - + BrTik.

2. var(e;) = o%foralli =1,2,--- ,n,or, equivalently, var(y;) = o>.

3. cov(e;,e;) = Oforalli # j, or, equivalently, cov(y;,y;) = 0.



In matrix form, the model can be written as
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or
y=X3+e.

The assumption on €; or y; can be expressed as
1. E(e) =00r E(y) = X3
2. cov(e) = oI or cov(y) = o°1.

The matrix is n X (k + 1) and is called the design matrix. In this chapter, we
assume thatn > k£ + 1 and rank(X)=k + 1.



2 Estimation of (3 and o

2.1 Least squares estimator for (3

The least squares approach is to seek the estimators of 5 which minimize the sums of

squares if deviations of the n observed y’s from their predicted values 7, i.e., minimize

Z@g = Z(yz — Z?z')2-
i=1 i=1

Theorem 2.1 Ify = X3 + €, where X isn X (k+ 1) ofrankk + 1 < n, then

the least squares estimator of 3 is
B=(X'X)"'Xy.

PROOF: Exercise.

2.2 Properties of the least squares estimator B

Theorem 2.2 If E(y) = X 3, then 3 is an unbiased estimator for (3.



PROOF:

Theorem 2.3 Ifcov(y) = o021, the covariance matrix for 3 is given by 0% (X' X ) 1.
PROOF: Exercise.

Theorem 2.4 (Gauss-Markov Theorem) If E(y) = X3 and cov(y) = o021, the
least squares estimators Bj, 7 = 0,1,--- .k, have minimum variance among all
linear unbiased estimators, i.e., the least squares estimators Bj, 73 =0,1,--- ,k are

best linear unbiased estimators (BLUE).



PROOF: We consider a linear estimator Ay of 3 and seek the matrix A for which Ay
is a minimum variance unbiased estimator of 3. Since A is to be unbiased for 3, we

have
E(Ay) = AE(y) = AXB =0,

which gives the unbiasedness condition
AX =1

since the relationship A X 3 = (3 must hold for any positive value of (3.

The covariance matrix for Ay is
cov(Ay) = A(c’T)A' = 0> AA’.

The variance of the (3;’s are on the diagonal of 0> A A’, and therefore we need to
choose A (subject to

bAX = I) so that the diagonal elements of A A’ are minimized. Since
AA =A-(X'X)"' X'+ X'X)"' X'NA-(X'X)"' X'+ (X' X)) ' X"
= [A— (X'X) 7 XA~ (X'X) X + (X' X)



Note in the last equality, AX = I is used. Since [A — (X'X)"1X'|[A —
(X' X)L X'] is positive semidefinite, the diagonal elements are great than or equal
to zero. These diagonal elements can be made equal to zero by choosing A =
(X'X)~1X'. (This value of A also satisfies the unbiasedness condition AX = I).

The resulting minimum variance estimator of 3 is
Ay = (X'X)"' X'y,
which is equal to the least square estimator B

Remark: The remarkable feature of the Gauss-Markov theorem is its distributional
generality. The result holds for any distribution of y; normality is not required. The
only assumptions used in the proof are E(y) = X3 and cov(y) = o*1. If these
assumptions do not hold, B may be biased or each Bj may have a larger variance than

that of some other estimator.

Corollary 2.1 If E(y) = X 3 and cov(y) = 021, the best linear unbiased estima-
torofa’Bisa’ 3, where 8 = (X' X) 1 X'y.



A fourth property of B is the following: the predicted value §j = BO + lel +
A ~
-+- + Brxr = B x is invariant to simple linear changes of scale on the z’s, where

L = (1733173327 CU axk)/-

Theorem 2.5 Ifx = (1,21, - - ,x) and z = (1,c121, -+ ,Crxk), theny =

~ ~/ ~
B x = [3_z, where 3, is the least squares estimator from the regression of y on z.

PROOF: We can write Z = X D, where D = diag(1,c1,ca,- - ,cr). Substitut-
ing Z = X D into Bz we have

B.=1XD)(XD) ' (XD)'y
_ D—l(X/X)—lxly
= D7 '3

Hence,

~/

B.z=(D7'B)Dz = fz.



2.3 An estimator for 2

By assumption 1, E(y;) = x}(3, and by assumption 2, 02 = Ely; — E(y;)]?, we
have
o° = E(y; — z;8)°.

2 can be estimated by

Hence, o

n

1

2 A2
1 n .
= —XB8)(y—X
W~ XpB)(y - Xp)
~ SSE
Cn—k—1

With the denominator n — k — 1, s2 is an unbiased estimator of o2.

Theorem 2.6 If E(y) = X3 and cov(y) = o1, then

E(s%) = o*.



PROOF: Exercise.

A

Corollary 2.2 An unbiased estimator of cov((3) is given by
cov(B) = s3(X' X)L

Theorem 2.7 If E(y) = X3, cov(y) = 0%, and E(e}) = 30* for the linear
model y = X3 + €, then s? is the best (minimum variance) quadratic unbiased

estimator of 2.

PROOF: See Graybill (1954) or Wang and Chow (1994, pp.161-163).

3 The model in centered form

In matrix form, the centered model for the linear multiple regression becomes

Yy = (JaXc> <§1> + €,



where j is a vector of 1’s, ,81 = (51, Ba, - ,5k)’,

(51311—531 T1g2 — To - flflk—ffk\
1 To1 — X1 T —To - Tok — Tk
X.=I--J)X, =
n
\xm — T Tp2 — T2 ' Tpk —Q_Ck)

The matrix I — %J is sometimes called the centering matrix.

The corresponding least squares estimator becomes

«

< ! ) =[(4, X) (4, X)) (4, Xe)'y

B,
) —1
n



4 Normal model

4.1 Assumptions

Normality assumption:
yis N,(X3,0°1I) or € is N, (0,0°1I).

Under normality, cov(y) = cov(€) = oI implies that the y’s are independent as

well as uncorrelated.

4.2 Maximum likelihood estimators for 3 and >

Theorem 4.1 Ify is N,,(X3,0°I), where X isn x (k+ 1) ofrankk + 1 < n,

the maximum likelihood estimators of (3 and o’ are

B=(X'X)"'X"y,
o 1 .

ot =—(y—Xp)'(y - XP).



(i)
(if)
(iii)

PROOF: Exercise.

The maximum likelihood estimator B is the same as the least squares estimator

A

3. The estimator 62 is biased since the denominator is 7 rather n — k — 1. We often

use the unbiased estimator s2 to estimate 2.

4.3 Properties of 3 and &2

Theorem 4.2 Supposey is N,,(X 3,0°I), where X isnx (k+1) ofrankk+1 <
nand B = (Bo, - ,Bk)". Then the maximum likelihood estimators 3 and 62 have

the following distributional properties:
Bis Nyi1(8,02(X'X)™1).
no?/o? is x*(n — k — 1), orequivalently, (n — k — 1)s?/o? is x*(n — k — 1).

3 and 62 (or s2) are independent.

PROOF: (i) Since yis normal, B = (X' X))~ X'y s alinear function of y, E(3) =
Band cov(B) = o2(X' X)L, B ~ Nyt (8, 02(X'X)™1).



(ii)
ne?jo? =2 (1 - x(xX' X)X,

o o
and I — X (X'X )X’ is idempotent, hence n6? /o2 is x*(n — k — 1).
(iii) Since B = (X' X) "' X'y and
ne? =y'(I - X(X'X)X')y,
and that (X' X) 1 X'(I — X(X'X)X') = O, we have 3 and 62 (or s2) are

independent.

Theorem 4.3 Ify is N,,(X 3, 02I), then 3 and 6 are jointly sufficient for (3 and

o2.

PROOF: Using the Neyman factorization theorem. For details, see Rencher and Schaalje
(2008, pp.159-160).

Since B and 62 are jointly sufficient for 3 and o2, no other estimators can improve
on the information they extract from the sample to estimate 3 and o?. Thus, it is not

surprising that 3 and s? are minimum variance unbiased estimators.



Theorem 4.4 Ify is N,,(X3,0°I), then B and s? have minimum variance among

all unbiased estimators.

PROOF: See Graybill (1976, P.176) or Christensen (1996, pp.25-27).

5 RR?infixed-x regression

The proportion of the total sum of squares due to regression is measured by

where SST = >"" (y; — §)*, SSR =" (4: —9)* = B/X/y — ng?, and
SST =SSR+ SSE,

where SSE = > " (yi — 4i)%.
The R? is called the coefficient of determination or the squared multiple correla-
tion. The positive square root R is called the multiple correlation coefficient. If the x’s

were random, K would estimate a population multiple correlation.



We list some properties of R? and R.

1. Therange of R?is 0 < R? < 1. If all the Bj’s were zero, except for BO, R?
would be zero. (This event has probability zero for continuous data.) If all the
y-values fell on the fitted surface, thatis, if y; = 9;,7 = 1,2, - -+ ,n, then R?

would be 1.

2. R = Ty that is, the multiple correlation is equal to the simple correlation

between the observed y;’s and the fitted 7/;’s.

3. Adding a variable x to the model increases (can not decrease) the value of R?.

4. |f61:62:"':6k20,’[hen
k

n—1

E(R?) =

Note that the Bj 's will not be zero when the [3;’s are zero.



5. R? cannot be partitioned into £ components, each of which is uniquely at-

tributable to an x;, unless the x’s are mutually orthogonal, that is, unless
2?21(33@7 — Z;)(Tim — Tm) = 0forj # m.

6. R? is invariant to full-rank linear transformations on the z’s and to a scale
change on y (but not invariant to a joint linear transformation including y and

the x’s).

Adjusted R? (AdjR?)

(R —k/(n—1))(n—1)
n—k—1
(n—1)R? -k
n—k—1
SSE/(n—k—1)
- 8S8T/(n—1)

R? = AdjR? =

=1



R? can also be expressed in terms of sample variances and covariances:

~/ ~
181X/CX6161
>y (i — )2
S;JCCS$_$1 (n — 1)533335;;3%

> i1 (i — 1)

R? =

_ S;J:L’S;a:lsyx
5y
Note that B, = (n — 1)(X’CXC)_1% = (%)_1% = S5y, This

form of R? will facilitate a comparison with R? for the random-z case.

Geometrically, R is the cosine of the angle 6 between y and ¥y corrected for their
means. The mean of ¥ is ¢, the same as the mean of y. Thus, the centered form of y
andy arey — Y7 and Yy — 7.

(y —93)"(y —93)

JE— ] A — e

VIly —53) (y — )@ — 93) (9 — v3)]

cosf =




Note that

(y—93)w—93)=14—93)+ w—9)]'(y—77)
=W —93) @ —93)+ -9 (Y —1vj)
= (¥ —93)" (g —y3) +0.
Hence,
osg - Y@ -93) @ —93) _ [SSR _,

(v —53) (v — 43) SST

6 Generalized least squares: cov(y) = 0°V
The model
y=XpB+e E(y)=XB, co(y)=X=0"V,

Theorem 6.1 Lety = X3 + €, E(y) = X3, and cov(y) = cov(e) = o2V,
where X is a full-rank matrix and V' is a known positive definite matrix. For this model,

we obtain the following results:



(i) The best linear unbiased estimator (BLUE) of 3 is
B=(X'VIX)T' X'V ly.
(if) The covariance matrix for B is
cov(B) = ( X'V X)L

(ili) An unbiased estimator of o? is

o W=XB'V (y—Xp)
B n—k—1 '

PrRoOOF: (i) Since V is positive definite, there exists an n X n nonsingular matrix P
such that V = PP’. Multiplying y = X 3 + € by P! we obtain

Ply=P X3+ P e
Applying the least square approach to this transformed model, we get
B _ [X/(P_l)/P_1X]_1X/(P_1)/P_1y
= (X'VIX)"' X'V ly.



Note that since X is full rank, X'V~ X is positive definite. The estimator ,3 =
( X'V X))~ X'V 'y is usually called the generalized least squares estimator.

(if) and (iii) are left as exercises.

Theorem 6.2 Ify is N,,(X3,0°V), where X isn x (k+ 1) ofrankk +1 and V
is a known positive definite matrix, then the maximum likelihood estimators for (3 and

o2 are

B=(X'VIX)"' X'V iy,

2 = Ly~ XBYViy - XB).

o = —
n

PROOF: Exercise.



