
Ch5. Simple Linear Regression

1 The model

The simple linear regression model for n observations can be written as

yi = β0 + β1xi + ǫi, i = 1, 2, · · · , n, (1)

where y is the dependent or response variable and x is the independent or predictor

variable. The designation simple indicates that there is only one predictor x, and linear

means that the model 1 is linear in parameters β0 and β1. For the model, we assume

that yi and ǫi are random variables and that the values of xi are known constants. In

addition, we have the following three assumptions for the model:

1. E(ǫi) = 0 for all i = 1, 2, · · · , n, or, equivalently, E(yi) = β0 + β1xi.

2. var(ǫi) = σ2 for all i = 1, 2, · · · , n, or, equivalently, var(yi) = σ2.



3. cov(ǫi, ǫj) = 0 for all i 6= j, or, equivalently, cov(yi, yj) = 0.

2 Estimation of β0, β1 and σ2

Given n observations (x1, y1), · · · , (xn, yn), the least squares approach seeks es-

timators β0 and β1 that minimize the sum of squares of the deviations yi − ŷi of the n

observed yi’s from their predicted values ŷi = β̂0 + β̂1xi:

ǫ̂
′
ǫ̂ =

n
∑

i=1

(yi − ŷi)
2 =

n
∑

i=1

(yi − β̂0 − β̂1xi)
2.



Note that ŷi is an estimator of E(yi) instead of yi. Differentiate ǫ̂
′
ǫ̂ w.r.t. β̂0 and β̂1

and set the results equal to 0:

∂ǫ̂′ǫ̂

∂β̂0

= −2
n
∑

i=1

(yi − β̂0 − β̂1xi) = 0, (2)

∂ǫ̂′ǫ̂

∂β̂1

= −2
n
∑

i=1

(yi − β̂0 − β̂1xi)xi = 0 (3)

(4)

Solve the system (2), we get

β̂1 =

∑n
i=1

(xi − x̄)(yi − ȳ)
∑n

i=1
(xi − x̄)2

,

β̂0 = ȳ − β̂1x̄.

Note that the three model assumptions were not used in deriving the least squares

estimators β̂0 and β̂1. However, if the assumptions hold, the estimators are unbiased

and have minimum variance among all linear unbiased estimators (this will be devel-



oped further in the latter chapters). Under the assumptions, we have

E(β̂0) = β0,

E(β̂1) = β1,

var(β̂0) = σ2[
1

n
+

x̄2

∑n
i=1

(xi − x̄)2
],

var(β̂1) =
σ2

∑n
i=1

(xi − x̄)2
.

The method of least squares does not yield an estimator of σ, the variance can be

estimated by

s2 =

∑n
i=1

(yi − ŷi)
2

n− 2
=

SSE

n− 2
.

This estimator is unbiased,

E(s2) = σ2.

The deviation ǫ̂ = yi − ŷi is often called the residual of yi, and SSE is called the

residual sum of squares or error sum of squares.



3 Hypothesis Test and Confidence Interval for

β1

Linear relationship testing:

H0 : β1 = 0.

In order to obtain a test for H0 : β1 = 0, we make a further assumption (normality

assumption) that yi is N(β0 + β1xi, σ
2). Then we have

1. β̂1 is N(β1, σ
2/

∑n
i=1

(xi − x̄)2).

2. (n− 2)s2/σ2 is χ2(n− 2).

3. β̂1 and s2 are independent.

(These properties will be further developed in the next chapter.)

The three properties follows that

t =
β̂1

s/
√
∑

i(xi − x̄)2



is distributed as t(n− 2, δ), the noncentral t with noncentrality parameter δ,

δ =
E(β̂1

√

var(β̂1)
=

β1

σ/
√

∑

i(xi − x̄)2
.

A 100(1− α)% confidence interval for β1 is given by

β̂1 ± tα/2,n−2

s
√

∑n
i=1

(xi − x̄)2
.



4 Coefficient of Determination

The coefficient of determination r2 is defined as

r2 =
SSR

SST
=

∑n
i=1

(ŷi − ȳ)2
∑n

i=1
(yi − ȳ)2

,

where SSR =
∑n

i=1
(ŷi − ȳ)2 is the regression sum of squares and SST =

√

∑n
i=1

(xi − x̄)2 is the total sum of squares. The total sum of squares can be

partitioned into SST=SSR+SSE, i.e.,

n
∑

i=1

(yi − ȳ)2 =
n
∑

i=1

(ŷi − ȳ)2 +
n
∑

i=1

(yi − ŷi)
2.

Thus r2 gives the proportion of variation in y that is explained by the model, or, equiv-

alently, accounted for by regression on x.

Note that r2 is the same as the square of the sample correlation coefficient r

between y and x,

r =
sxy

√

s2xs
2
y

=

∑n
i=1

(xi − x̄)(yi − ȳ)
√

∑n
i=1

(xi − x̄)2
∑n

i=1
(yi − ȳ)2

,



where sxy = [
∑n

i=1
(xi − x̄)(yi − ȳ)]/(n− 1).


