Ch4. Distribution of Quadratic Forms in \boldsymbol{y}

1 definition

Definition 1.1 If A is a symmetric matrix and y is a vector, the product

$$\boldsymbol{y}' \boldsymbol{A} \boldsymbol{y} = \sum_{i} a_{ii} y_i^2 + \sum_{i \neq j} a_{ij} y_i y_j$$

is called a quadratic form. If $m{x}$ is n imes 1, $m{y}$ is p imes 1, and $m{A}$ is n imes p, the product

$$\boldsymbol{x}' \boldsymbol{A} \boldsymbol{y} = \sum_{ij} a_{ij} x_i y_j$$

is called a bilinear form.

Note: y'Ay = y'A'y, so if let B = (A + A')/2, then B' = B (symmetric) and y'By = y'Ay. Thus, to study a quadratic form y'Ay, we always assume that A is symmetric, A' = A.

2 Mean and Variance of Quadratic Forms

Theorem 2.1 If y is a random vector with mean μ and covariance matrix Σ and if A is a symmetric matrix of constants, then

$$E(\boldsymbol{y}'\boldsymbol{A}\boldsymbol{y}) = tr(\boldsymbol{A}\boldsymbol{\Sigma}) + \boldsymbol{\mu}'\boldsymbol{A}\boldsymbol{\mu}.$$
(1)

PROOF: Since $\Sigma = E(y-\mu)(y-\mu)' = E(yy')-\mu\mu'$, i.e., $E(yy') = \Sigma + \mu\mu'$. Since y'Ay is a scalar, it is equal to its trace. We have

$$E(\mathbf{y}'\mathbf{A}\mathbf{y}) = E[tr(\mathbf{y}'\mathbf{A}\mathbf{y})]$$

= $E[tr(\mathbf{A}\mathbf{y}\mathbf{y}')]$
= $tr[E(\mathbf{A}\mathbf{y}\mathbf{y}')]$
= $tr[\mathbf{A}(\Sigma + \boldsymbol{\mu}\boldsymbol{\mu}')]$
= $tr(\mathbf{A}\Sigma) + \boldsymbol{\mu}'\mathbf{A}\boldsymbol{\mu}.$

Note that since y'Ay is not a linear function of y, $E(y'Ay) \neq E(y')AE(y)$.

Example 2.1 Show that the sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$
⁽²⁾

is an unbiased estimator of the population variance.

PROOF: Since the numerator of (2) can be written as

$$\sum_{i=1}^n (y_i - \bar{y})^2 = \boldsymbol{y}' (\boldsymbol{I} - \frac{1}{n} \boldsymbol{J}) \boldsymbol{y},$$

where J = jj' and $j = (1, 1, \cdots, 1)'$. Thus for use in (1), we have $A = I - \frac{1}{n}J$, $\Sigma = \sigma I$, and $\mu = \mu j$. Hence,

$$\begin{split} E[\sum_{i=1}^{n} (y_i - \bar{y})^2] &= tr[(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J})(\sigma^2\boldsymbol{I})] + \mu \boldsymbol{j}'(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J})\mu \boldsymbol{j} \\ &= \sigma^2 tr(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J}) + \mu^2(\boldsymbol{j}'\boldsymbol{j} - \frac{1}{n}\boldsymbol{j}'\boldsymbol{j}\boldsymbol{j}'\boldsymbol{j}) \\ &= \sigma(n - \frac{n}{n}) + \mu^2(n - \frac{1}{n}n^2) \\ &= (n - 1)\sigma^2. \end{split}$$

Therefore

$$E(s^2) = \sigma^2.$$

Theorem 2.2 If ${\boldsymbol y}$ us $N_p({\boldsymbol \mu}, \Sigma)$, then

$$var(\boldsymbol{y}'\boldsymbol{A}\boldsymbol{y}) = 2tr[(\boldsymbol{A}\boldsymbol{\Sigma})^2] + 4\boldsymbol{\mu}'\boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}\boldsymbol{\mu}.$$
(3)

PROOF: See Searle (1971, P. 57).

Theorem 2.3 If ${\boldsymbol y}$ is $N_p({\boldsymbol \mu}, \Sigma)$, then

$$cov(\boldsymbol{y}, \boldsymbol{y}' \boldsymbol{A} \boldsymbol{y}) = 2\Sigma \boldsymbol{A} \boldsymbol{\mu}.$$

PROOF: See Rencher and Schaalje (2008, pp.110).

Corollary 2.1 Let ${\boldsymbol{B}}$ be a $k \times p$ matrix of constants, then

$$cov(By, y'Ay) = 2B\Sigma A\mu.$$

Theorem 2.4 Let $v = \begin{pmatrix} y \\ x \end{pmatrix}$ be a partitioned random vector with mean vector and covariance matrix as follows,

$$E\begin{pmatrix} \boldsymbol{y}\\ \boldsymbol{x}\end{pmatrix} = \begin{pmatrix} \boldsymbol{\mu}_y\\ \boldsymbol{\mu}_x \end{pmatrix}, \quad cov\begin{pmatrix} \boldsymbol{y}\\ \boldsymbol{x}\end{pmatrix} = \begin{pmatrix} \Sigma_{yx} & \Sigma_{yx}\\ \Sigma_{xy} & \Sigma_{xx} \end{pmatrix},$$

where y is $p \times 1$, x is $q \times 1$, and Σ_{yx} is $p \times q$. Let A be a $q \times p$ matrix of constants. Then

$$E(\boldsymbol{x}'\boldsymbol{A}\boldsymbol{y}) = tr(\boldsymbol{A}\boldsymbol{\Sigma}_{yx}) + \boldsymbol{\mu}'_{x}\boldsymbol{A}\boldsymbol{\mu}_{y}.$$

PROOF: Exercise of students.

Example 2.2 Show that the population covariance $\sigma_{xy} = E[(x - \mu_x)(y - \mu_y)]$ can be estimated by the sample covariance

$$S_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}),$$

where $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ is a bivariate random sample from a population with means μ_x and μ_y , and covariance σ_{xy} .

3 Noncentral Chi-square Distribution

Definition 3.1 Suppose that y is $N_n(\mu, I_n)$. Then v = y'y is distributed as a noncentral χ^2 distribution with n degrees of freedom and noncentrality parameter $\lambda = \mu'\mu$, i.e.,

$$v \sim \chi^2(n, \lambda).$$

When $\lambda = 0$, v is distributed as a central χ^2 distribution, i.e., $v \sim \chi^2(n)$.

Theorem 3.1 If v is distributed as $\chi^2(n, \lambda)$, then

$$E(v) = n + 2\lambda,$$

$$var(v) = 2n + 8\lambda,$$

$$M_v(t) = \frac{1}{(1 - 2t)^{n/2}} e^{-\lambda [1 - 1/(1 - 2t)]}.$$

PROOF: See Graybill (1976, p.126).

The χ^2 distribution has an additive property:

Theorem 3.2 If v_1, v_2, \dots, v_k are independently distributed as $\chi^2(n_i, \lambda_i)$, then $\sum_{i=1}^k v_i$ is distributed as $\chi^2(\sum_{i=1}^k n_i, \sum_{i=1}^k \lambda_i)$.

4 Noncentral F Distribution

Definition 4.1 If u is distributed as a noncentral chi-square, $\chi^2(p, \lambda)$, while v remains a central chi-square, $\chi^2(q)$, with u and v independent. Then

$$z = rac{u/p}{v/q}$$
 is distributed as $F(p,q,\lambda)$,

the noncentral F-distribution with noncentrality parameter λ , where λ is the same noncentrality parameter as in the distribution of u.

The mean of the distribution is

$$E(z) = \frac{q}{q-2}\left(1 + \frac{2\lambda}{p}\right).$$

5 Noncentral t Distribution

Definition 5.1 If y is $N(\mu, 1)$, u is $\chi^2(p)$, and y and u are independent, then

$$t = \frac{y}{\sqrt{u/p}}$$
 is distributed as $t(p, \mu)$,

the noncentral t-distribution with p degrees of freedom and noncentrality parameter μ .

Note if y is $N(\mu, \sigma^2)$, the noncentrality parameter becomes μ/σ , since y/σ is distributed as $N(\mu/sigma, 1)$.

6 Distribution of Quadratic Forms

Theorem 6.1 Let \boldsymbol{y} be distributed as $N_p(\boldsymbol{\mu}, \Sigma)$, let \boldsymbol{A} be a $p \times p$ symmetric matrix of constants of rank r, and let $\lambda = \frac{1}{2}\boldsymbol{\mu}'\boldsymbol{A}\boldsymbol{\mu}$. Then $\boldsymbol{y}'\boldsymbol{A}\boldsymbol{y}$ is $\chi^2(r,\lambda)$ if and only if $\boldsymbol{A}\Sigma$ is idempotent.

PROOF: (sufficiency). If $A\Sigma$ is idempotent, y'Ay is $\chi^2(r, \lambda)$.

Since $\Sigma > 0$, we have $\Sigma = B^2$ where $B = \Sigma^{1/2}$ is nonsingular and symmetric. Let R = BAB, R is symmetric and of rank(R) = rank(A) = r. (Multiplication by a nonsingular matrix does not change the rank.)

Since $\boldsymbol{A}\Sigma$ is idempotent, we have

 $R^{2}B = BABBABB = BA\Sigma A\Sigma = BA\Sigma = BABB = RB,$

thus, $R^2 B B^{-1} = R B B^{-1}$ and $R^2 = R$, R is idempotent. Therefore, there exists an orthogonal matrix Q such that

$$oldsymbol{R} = oldsymbol{Q}' egin{pmatrix} oldsymbol{I}_r & oldsymbol{O} \ oldsymbol{O} & oldsymbol{O} \end{pmatrix} oldsymbol{Q} = oldsymbol{P}' oldsymbol{P},$$

where $oldsymbol{P} = egin{pmatrix} oldsymbol{I}_r & oldsymbol{O} \end{pmatrix} oldsymbol{Q}.$ Let $oldsymbol{x} = oldsymbol{P} oldsymbol{B}^{-1} oldsymbol{y}$ be a linear transformation of $oldsymbol{y}$,

$$E(\boldsymbol{x}) = \boldsymbol{P}\boldsymbol{B}^{-1}\boldsymbol{\mu} = \boldsymbol{\theta},$$

$$cov(\boldsymbol{x}) = \boldsymbol{P}\boldsymbol{B}^{-1}cov(\boldsymbol{y})\boldsymbol{B}^{-1}\boldsymbol{P}' = \boldsymbol{P}\boldsymbol{B}^{-1}\boldsymbol{B}\boldsymbol{B}\boldsymbol{B}^{-1}\boldsymbol{P}' = \boldsymbol{P}\boldsymbol{P}' = \boldsymbol{I}_r.$$

Hence, $x \sim N_r(\theta, I_r)$. By definition, $x'x \sim \chi^2(r, \lambda)$ with the noncentrality parameter

$$\lambda = \frac{1}{2} \theta' \theta = \frac{1}{2} \mu' B^{-1} P' P B^{-1} \mu = \mu' B^{-1} B A B B^{-1} \mu = \mu' A \mu.$$

Since

$$x'x = y'B^{-1}P'PB^{-1}y = y'Ay,$$

the proof is completed.

The proof for the necessity can be found in Searle (1971, pp.57-58).

Corollary 6.1 If y is $N_p(O, I)$, then y'Ay is $\chi^2(r)$ if and only if A is idempotent of rank r.

Corollary 6.2 If \boldsymbol{y} is $N_p(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$, then $\boldsymbol{y}' \boldsymbol{A} \boldsymbol{y} / \sigma^2$ is $\chi^2(r, \boldsymbol{\mu}' \boldsymbol{A} \boldsymbol{\mu} / 2\sigma^2)$ is and only if \boldsymbol{A} is idempotent of rank r.

Example 6.1 Consider the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2},$$

where $y_i \sim N(\mu, \sigma^2)$. In the matrix form, it is can be written as

$$S^2 = \frac{1}{n-1} \boldsymbol{y}' (\boldsymbol{I} - \frac{1}{n} \boldsymbol{J}) \boldsymbol{y},$$

where $I - \frac{1}{n}J$ is idempotent and of rank n - 1. We next find λ ,

$$\lambda = \boldsymbol{\mu}' \boldsymbol{A} \boldsymbol{\mu} / (2\sigma^2) = \mu^2 [\boldsymbol{j}' \boldsymbol{j} - (1/n) \boldsymbol{j}' \boldsymbol{J} \boldsymbol{j}] / (2\sigma^2) = 0.$$

Therefore, $y'(I - \frac{1}{n}J)y/\sigma^2 = (n-1)S^2/\sigma^2$ is distributed as $\chi^2(n-1)$.

7 Independence of Linear Forms and Quadratic Forms

Lemma 7.1 A symmetric matrix A, of order n and rank r, can be written as LL' where L is $n \times r$ of rank r, i.e., L has full column rank.

PROOF:

$$oldsymbol{PAP}' = egin{pmatrix} oldsymbol{D}_r^2 & oldsymbol{O} \\ oldsymbol{O} & oldsymbol{O} \end{pmatrix} = egin{pmatrix} oldsymbol{D}_r \\ oldsymbol{O} \end{pmatrix} egin{pmatrix} oldsymbol{D}_r & oldsymbol{O} \end{pmatrix} \\ oldsymbol{O} & oldsymbol{O} \end{pmatrix} = egin{pmatrix} oldsymbol{D}_r \\ oldsymbol{O} \end{pmatrix} egin{pmatrix} oldsymbol{D}_r & oldsymbol{O} \end{pmatrix} \end{pmatrix}$$

for some orthogonal $oldsymbol{P}$, where $oldsymbol{D}_r^2$ is diagonal of order r. Hence

$$oldsymbol{A} = oldsymbol{P}' egin{pmatrix} oldsymbol{D}_r \ oldsymbol{O} \end{pmatrix} egin{pmatrix} oldsymbol{D}_r & oldsymbol{O} \end{pmatrix} oldsymbol{P} = oldsymbol{L} oldsymbol{L}'$$

where $L' = \begin{pmatrix} D_r & O \end{pmatrix} P$ of order $r \times n$ and full row rank; i.e., L is of full column rank. Note also that although LL' = A, $L'L = D_r^2$. Also, L' is real only when A is non-negative definite, for only then are the non-zero elements of D_r^2 positive. \Box

Theorem 7.1 (linear and quadratic) Suppose \boldsymbol{B} is a $k \times p$ matrix of constants, \boldsymbol{A} is a $p \times p$ symmetric matrix of constants, and \boldsymbol{y} is distributed as $N_p(\boldsymbol{\mu}, \Sigma)$. Then $\boldsymbol{B}\boldsymbol{y}$ and $\boldsymbol{y}' \boldsymbol{A} \boldsymbol{y}$ are independent if and only if $\boldsymbol{B} \Sigma \boldsymbol{A} = \boldsymbol{O}$.

PROOF: (sufficiency) $B\Sigma A = O$ implies independence.

From the lemma, A = LL', where L is of full-column-rank.

 $B\Sigma A = O$ implies $B\Sigma LL'L(L'L)^{-1} = O$ i.e. $B\Sigma L = O$.

Therefore $cov(By, y'L) = B\Sigma L = O$. Hence, because y is normal, By and y'L are independent. Consequently By and y'Ay are independent.

(necessity): the independence of By and y'Ay implies $B\Sigma A = O$.

The independence property gives $cov(By, y'Ay) = 2B\Sigma A\mu = 0$. Hence $2B\Sigma A\mu = 0$, and since this is true for all μ , $B\Sigma A = O$, and so the proof is complete. \Box

Example 7.1 Consider $s^2 = \frac{1}{n-1} y' (I - \frac{1}{n}J) y$ and $\bar{y} = \frac{1}{n} j' y$. By theorem 7.1, \bar{y} is independent of s^2 since $j' (I - \frac{1}{n}J) = O$.

Theorem 7.2 (quadratic and quadratic) Let A and B be symmetric matrices of constants. If y is $N_p(\mu, \Sigma)$, then y'Ay and y'bBy are independent if and only if $A\Sigma B = O$.

PROOF: (sufficiency) $A\Sigma B = O$ implies independence.

By the lemma, we have A = LL' and B = MM', where each of L and M have full column rank. Therefore, if $A\Sigma B = O$, $LL'\Sigma MM' = O$, and because $(L'L)^{-1}$ and $(M'M)^{-1}$ exist this means $L'\Sigma M = O$. Therefore

$$cov(\boldsymbol{L}'\boldsymbol{y},\boldsymbol{y}'\boldsymbol{M}) = \boldsymbol{L}'\Sigma\boldsymbol{M} = \boldsymbol{O}.$$

Hence, because y is normal, L'y and y'M are independent. Consequently y'Ay = y'LL'y and By = y'MM'y are independent.

(necessity) the independence implies $A\Sigma B = O$. When y'Ay and y'By are independent, cov(y'Ay, y'By) = 0, so that

$$var(\boldsymbol{y}'\boldsymbol{A}\boldsymbol{y} + \boldsymbol{y}'\boldsymbol{B}\boldsymbol{y}) = var(\boldsymbol{y}'\boldsymbol{A}\boldsymbol{y}) + var(\boldsymbol{y}'\boldsymbol{B}\boldsymbol{y}),$$

i.e.,

$$var(y'(A + B)y) = var(y'Ay) + var(y'By).$$

Applying equation (3) to all three terms in this results leads, after a little simplification, to

$$tr(\Sigma A \Sigma B) + 2\mu' A \Sigma B \mu = 0.$$

This is true for all μ , including $\mu = 0$, so $tr(\Sigma A \Sigma B) = 0$ and on substituting back gives $2\mu' A \Sigma B \mu = 0$. This in turn is true for all μ , and so $A \Sigma B = 0$. Thus theorem is proved. \Box

Example 7.2 To illustrate theorem 7.2, consider the partitioning of $\sum_i y_i^2 = \sum_{i=1}^n (y_i - y_i)^2$

$$ar{y})^2+nar{y}^2$$
 , i.e., $m{y}'m{y}=m{y}'(m{I}-rac{1}{n}m{J})m{y}+m{y}'(rac{1}{n}m{J})m{y}.$

If \boldsymbol{y} is $N_n(\mu \boldsymbol{j}, \sigma^2 \boldsymbol{I})$, then by theorem 7.2, $\boldsymbol{y}'(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J})\boldsymbol{y}$ and $\boldsymbol{y}'(\frac{1}{n}\boldsymbol{J})\boldsymbol{y}$ are independent if and only if $(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J})(\frac{1}{n}\boldsymbol{J}) = \boldsymbol{O}$.

Theorem 7.3 (Several quadratic forms) Let \boldsymbol{y} be $N_n(\boldsymbol{\mu}, \sigma^2 I)$, let \boldsymbol{A}_i be symmetric of rank r_i for $i = 1, 2, \dots, k$, and let $\boldsymbol{y}' \boldsymbol{A} \boldsymbol{y} = \sum_{i=1}^k \boldsymbol{y}' \boldsymbol{A}_i \boldsymbol{y}$, where $\boldsymbol{A} = \sum_{i=1}^k \boldsymbol{A}_i$ is symmetric of rank r. Then

(1)
$$m{y}'m{A}_im{y}/\sigma^2$$
 is $\chi^2(r_i,m{\mu}'m{A}_im{\mu}/2\sigma^2)$, $i=1,2,\cdots,k$, and

(2) ${m y}'{m A}_i{m y}$ and ${m y}'{m A}_j{m y}$ are independent for all i
eq j, and

(3) $m{y}'m{A}m{y}/\sigma^2$ is $\chi^2(r,m{\mu}'m{A}m{\mu}/2\sigma^2)$

if and only if any two of the following three statements are true:

- (a) each A_i is idempotent,
- (b) $A_i A_j = O$ for all $i \neq j$.
- (c) $oldsymbol{A} = \sum_{i=1}^k oldsymbol{A}_i$ is idempotent.

or if and only if (c) and (d) are true, where (d) is the following statement:

(d) $r = \sum_{i=1}^{k} r_i$.