
Ch4. Distribution of Quadratic Forms in y

1 definition

Definition 1.1 If A is a symmetric matrix and y is a vector, the product

y′Ay =
∑

i

aiiy
2
i +

∑

i 6=j

aijyiyj

is called a quadratic form. If x is n× 1, y is p× 1, and A is n× p, the product

x′Ay =
∑

ij

aijxiyj

is called a bilinear form.

Note: y′Ay = y′A′y, so if let B = (A +A′)/2, then B′ = B (symmetric)

and y′By = y′Ay. Thus, to study a quadratic form y′Ay, we always assume that

A is symmetric, A′ = A.



2 Mean and Variance of Quadratic Forms

Theorem 2.1 If y is a random vector with mean µ and covariance matrix Σ and if A

is a symmetric matrix of constants, then

E(y′Ay) = tr(AΣ) + µ′Aµ. (1)

PROOF: SinceΣ = E(y−µ)(y−µ)′ = E(yy′)−µµ′, i.e., E(yy′) = Σ+µµ′.

Since y′Ay is a scalar, it is equal to its trace. We have

E(y′Ay) = E[tr(y′Ay)]

= E[tr(Ayy′)]

= tr[E(Ayy′)]

= tr[A(Σ + µµ′)]

= tr(AΣ) + µ′Aµ.

�

Note that since y′Ay is not a linear function of y, E(y′Ay) 6= E(y′)AE(y).



Example 2.1 Show that the sample variance

s2 =
1

n− 1

n
∑

i=1

(yi − ȳ)2 (2)

is an unbiased estimator of the population variance.

PROOF: Since the numerator of (2) can be written as

n
∑

i=1

(yi − ȳ)2 = y′(I −
1

n
J)y,

where J = jj′ and j = (1, 1, · · · , 1)′. Thus for use in (1), we have A = I − 1
nJ ,

Σ = σI , and µ = µj. Hence,

E[
n
∑

i=1

(yi − ȳ)2] = tr[(I −
1

n
J)(σ2I)] + µj′(I −

1

n
J)µj

= σ2tr(I −
1

n
J) + µ2(j′j −

1

n
j′jj′j)

= σ(n−
n

n
) + µ2(n−

1

n
n2)

= (n− 1)σ2.



Therefore

E(s2) = σ2.

�

Theorem 2.2 If y us Np(µ,Σ), then

var(y′Ay) = 2tr[(AΣ)2] + 4µ′AΣAµ. (3)

PROOF: See Searle (1971, P. 57). �

Theorem 2.3 If y is Np(µ,Σ), then

cov(y,y′Ay) = 2ΣAµ.

PROOF: See Rencher and Schaalje (2008, pp.110). �

Corollary 2.1 Let B be a k × p matrix of constants, then

cov(By,y′Ay) = 2BΣAµ.



Theorem 2.4 Let v =

(

y

x

)

be a partitioned random vector with mean vector and

covariance matrix as follows,

E

(

y

x

)

=

(

µy

µx

)

, cov

(

y

x

)

=

(

Σyx Σyx

Σxy Σxx

)

,

where y is p× 1, x is q× 1, and Σyx is p× q. Let A be a q× p matrix of constants.

Then

E(x′Ay) = tr(AΣyx) + µ′
xAµy.

PROOF: Exercise of students. �

Example 2.2 Show that the population covariance σxy = E[(x−µx)(y−µy)] can

be estimated by the sample covariance

Sxy =
1

n

n
∑

i=1

(xi − x̄)(yi − ȳ),

where (x1, y1), (x2, y2), · · · , (xn, yn) is a bivariate random sample from a popula-

tion with means µx and µy , and covariance σxy .



3 Noncentral Chi-square Distribution

Definition 3.1 Suppose that y is Nn(µ, In). Then v = y′y is distributed as a

noncentral χ2 distribution with n degrees of freedom and noncentrality parameter λ =

µ′µ, i.e.,

v ∼ χ2(n, λ).

When λ = 0, v is distributed as a central χ2 distribution, i.e., v ∼ χ2(n).

Theorem 3.1 If v is distributed as χ2(n, λ), then

E(v) = n+ 2λ,

var(v) = 2n+ 8λ,

Mv(t) =
1

(1− 2t)n/2
e−λ[1−1/(1−2t)].

PROOF: See Graybill (1976, p.126). �

The χ2 distribution has an additive property:



Theorem 3.2 If v1, v2, · · · , vk are independently distributed asχ2(ni, λi), then
∑k

i=1 vi

is distributed as χ2(
∑k

i=1 ni,
∑k

i=1 λi).

4 Noncentral F Distribution

Definition 4.1 If u is distributed as a noncentral chi-square,χ2(p, λ), while v remains

a central chi-square, χ2(q), with u and v independent. Then

z =
u/p

v/q
is distributed as F (p, q, λ),

the noncentral F-distribution with noncentrality parameter λ, where λ is the same non-

centrality parameter as in the distribution of u.

The mean of the distribution is

E(z) =
q

q − 2
(1 +

2λ

p
).



5 Noncentral t Distribution

Definition 5.1 If y is N(µ, 1), u is χ2(p), and y and u are independent, then

t =
y

√

u/p
is distributed as t(p, µ),

the noncentral t-distribution with p degrees of freedom and noncentrality parameter µ.

Note if y is N(µ, σ2), the noncentrality parameter becomes µ/σ, since y/σ is

distributed as N(µ/sigma, 1).

6 Distribution of Quadratic Forms

Theorem 6.1 Let y be distributed as Np(µ,Σ), let A be a p×p symmetric matrix of

constants of rank r, and let λ = 1
2µ

′Aµ. Then y′Ay is χ2(r, λ) if and only if AΣ

is idempotent.

PROOF: (sufficiency). If AΣ is idempotent, y′Ay is χ2(r, λ).



Since Σ > 0, we have Σ = B2
where B = Σ1/2 is nonsingular and symmetric.

Let R = BAB, R is symmetric and of rank(R) = rank(A) = r. (Multipli-

cation by a nonsingular matrix does not change the rank.)

Since AΣ is idempotent, we have

R2B = BABBABB = BAΣAΣ = BAΣ = BABB = RB,

thus, R2BB−1 = RBB−1
and R2 = R, R is idempotent. Therefore, there

exists an orthogonal matrix Q such that

R = Q′

(

Ir O

O O

)

Q = P ′P ,

where P =
(

Ir O
)

Q.

Let x = PB−1y be a linear transformation of y,

E(x) = PB−1µ = θ,

cov(x) = PB−1cov(y)B−1P ′ = PB−1BBB−1P ′ = PP ′ = Ir.



Hence, x ∼ Nr(θ, Ir). By definition, x′x ∼ χ2(r, λ) with the noncentrality param-

eter

λ =
1

2
θ′θ =

1

2
µ′B−1P ′PB−1µ = µ′B−1BABB−1µ = µ′Aµ.

Since

x′x = y′B−1P ′PB−1y = y′Ay,

the proof is completed.

The proof for the necessity can be found in Searle (1971, pp.57-58). �

Corollary 6.1 If y is Np(O, I), then y′Ay is χ2(r) if and only if A is idempotent of

rank r.

Corollary 6.2 If y is Np(µ, σ
2I), then y′Ay/σ2 is χ2(r,µ′Aµ/2σ2) is and only

if A is idempotent of rank r.

Example 6.1 Consider the sample variance

S2 =
1

n− 1

n
∑

i=1

(yi − ȳ)2,



where yi ∼ N(µ, σ2). In the matrix form, it is can be written as

S2 =
1

n− 1
y′(I −

1

n
J)y,

where I − 1
nJ is idempotent and of rank n− 1. We next find λ,

λ = µ′Aµ/(2σ2) = µ2[j′j − (1/n)j′Jj]/(2σ2) = 0.

Therefore, y′(I − 1
nJ)y/σ

2 = (n− 1)S2/σ2 is distributed as χ2(n− 1).

7 Independence of Linear Forms and Quadratic

Forms

Lemma 7.1 A symmetric matrix A, of order n and rank r, can be written as LL′

where L is n× r of rank r, i.e., L has full column rank.

PROOF:

PAP ′ =

(

D2
r O

O O

)

=

(

Dr

O

)

(

Dr O
)



for some orthogonal P , where D2
r is diagonal of order r. Hence

A = P ′

(

Dr

O

)

(

Dr O
)

P = LL′

where L′ =
(

Dr O
)

P of order r × n and full row rank; i.e., L is of full column

rank. Note also that although LL′ = A, L′L = D2
r . Also, L′

is real only when A

is non-negative definite, for only then are the non-zero elements of D2
r positive. �

Theorem 7.1 (linear and quadratic) Suppose B is a k × p matrix of constants, A is

a p × p symmetric matrix of constants, and y is distributed as Np(µ,Σ). Then By

and y′Ay are independent if and only if BΣA = O.

PROOF: (sufficiency) BΣA = O implies independence.

From the lemma, A = LL′
, where L is of full-column-rank.

BΣA = O impliesBΣLL′L(L′L)−1 = O i.e.BΣL = O.

Therefore cov(By,y′L) = BΣL = O. Hence, because y is normal, By and

y′L are independent. Consequently By and y′Ay are independent.



(necessity): the independence of By and y′Ay implies BΣA = O.

The independence property gives cov(By,y′Ay) = 2BΣAµ = 0. Hence

2BΣAµ = 0, and since this is true for all µ, BΣA = O, and so the proof is

complete. �

Example 7.1 Consider s2 = 1
n−1y

′(I − 1
nJ)y and ȳ = 1

nj
′y. By theorem 7.1, ȳ

is independent of s2 since j′(I − 1
nJ) = O.

Theorem 7.2 (quadratic and quadratic) Let A and B be symmetric matrices of con-

stants. If y is Np(µ,Σ), then y′Ay and y′bBy are independent if and only if

AΣB = O.

PROOF: (sufficiency) AΣB = O implies independence.

By the lemma, we have A = LL′
and B = MM ′

, where each of L and M

have full column rank. Therefore, if AΣB = O, LL′ΣMM ′ = O, and because

(L′L)−1 and (M ′M )−1 exist this means L′ΣM = O. Therefore

cov(L′y,y′M ) = L′ΣM = O.



Hence, becausey is normal,L′y and y′M are independent. Consequentlyy′Ay =

y′LL′y and By = y′MM ′y are independent.

(necessity) the independence implies AΣB = O.

When y′Ay and y′By are independent, cov(y′Ay,y′By) = 0, so that

var(y′Ay + y′By) = var(y′Ay) + var(y′By),

i.e.,

var(y′(A+B)y) = var(y′Ay) + var(y′By).

Applying equation (3) to all three terms in this results leads, after a little simplification,

to

tr(ΣAΣB) + 2µ′AΣBµ = 0.

This is true for all µ, including µ = 0, so tr(ΣAΣB) = 0 and on substituting back

gives 2µ′AΣBµ = 0. This in turn is true for all µ, and so AΣB = 0. Thus

theorem is proved. �

Example 7.2 To illustrate theorem 7.2, consider the partitioning of
∑

i y
2
i =

∑n
i=1(yi−



ȳ)2 + nȳ2, i.e.,

y′y = y′(I −
1

n
J)y + y′(

1

n
J)y.

If y is Nn(µj, σ
2I), then by theorem 7.2, y′(I − 1

nJ)y and y′( 1nJ)y are inde-

pendent if and only if (I − 1
nJ)(

1
nJ) = O.



Theorem 7.3 (Several quadratic forms) Let y be Nn(µ, σ
2I), let Ai be symmetric of

rank ri for i = 1, 2, · · · , k, and let y′Ay =
∑k

i=1 y
′Aiy, where A =

∑k
i=1 Ai

is symmetric of rank r. Then

(1) y′Aiy/σ
2 is χ2(ri,µ

′Aiµ/2σ
2), i = 1, 2, · · · , k, and

(2) y′Aiy and y′Ajy are independent for all i 6= j, and

(3) y′Ay/σ2 is χ2(r,µ′Aµ/2σ2)

if and only if any two of the following three statements are true:

(a) each Ai is idempotent,

(b) AiAj = O for all i 6= j.

(c) A =
∑k

i=1Ai is idempotent.

or if and only if (c) and (d) are true, where (d) is the following statement:

(d) r =
∑k

i=1 ri.


