1 Multivariate normal distributions

Definition 1.1 A random vector \(x = (x_1, \cdots, x_p)' \) is said to have a \(p \)-variate normal distribution if its probability density function can be written as

\[
f(x) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(x - \mu)'\Sigma^{-1}(x - \mu)\},
\]

(1)

where \(\mu = (\mu_1, \cdots, \mu_p)' \) and \(\Sigma > 0 \). We will denote a \(p \)-variate normal by \(x \sim N_p(\mu, \Sigma) \).

Theorem 1.1 If \(y \) is distributed as \(N_p(\mu, \Sigma) \), its moment-generating function is given by

\[
M_y(t) = E(e^{t'y}) = e^{t'\mu + \frac{1}{2}t'\Sigma t}.
\]

(2)
Two important properties of moment-generating functions:

1. If two random vectors have the same moment-generating function, if and only if they have the same density. This property is called the uniqueness of the moment-generating function.

2. Two random vectors are independent if and only if their joint moment-generating function factors into the product of their two separate moment-generating functions; that is, if \(y' = (y'_1, y'_2) \) and \(t' = (t'_1, t'_2) \). then \(y_1 \) and \(y_2 \) are independent if and only if

\[
M_y(t) = M_{y_1}(t_1) M_{y_2}(t_2).
\]
2 Properties of the Multivariate normal distribution

Theorem 2.1 Let the \(p \times 1 \) random vector \(\mathbf{y} \) be \(N_p(\mu, \Sigma) \), let \(\mathbf{a} \) be any \(p \times 1 \) vector of constants, and let \(\mathbf{A} \) be any \(k \times p \) matrix of constants with \(\text{rank } k \leq p \). Then

(i) \(z = \mathbf{a}'\mathbf{y} \) is \(N(\mathbf{a}'\mu, \mathbf{a}'\Sigma\mathbf{a}) \).

(ii) \(z = \mathbf{A}\mathbf{y} \) is \(N_k(\mathbf{A}\mu, \mathbf{A}\Sigma\mathbf{A}') \).

Proof: (i) The moment-generating function for \(z = \mathbf{a}'\mathbf{y} \) is given by

\[
M_z(t) = E(e^{t\mathbf{a}'\mathbf{y}}) = E(e^{(t\mathbf{a})'\mathbf{y}}) \\
= e^{(t\mathbf{a})'\mu + (t\mathbf{a})'\Sigma(t\mathbf{a})/2} \\
= e^{(\mathbf{a}'\mu)t + (\mathbf{a}'\Sigma\mathbf{a})t^2/2}.
\]

Comparing with the moment-generating function of univariate normal, it is clear that \(z = \mathbf{a}'\mathbf{y} \) is univariate normal with mean \(\mathbf{a}'\mu \) and variance \(\mathbf{a}'\Sigma\mathbf{a} \).
(ii) The moment-generating function of \(Ay \) is
\[
M_Z(t) = e^{t' (A\mu) + t' (A\Sigma A') t / 2}.
\]

Since \(A \) is a row-full-rank matrix, \(A\Sigma A' \) is positive definite. Hence, \(Ay \) is distributed as the \(k \)-variate normal \(N_k(A\mu, A\Sigma A') \). □

Theorem 2.2 If \(y \) is \(N_p(\mu, \Sigma) \), then any \(r \times 1 \) subvector of \(y \) has an \(r \)-variate normal distribution with the same means, variance, and covariances as in the original \(p \)-variate normal distribution.

Proof: Without loss of generality, let \(y \) be partitioned as \(y' = (y'_1, y'_2) \), where \(y'_1 \) is the \(r \times 1 \) subvector of interest. Let \(\mu \) and \(\Sigma \) be partitioned accordingly:
\[
y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}.
\]
Define \(A = (I_r, O) \), then \(Ay = y_1 \). Hence, \(y_1 \) is distributed as \(N_r(\mu_1, \Sigma_{11}) \). □

Corollary 2.1 If \(y \) is \(N_p(\mu, \Sigma) \), then any individual variable \(y_i \) in \(y \) is distributed as \(N(\mu_i, \sigma_{ii}^2) \).
Theorem 2.3 If \(v = \begin{pmatrix} y \\ x \end{pmatrix} \) is \(\mathcal{N}_p(\mu, \Sigma) \), then \(y \) and \(x \) are independent if and only if \(\Sigma_{yx} = O \).

Proof: (i) If \(y \) and \(x \) are independent, \(\Sigma_{yx} = O \).

(ii) If \(\Sigma_{yx} = O \), then

\[
\Sigma = \begin{pmatrix} \Sigma_{yy} & O \\ O & \Sigma_{xx} \end{pmatrix}.
\]

The exponent of the moment-generating function becomes

\[
t'\mu + \frac{1}{2}t'\Sigma t = t'_y \mu_y + t'_x \mu_x + \frac{1}{2}t'_y \Sigma_{yy} t_y + \frac{1}{2}t'_x \Sigma_{xx} t_x \\
= M_y(t)M_x(t).
\]

Hence, \(y \) and \(x \) are independent if \(\Sigma_{yx} = O \). □

Corollary 2.2 If \(y \) is \(\mathcal{N}_p(\mu, \Sigma) \), then any two individual variables \(y_i \) and \(y_j \) are independent if \(\sigma_{i,j} = 0 \).
Corollary 2.3 If y is $N_p(\mu, \Sigma)$ and if $\text{cov}(Ay, By) = A\Sigma B = O$, then Ay and By are independent.

Theorem 2.4 If y and x are jointly multivariate normal with $\Sigma_{yx} \neq O$, then the conditional distribution of y given x, $f(y|x)$, is multivariate normal with mean vector and covariance matrix,

$$E(y|x) = \mu_y + \Sigma_{yx} \Sigma_{xx}^{-1} (x - \mu_x),$$

$$\text{cov}(y|x) = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}.$$

Corollary 2.4 If \(\mathbf{v} = (y, \mathbf{x}')' \) with

\[
\begin{align*}
\mathbf{\mu} &= \begin{pmatrix} \mu_y \\ \mu_x \end{pmatrix}, \\
\Sigma &= \begin{pmatrix} \sigma_y^2 & \sigma'_yx \\ \sigma'yx & \Sigma_{xx} \end{pmatrix},
\end{align*}
\]

then \(y|\mathbf{x} \) is normal with

\[
\begin{align*}
E(y|bx) &= \mu_y + \sigma'_yx \Sigma_{xx}^{-1}(x - \mu_x), \\
var(y|\mathbf{x}) &= \sigma_y^2 - \sigma'_yx \Sigma_{xx}^{-1} \sigma'yx.
\end{align*}
\]

Since \(\Sigma_{xx}^{-1} \) is positive definite, the corollary implies that

\[
var(y|\mathbf{x}) \leq var(y).
\]
3 Partial Correlation

Let \(\mathbf{v} \) be \(N_{p+q}(\mu, \Sigma) \) and let \(\mathbf{v}, \mu \) and \(\Sigma \) be partitioned as follows.

\[
\mathbf{v} = \begin{pmatrix} \mathbf{y} \\ \mathbf{x} \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_y \\ \mu_x \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_{yy} & \Sigma_{yx} \\ \Sigma_{xy} & \Sigma_{xx} \end{pmatrix}.
\]

The covariance of \(y_i \) and \(y_j \) in the conditional distribution of \(\mathbf{y} \) given \(\mathbf{x} \) will be denoted by \(\sigma_{ij \cdot rs...q} \), where \(y_i \) and \(y_j \) are two of the variables in \(\mathbf{y} \) and \(y_r, y_s, \ldots, y_q \) are all variables in \(\mathbf{x} \). Thus \(\sigma_{ij \cdot rs...q} \) is the \((i,j)\)th element of \(\text{cov}(\mathbf{y}|\mathbf{x}) = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy} \). The **partial correlation coefficient** \(\rho_{ij \cdot rs...q} \) is defined to be the correlation between \(y_i \) and \(y_j \) in the conditional distribution of \(\mathbf{y} \) given \(\mathbf{x} \), that is,

\[
\rho_{ij \cdot rs...q} = \frac{\sigma_{ij \cdot rs...q}}{\sqrt{\sigma_{ii \cdot rs...q} \sigma_{jj \cdot rs...q}}},
\]

The matrix form is \(\mathbf{P}_{y \cdot x} = (\rho_{ij \cdot rs...q}) \), where

\[
\mathbf{P}_{y \cdot x} = \mathbf{D}_{y \cdot x}^{-1} \mathbf{\Sigma}_{y \cdot x} \mathbf{D}_{y \cdot x}^{-1},
\]

where \(\mathbf{\Sigma}_{y \cdot x} = \mathbf{\Sigma}_{yy} - \mathbf{\Sigma}_{yx} \mathbf{\Sigma}_{xx}^{-1} \mathbf{\Sigma}_{xy} \) and \(\mathbf{D}_{y \cdot x} = [\text{diag}(\mathbf{\Sigma}_{y \cdot x})]^{1/2} \).
Unless y and x are independent ($\Sigma_{yx} = O$), the partial correlation $\rho_{ij \cdot rs \ldots q}$ is different from the usual correlation $\rho_{ij} = \sigma_{ij} / \sqrt{\sigma_{ii} \sigma_{jj}}$.