Ch3. Multivariate Normal Distribution

1 Multivariate normal distributions

Definition 1.1 A random vector $\mathbf{x} = (x_1, \dots, x_p)'$ is said to have a *p*-variate normal distribution if its probability density function can be written as

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})' \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\},$$
(1)

where $\mu = (\mu_1, \cdots, \mu_p)'$ and $\Sigma > 0$. We will denote a p-variate normal by $x \sim N_p(\mu, \Sigma)$.

Theorem 1.1 If y is distributed as $N_p(\mu, \Sigma)$, its moment-generating function is given by

$$M_y(\boldsymbol{t}) = E(e^{\boldsymbol{t}'\boldsymbol{y}}) = e^{\boldsymbol{t}'\boldsymbol{\mu} + \frac{1}{2}\boldsymbol{t}'\boldsymbol{\Sigma}\boldsymbol{t}}.$$
(2)

Two important properties of moment-generating functions:

- If two random vectors have the same moment-generating function, if and only if they have the same density. This property is called the uniqueness of the moment-generating function.
- 2. Two random vectors are independent if and only if their joint moment-generating function factors into the product of their two separate moment-generating functions; that is, if $y' = (y'_1, y'_2)$ and $t' = (t'_1, t'_2)$. then y_1 and y_2 are independent if and only if

$$M_y(\boldsymbol{t}) = M\boldsymbol{y}_1(\boldsymbol{t}_1)M\boldsymbol{y}_2(\boldsymbol{t}_2).$$

2 Properties of the Multivariate normal distribution

Theorem 2.1 Let the $p \times 1$ random vector \boldsymbol{y} be $N_p(\mu, \Sigma)$, let \boldsymbol{a} be any $p \times 1$ vector of constants, and let \boldsymbol{A} be any $k \times p$ matrix of constants with rank $k \leq p$. Then

- (i) z = a'y is $N(a'\mu, a'\Sigma a)$.
- (ii) $\boldsymbol{z} = \boldsymbol{A} \boldsymbol{y}$ is $N_k(\boldsymbol{A} \boldsymbol{\mu}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}')$.

PROOF: (i) The moment-generating function for $z = {m a}' {m y}$ is given by

$$M_{z}(\boldsymbol{t}) = E(e^{t\boldsymbol{a}'\boldsymbol{y}}) = E(e^{(t\boldsymbol{a})'\boldsymbol{y}})$$
$$= e^{(t\boldsymbol{a})'\boldsymbol{\mu} + (t\boldsymbol{a})'\Sigma(t\boldsymbol{a})/2} \quad by(2)$$
$$= e^{(\boldsymbol{a}'\boldsymbol{\mu})t + (\boldsymbol{a}'\Sigma\boldsymbol{a})t^{2}/2}.$$

Comparing with the moment-generating function of univariate normal, it is clear that z = a'y is univariate normal with mean $a'\mu$ and variance $a'\Sigma a$.

(ii) The moment-generating function of $oldsymbol{A}oldsymbol{y}$ is

$$M_{\boldsymbol{z}}(\boldsymbol{t}) = e^{\boldsymbol{t}'(\boldsymbol{A}\boldsymbol{\mu}) + \boldsymbol{t}'(\boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}')\boldsymbol{t}/2}$$

Sine A is a row-full-rank matrix, $A\Sigma A'$ is positive definite. Hence, Ay is distributed as the k-variate normal $N_k(A\mu, A\Sigma A')$. \Box

Theorem 2.2 If y is $N_p(\mu, \Sigma)$, then any $r \times 1$ subvector of y has an r-variate normal distribution with the same means, variance, and covariances as in the original p-variate normal distribution.

PROOF: Without loss of generality, let y be partitioned as $y' = (y'_1, y'_2)$, where y_1 is the $r \times 1$ subvector of interest. Let μ and Σ be partitioned accordingly:

$$oldsymbol{y} = egin{pmatrix} oldsymbol{y}_1 \ oldsymbol{y}_2 \end{pmatrix}, \quad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{pmatrix}, \quad \Sigma = egin{pmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Define $A = (I_r, O)$, then $Ay = y_1$. Hence, y_1 is distributed as $N_r(\mu_1, \Sigma_{11})$. \Box

Corollary 2.1 If y is $N_p(\mu, \Sigma)$, then any individual variable y_i in y is distributed as $N(\mu_i, \sigma_{ii}^2)$.

Theorem 2.3 If $v = \begin{pmatrix} y \\ x \end{pmatrix}$ is $N_p(\mu, \Sigma)$, then y and x are independent if and only if $\Sigma y x = O$.

PROOF: (i) If y and x are independent, $\Sigma y x = O$. (ii) If $\Sigma_{yx} = O$, then $\Sigma = \begin{pmatrix} \Sigma_{yy} & O \\ O & \Sigma_{xx} \end{pmatrix}$.

The exponent of the moment-generating function becomes

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta' eta &+ rac{1}{2}eta' \Sigma_{yy}eta_y &+ rac{1}{2}eta'_x \Sigma_{xx}eta_x &= & M_y(eta) M_x(eta). \end{aligned}$$

Hence, \boldsymbol{y} and \boldsymbol{x} are independent if $\Sigma \boldsymbol{y} \boldsymbol{x} = \boldsymbol{O}$. \Box

Corollary 2.2 If y is $N_p(\mu, \Sigma)$, then any two individual variables y_i and y_j are independent if $\sigma_{ij} = 0$.

Corollary 2.3 If y is $N_p(\mu, \Sigma)$ and if $cov(Ay, By) = A\Sigma B = O$, then Ay and By are independent.

Theorem 2.4 If y and x are jointly multivariate normal with $\Sigma_{yx} \neq O$, then the conditional distribution of y given x, f(y|x), is multivariate normal with mean vector and covariance matrix,

$$E(\boldsymbol{y}|\boldsymbol{x}) = \boldsymbol{\mu}_{y} + \Sigma_{yx} \Sigma_{xx}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_{x}),$$

$$cov(\boldsymbol{y}|\boldsymbol{x}) = \Sigma_{yy} - \Sigma_{yx}\Sigma_{xx}^{-1}\Sigma_{xy}.$$

PROOF: See Rencher and Schaalje (2008, pp.95).

Corollary 2.4 If $oldsymbol{v}=(y,oldsymbol{x}')'$ with

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_y \\ \mu \boldsymbol{x} \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_y^2 & \boldsymbol{\sigma}'_{yx} \\ \boldsymbol{\sigma}_{yx} & \Sigma_{xx} \end{pmatrix},$$

then $y|m{x}$ is normal with

$$E(y|bx) = \mu_y + \boldsymbol{\sigma}'_{yx} \Sigma_{xx}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_x),$$
$$var(y|\boldsymbol{x}) = \sigma_y^2 - \boldsymbol{\sigma}'_{yx} \Sigma_{xx}^{-1} \boldsymbol{\sigma}_{yx}.$$

Since Σ_{xx}^{-1} is positive definite, the corollary implies that

 $var(y|\boldsymbol{x}) \leq var(y).$

3 Partial Correlation

Let \boldsymbol{v} be $N_{p+q}(\boldsymbol{\mu}, \Sigma)$ and let \boldsymbol{v} , $\boldsymbol{\mu}$ and Σ be partitioned as follows.

$$oldsymbol{v} = egin{pmatrix} oldsymbol{y} \ oldsymbol{x} \end{pmatrix}, \hspace{1em} oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_y \ oldsymbol{\mu}_x \end{pmatrix}, \hspace{1em} \Sigma = egin{pmatrix} \Sigma_{yy} & \Sigma_{yx} \ \Sigma_{xy} & \Sigma_{xx} \end{pmatrix}.$$

The covariance of y_i and y_j in the conditional distribution of \boldsymbol{y} given \boldsymbol{x} will be denoted by $\sigma_{ij \cdot rs \ldots q}$, where y_i and y_j are two of the variables in \boldsymbol{y} and y_r, y_s, \ldots, y_q are all variables in \boldsymbol{x} . Thus $\sigma_{ij \cdot rs \ldots q}$ is the (ij)th element of $cov(\boldsymbol{y}|\boldsymbol{x}) = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$. The **partial correlation coefficient** $\rho_{ij \cdot rs \ldots q}$ is defined to be the correlation between y_i and y_j in the conditional distribution of \boldsymbol{y} given \boldsymbol{x} , that is,

$$o_{ij \cdot rs \dots q} = \frac{\sigma_{ij \cdot rs \dots q}}{\sqrt{\sigma_{ii \cdot rs \dots q} \sigma_{jj \cdot rs \dots q}}}$$

The matrix form is $oldsymbol{P}_{y\cdot x}=(
ho_{ij\cdot rs\ldots q})$, where

$$\boldsymbol{P}_{y\cdot x} = \boldsymbol{D}_{y\cdot x}^{-1} \Sigma_{y\cdot x} \boldsymbol{D}_{y\cdot x}^{-1},$$

where $\Sigma_{y \cdot x} = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$ and $D_{y \cdot x} = [diag(\Sigma_{y \cdot x})]^{1/2}$.

Unless \boldsymbol{y} and \boldsymbol{x} are independent ($\Sigma_{yx} = \boldsymbol{O}$), the partial correlation $\rho_{ij \cdot rs \dots q}$ is different from the usual correlation $\rho_{ij} = \sigma_{ij} / \sqrt{\sigma_{ii}\sigma_{jj}}$.