
Ch3. Multivariate Normal Distribution

1 Multivariate normal distributions

Definition 1.1 A random vector x = (x1, · · · , xp)
′ is said to have a p-variate normal

distribution if its probability density function can be written as

f(x) =
1

(2π)p/2|Σ|1/2 exp{−1

2
(x− µ)′Σ−1(x− µ)}, (1)

where µ = (µ1, · · · , µp)
′ and Σ > 0. We will denote a p-variate normal by x ∼

Np(µ,Σ).

Theorem 1.1 If y is distributed as Np(µ,Σ), its moment-generating function is given

by

My(t) = E(et
′y) = et

′µ+ 1

2
t′Σt. (2)



Two important properties of moment-generating functions:

1. If two random vectors have the same moment-generating function, if and only

if they have the same density. This property is called the uniqueness of the

moment-generating function.

2. Two random vectors are independent if and only if their joint moment-generating

function factors into the product of their two separate moment-generating func-

tions; that is, if y′ = (y′

1,y
′

2) and t′ = (t′1, t
′

2). then y1 and y2 are

independent if and only if

My(t) = My
1
(t1)My

2
(t2).



2 Properties of the Multivariate normal distri-

bution

Theorem 2.1 Let the p× 1 random vector y be Np(µ,Σ), let a be any p× 1 vector

of constants, and let A be any k × p matrix of constants with rank k ≤ p. Then

(i) z = a′y is N(a′µ,a′Σa).

(ii) z = Ay is Nk(Aµ,AΣA′).

PROOF: (i) The moment-generating function for z = a′y is given by

Mz(t) = E(eta
′y) = E(e(ta)′y)

= e(ta)′µ+(ta)′Σ(ta)/2 by(2)

= e(a
′µ)t+(a′Σa)t2/2.

Comparing with the moment-generating function of univariate normal, it is clear that

z = a′y is univariate normal with mean a′µ and variance a′Σa.



(ii) The moment-generating function of Ay is

Mz(t) = et
′

(Aµ)+t′(AΣA′

)t/2.

Sine A is a row-full-rank matrix, AΣA′
is positive definite. Hence, Ay is distributed

as the k-variate normal Nk(Aµ,AΣA′). �

Theorem 2.2 If y is Np(µ,Σ), then any r×1 subvector of y has an r-variate normal

distribution with the same means, variance, and covariances as in the original p-variate

normal distribution.

PROOF: Without loss of generality, let y be partitioned as y′ = (y′

1,y
′

2), where y1

is the r × 1 subvector of interest. Let µ and Σ be partitioned accordingly:

y =

(

y1

y2

)

, µ =

(

µ1

µ2

)

, Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

Define A = (Ir,O), then Ay = y1. Hence, y1 is distributed as Nr(µ1,Σ11). �

Corollary 2.1 If y is Np(µ,Σ), then any individual variable yi in y is distributed as

N(µi, σ
2
ii).



Theorem 2.3 If v =

(

y

x

)

is Np(µ,Σ), then y and x are independent if and only if

Σyx = O.

PROOF: (i) If y and x are independent, Σyx = O.

(ii) If Σyx = O, then

Σ =

(

Σyy O

O Σxx

)

.

The exponent of the moment-generating function becomes

t′µ+
1

2
t′Σt = t′yµy + t′xµx +

1

2
t′yΣyyty +

1

2
t′xΣxxtx

= My(t)Mx(t).

Hence, y and x are independent if Σyx = O. �

Corollary 2.2 If y is Np(µ,Σ), then any two individual variables yi and yj are inde-

pendent if σij = 0.



Corollary 2.3 If y is Np(µ,Σ) and if cov(Ay,By) = AΣB = O, then Ay and

By are independent.

Theorem 2.4 If y and x are jointly multivariate normal with Σyx 6= O, then the

conditional distribution of y given x, f(y|x), is multivariate normal with mean vector

and covariance matrix,

E(y|x) = µy +ΣyxΣ
−1
xx (x− µx),

cov(y|x) = Σyy − ΣyxΣ
−1
xxΣxy.

PROOF: See Rencher and Schaalje (2008, pp.95). �



Corollary 2.4 If v = (y,x′)′ with

µ =

(

µy

µx

)

, Σ =

(

σ2
y σ′

yx

σyx Σxx

)

,

then y|x is normal with

E(y|bx) = µy + σ′

yxΣ
−1
xx (x− µx),

var(y|x) = σ2
y − σ′

yxΣ
−1
xxσyx.

Since Σ−1
xx is positive definite, the corollary implies that

var(y|x) ≤ var(y).



3 Partial Correlation

Let v be Np+q(µ,Σ) and let v, µ and Σ be partitioned as follows.

v =

(

y

x

)

, µ =

(

µy

µx

)

, Σ =

(

Σyy Σyx

Σxy Σxx

)

.

The covariance of yi and yj in the conditional distribution of y given x will be de-

noted by σij·rs...q , where yi and yj are two of the variables in y and yr, ys, . . . , yq

are all variables in x. Thus σij·rs...q is the (ij)th element of cov(y|x) = Σyy −
ΣyxΣ

−1
xxΣxy . The partial correlation coefficient ρij·rs...q is defined to be the cor-

relation between yi and yj in the conditional distribution of y given x, that is,

ρij·rs...q =
σij·rs...q√

σii·rs...qσjj·rs...q
.

The matrix form is P y·x = (ρij·rs...q), where

P y·x = D−1
y·xΣy·xD

−1
y·x,

where Σy·x = Σyy − ΣyxΣ
−1
xxΣxy and Dy·x = [diag(Σy·x)]

1/2.



Unless y and x are independent (Σyx = O), the partial correlation ρij·rs...q is

different from the usual correlation ρij = σij/
√
σiiσjj .


