
Ch2. Random Vectors and Matrices

1 Definition

Definition 1.1 A random vector or random matrix is a vector or matrix whose ele-

ments are random variables.

In formally, a random variable is defined as a variable whose value depends on the

outcome of a chance experiment. (Formally, a random variable is a function defined for

each element of a sample space.)

In terms of experimental structure, we have two kinds of random vectors:

1. A vector containing a measurement on each of n different individuals or exper-

imental units. When the same variable is observed on each of n units selected

at random, the n random variables y1, y2, · · · , yn in the vector are typically

uncorrelated and have the same variance.



2. A vector consisting of p different measurements on one individual or experi-

mental unit. The p random variables thus obtained are typically correlated and

have different variables.

2 Means, Variances, Covariances, and Corre-

lations (univariate)

Let f(y) denote the density of the random variable y, the mean or expected value of y

is defined as

µ = E(y) =

∫

∞

−∞

yf(y)dy.

In general, for a function u(y), we have

E[u(y)] =

∫

∞

−∞

u(y)f(y)dy.

A variance of a random variable y is defined as

σ2 = var(y) = E(y − µ)2.



A square root of the variance is called the standard deviation,

σ =
√

var(y) =
√

E(y − µ)2.

For any two variables yi and yj , the covariance is

σij = cov(yi, yj) = E[(yi − µi)(yj − µj)].

To standardize σij , we divide it by (the product of) the standard deviations of yi and yj

to obtain the correlation

ρij = corr(yi, yj) =
σij

σiσj

.

The random variable yi and yj are said to be independent if their joint density

factors into the product of their marginal densities:

f(yi, yj) = fi(yi)fj(yj),

where the marginal density fi(yi) is defined as

fi(yi) =

∫

∞

−∞

f(yi, yj)dyj .



The independence implies the following two properties:

1. E(yiyj) = E(yi)E(yj) if yi and yj are independent.

2. σij = cov(yi, yj) = 0 if yi and yj are independent.

Note that the converse of the second property is not true in general; that is, σij = 0

does not imply independence. It is only true in the case that yi and yj have a bivariate

normal distribution.



3 Mean Vectors and Covariance Matrices for

Random Vectors

3.1 Mean vector

E(y) = E
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= µ,

where E(yi) = µi.

For the mean vectors, we have

E(x+ y) = E(x) + E(y).

By analogy with E(y), we define the expected value of a random matrix Z as the



matrix of expected values:

E(Z) = E
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3.2 Covariance Matrix

E[(y − µ)(y − µ)′] =













σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
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.
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= Σ,

where σii = var(yi) and σij = cov(yi, yj).



3.3 Generalized Variance

A measure of overall variability in the population of y’s can be defined as the determi-

nant of Σ:

Generalized variance = |Σ|.

If |Σ| is small, the y’s are concentrated closer to µ than of |Σ| is large. A small value of

|Σ| may also indicate that the variables y1, y2, · · · , yp in y are highly intercorrelated,

in which case the y’s tend to occupy a subspace of the p dimensions.

3.4 Standardized Distance

To obtain a useful measure of distance between y and µ, we need to take into account

the variance and covariance of the yi’s in y. The standardized distance is defined as

Standardized distance = (y − µ)′Σ−1(y − µ).

This distance is often called a Mahalanobis distance.



3.5 Correlation Matrices

The correlation matrix is defined as

P ρ = (ρij) =













1 ρ12 · · · ρ1p

ρ21 1 · · · ρ2p
.
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.

.

.

.
.
.
.

ρp1 ρp2 · · · 1













,

where ρij = σij/[σiσj ]. If we define

Dσ = diag(σ1, σ2, · · · , σp),

we have

P ρ = D−1

σ ΣD−1

σ ,

and

Σ = DσP σDσ.



4 Linear Functions of Random Vectors

4.1 Means

Theorem 4.1 If a is a p× 1 vector of constants and y is a p× 1 random vector with

mean vector µ, then the mean of z = a′y is given by

µz = E(a′y) = a′E(y) = a′µ.

Theorem 4.2 Suppose y is a random vector, X is a random matrix, a and b are

vectors of constants, and A and B are matrices of constants. Then, assuming the ma-

trices and the vectors in each product are conformable, we have the following expected

values:

(a) E(Ay) = AE(y).

(b) E(a′Xb) = a′E(X)b,

(c) E(AXB) = AE(X)B.



4.2 Variances and Covariances

Theorem 4.3 If a is a p× 1 vector of constants and y is a p× 1 random vector with

covariance matrix Σ, then the variance of z = a′y is given by

σ2

z = var(a′y) = a′Σa.

Corollary 4.1 If a and b are p× 1 vectors of constants, then

cov(a′y, b′y) = a′Σb.

Theorem 4.4 Let z = Ay and w = By, where A us a k × p matrix of constants,

B is an m × p matrix of constants, and y is a p × 1 random vector with covariance

matrix Σ. Then

(a) cov(z) = cov(Ay) = AΣA′
,

(b) cov(z,w) = cov(Ay,By) = AΣB′
.


