Ch2. Random Vectors and Matrices

1 Definition

Definition 1.1 A random vector or random matrix is a vector or matrix whose ele-

ments are random variables.

In formally, a random variable is defined as a variable whose value depends on the
outcome of a chance experiment. (Formally, a random variable is a function defined for
each element of a sample space.)

In terms of experimental structure, we have two kinds of random vectors:

1. A vector containing a measurement on each of n different individuals or exper-
imental units. When the same variable is observed on each of n units selected
at random, the n random variables y1, y2, - - - , Y5, Iin the vector are typically

uncorrelated and have the same variance.



2. A vector consisting of p different measurements on one individual or experi-
mental unit. The p random variables thus obtained are typically correlated and

have different variables.

2 Means, Variances, Covariances, and Corre-

lations (univariate)

Let f(y) denote the density of the random variable y, the mean or expected value of y

is defined as

p=FE(y) = /OO yf(y)dy.

In general, for a function u(y), we have

Blu) = [ u)f )y

— 00

A variance of a random variable ¥ is defined as

0 = var(y) = E(y — p)*.



A square root of the variance is called the standard deviation,

= Vvar(y) = VE(y — p)*.

For any two variables y; and y;, the covariance is

Oij = cov (Y, yj) = E|(yi — Mz‘)(?/j - Mj)]-

To standardize o;;, we divide it by (the product of) the standard deviations of /; and y;
to obtain the correlation

Uz’j

Pij = corr(yz'ayj) — 0@'03'.

The random variable y; and ¥y, are said to be independent if their joint density

factors into the product of their marginal densities:

fWisyi) = fi(yi) £ (y5),

where the marginal density f;(y;) is defined as

fi(yz‘):/_ [y, y5)dy;.



The independence implies the following two properties:
1. E(viy;) = E(yi)E(y;) if y; and y; are independent.
2. 0;; = cov(y;,y;) = 0if y; and y; are independent.

Note that the converse of the second property is not true in general; that is, o;; = 0
does not imply independence. It is only true in the case that y; and y; have a bivariate

normal distribution.



3 Mean Vectors and Covariance Matrices for

Random Vectors

3.1 Mean vector

E(y)=F

where E(y;) = ;.

For the mean vectors, we have

(1)

)

(1)

2

o)

E(x+y)=E(x)+ E(y).

= I,

By analogy with F/(y), we define the expected value of a random matrix Z as the



matrix of expected values:

/211 Z12 v le\ (E(Zu) E(z12) - E(Z1p>\
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3.2 Covariance Matrix

(011 o1zt O1p)
, 021 022 **+ O9p
Elly-—w)y-w)]=| . . =2
\Upl Op2 " Upp)

where 0;; = var(y;) and 0;; = cov(yi, y;)-



3.3 Generalized Variance

A measure of overall variability in the population of y’s can be defined as the determi-
nant of X_:

Generalized wvariance = |X|.

If || is small, the y’s are concentrated closer to p than of || is large. A small value of
32| may also indicate that the variables y1, yo, - - - , Yp In Yy are highly intercorrelated,

in which case the y’s tend to occupy a subspace of the p dimensions.

3.4 Standardized Distance

To obtain a useful measure of distance between ¢y and p, we need to take into account

the variance and covariance of the y;’s in y. The standardized distance is defined as
Standardized distance = (y — p)'S ' (y — p).

This distance is often called a Mahalanobis distance.



3.5 Correlation Matrices

The correlation matrix is defined as

( 1 pig - plp\
p21 1L - poy
P, = (Pij) — . .

\ort P 1)
where p;; = 0;;/|0i0;]. If we define
D, = diag(o1,02,- -+ ,0p),

we have

P,=D.'vSD,",

and
> =D,P,D,.



4 Linear Functions of Random Vectors

4.1 Means

Theorem 4.1 Ifa isap X 1 vector of constants andy is ap X 1 random vector with

mean vector i, then the mean of z = a’y is given by
p. = E(a'y) = d'E(y) = a'p.

Theorem 4.2 Suppose y is a random vector, X is a random matrix, a and b are
vectors of constants, and A and B are matrices of constants. Then, assuming the ma-
trices and the vectors in each product are conformable, we have the following expected

values:
(a) E(Ay) = AE(y).
(b) E(a’Xb)=a E(X)b,
(c) F(AXB)=AFE(X)B.



4.2 Variances and Covariances

Theorem 4.3 Ifa isap X 1 vector of constants andy is ap X 1 random vector with

covariance matrix 3., then the variance of z = a'y is given by

2

o =var(a'y) = a'Xa.

Corollary 4.1 Ifa and b are p x 1 vectors of constants, then
cov(a'y,b'y) = a’3b.

Theorem 4.4 Letz = Ay andw = By, where A us a k X p matrix of constants,
B is an m X p matrix of constants, and y is a p X 1 random vector with covariance

matrix >.. Then

(a) cov(z) = cov(Ay) = AT A,
(b) cov(z,w) = cov(Ay, By) = AXB'.



