
Chapter 1. Matrix Algebra

1 Matrix and vector notation

Definition 1.1 A matrix is a rectangular or square array of numbers of variables.

We use uppercase boldface letters, and in this course all elements of matrices will

be real numbers or variables representing real numbers. The notation A = (aij)

represents a matrix by means of a typical element, for example

A =

(

a11 a12

a21 a22

)

.



Definition 1.2 A vector is a matrix with a single column.

We use lowercase boldface letters for column vectors, row vectors are expressed as

transposes of column vectors, for example,

x′ = (x1, x2, x3).



2 Rank

Definition 2.1 A set of vectore a1,a2, · · · ,an is said to be linearly dependent if

scalars c1, c2, · · · , cn (not all zero) can be found such that

c1a1 + c2a2 + · · · cnan = 0.

If no coefficients c1, c2, · · · , cn (not all zero) can be found that satisfy the above equa-

tion, the set of vectors a1,a2, · · · ,an is said to be linearly independent.

Definition 2.2 The rank of a matrix is the number of linearly independent rows (and

columns) in the matrix.



Theorem 2.1(i) If the matricesA andB are conformable, then rank(AB) ≤ rank(A)

and rank(AB) ≤ rank(B).

(ii) If B and C are nonsingular, rank(AB) = rank(CA) = rank(A).

(iii) For any matrix A, rank(A′A) = rank(AA′) = rank(A′) = rank(A).

PROOF: (i) All the columns of AB are linear combinations of the columns of A. Con-

sequently, the number of linearly independent columns of AB is less than or equal

to the number of linearly independent columns of A, and rank(AB) ≤ rank(A).

Similarly, all the rwos of AB are linear combinations of the rwos of B, and therefore

rank(AB) ≤ rank(B).

(ii) If B is nonsingular, then there exists a matrix B−1
such that BB−1 = I .

Then by part (i) we have

rank(A) = rank(ABB−1) ≤ rank(AB) ≤ rank(A).



(iii) If Ax = 0, A′Ax = 0. Hence, rank(A) ≥ rank(A′A). Con-

versely, if A′Ax = 0, x′A′Ax = (Ax)′(Ax) = 0, thus, Ax = 0. Hence,

rank(A′A) ≥ rank(A). So we have rank(A′A) = rank(A). �



3 Orthogonal Matrices

Definition 3.1 A square matrix A: n × n is said to be orthogonal if AA′ = I =

A′A. For orthogonal matrices, we have

(1) A′ = A−1
.

(2) |A| = ±1.

(3) Let δij = 1 for i = j and 0 for i 6= j denote the Kronecker symbol. The column

vectors ai and the row vectors a(i) of A satisfy the conditions

a′

iaj = δij , a(i)a
′

(j) = δij .

(4) AB is orthogonal if A and B are orthogonal.



Theorem 3.1 If the matrix Q : p× p is orthogonal and if A is any p× p matrix, then

(i) |Q| = +1 or −1.

(ii) |Q′AQ| = |A|.

(iii) −1 ≤ cij ≤ 1, where cij is any element of Q.



4 Eigenvalues and Eigenvectors

Definition 4.1 If A : p× p is a square matrix, then

q(λ) = |A− λI |

is a pth order polynomial in λ. The p roots λ1, · · · , λp of the characteristic equation

q(λ) = |A− λI | = 0 are called eigenvalues or characteristic roots of A.

The eigenvalues possibly may be complex numbers. Since |A − λiI | = 0,

A − λiI is a singular matrix. Hence, there exists a nonzero vector γi 6= 0 satisfying

(A− λiI)γi = 0, that is,

Aγi = λiγi,

γi is called the (right) eigenvectors of A for the eigenvalue λi. If λi is complex, then

γi may have complex components. An eigenvector γ with real components is called

standardized if γ′γ = 1.



Theorem 4.1 If A is any n× n matrix with eigenvalues λ1, · · · , λn, then

(i) |A| =∏n
i=1 λi.

(ii) trace(A) =
∑n

i=1 λi.

Theorem 4.2 Let A be an n× n symmetric matrix.

(i) The eigenvalues are all real.

(ii) The eigenvectors x1,x2, · · · ,xn of A are mutually orthogonal; that is, x′

ixj = 0

for i 6= j.

Theorem 4.3 If λ is an eigenvalue of the square matrix A with corresponding eigen-

vector x, then for certain functions g(A), an eigenvalue is given by g(λ) and x is the

corresponding eigenvector of g(A) as well as A.



Example 4.1

(A3 + 4A2 − 3A+ 5I)x = A3x+ 4A2x− 3Ax+ 5x

= (λ3 + 4λ2 − 3λ+ 5)x.

Thus λ3 + 4λ2 − 3λ+ 5 is an eigenvalue of A3 + 4A2 − 3A+ 5I , and x is the

corresponding eigenvector.



5 Decomposition of Matrices

Theorem 5.1 (Spectral decomposition theorem) If A is an n × n symmetric matrix

with eigenvalues λ1, λ2, · · · , λn and normalized eigenvectors x1,x2, · · · ,xn, then

A can be expressed as

A = CDC ′ =
n
∑

i=1

λixix
′

i,

whereD = diag(λ1, · · · , λn) andC is the orthogonal matrixC = (x1,x2, · · · ,xn).

PROOF: See Rencher and Schaalje (2008, pp.51-52) �



Theorem 5.2 (Singular Value Decomposition) Suppose that A is an n × p matrix of

rank r. Then there exists two orthogonal matrices P n×n and Qp×p such that

A = P

(

Ar O

O O

)

Q′,

where Ar = diag(λ1, · · · , λr), λi > 0, i = 1, 2, · · · , r, and λ2
1, · · · , λ2

r are

non-zero eigenvalues of A′A.



6 Positive Definite and Positive Semidefinite

Matrices

Definition 6.1 If a symmetric matrix A has the property y′Ay > 0 for all possible y

except y = 0, A is said to be a positive definite matrix and it is denoted by A > 0.

Similarly, if y′Ay ≥ 0 for all y except y = 0, A is said to be positive semidefinite

and it is denoted by A ≥ 0.

Theorem 6.1 Let A be n× n with eigenvalues λ1, λ2, · · · , λn.

(i) If A is positive definite, then λi > 0 for i = 1, 2, · · · , n.

(ii) If A is positive semidefinite, then λi ≥ 0 for i = 1, 2, · · · , n. The number of nonzero

eigenvalues is the rank of A.



If a matrix A is positive definite, we can find a square root matrix A1/2
,

A1/2 = CD1/2C ′,

where D1/2 = diag(
√
λ1, · · · ,

√
λn). The matrix A1/2

is symmetric and has the

property

A1/2A1/2 = (A1/2)2 = A.



7 Idempotent Matrices

Definition 7.1 A square matrix A is called idempotent if it satisfies

A2 = A.

An idempotent matrix A is called an orthogonal projector if A = A′
. Otherwise, A is

called an oblique projector.



Theorem 7.1 Let A be an n × n idempotent matrix with rank(A) = r ≤ n. Then

we have:

(i) The eigenvalues of A are 1 or 0.

(ii) tr(A) = rank(A) = r.

(iii) If A is of full rank n, then A = In.

(iv) If A and B are idempotent and if AB = BA, then AB is also idempotent.

(v) If A is idempotent and P is orthogonal, then PAP ′
is also idempotent.

(vi) If A is idempotent, then I −A is idempotent and

A(I −A) = (I −A)A = 0.



8 Generalized inverse

Definition 8.1 Let A be an n × p matrix. Then a p × n matrix A−
is said to be a

generalized inverse of A if

AA−A = A.

holds.

Note when A is nonsingular, A−
is unique and A− = A−1

. A generalized

inverse is also called a conditional inverse. If A is n× p, any generalized inverse A−

is p× n.

Every matrix, whether square or rectangular, has a generalized inverse. For exam-

ple,

x =











1

2

3

4











.



Then, x−

1 = (1, 0, 0, 0), x−

2 = (0, 1/2, 0, 0), x−

3 = (0, 0, 1/3, 0), and x−

4 =

(0, 0, 0, 1/4) are all generalized inverses of x.

Example 8.1

A =







2 2 3

1 0 1

3 2 4






.

One A−
is:

A− =







0 1 0
1
2 −1 0

0 0 0






.



Theorem 8.1 Suppose A is n× p of rank r and that A is partitioned as

A =

(

A11 A12

A21 A22

)

,

where A11 is r × r of rank r. Then a generalized inverse of A is given by

A− =

(

A−1
11 O

O O

)

,

where the three O matrices are of appropriate sizes so that A−
is p× n.

PROOF: By multiplication of partitioned matrices, we obtain

AA−A =

(

I O

A21A
−1
11 O

)

A =

(

A11 A12

A21 A21A
−1
11 A12

)

.



To show A21A
−1
11 A12 = A22, we multiply A by

B =

(

I O

−A21A
−1
11 I

)

and we have

BA =

(

A11 A12

O A22 −A21A
−1
11 A12

)

Since B is nonsingular, rank(BA) = rank(A) = r. Since A11 is nonsingular,

there exists a matrix D such that

(

A12

A22 −A21A
−1
11 A12

)

=

(

A11

O

)

D.

Hence A22 −A21A
−1
11 A12 = O and the theorem is proved. �



Corollary 8.1 Suppose A is n× p of rank r and that A is partitioned as

A =

(

A11 A12

A21 A22

)

,

where A22 is r × r of rank r. Then a generalized inverse of A is given by

A− =

(

O O

O A−1
22

)

,

where the three O matrices are of appropriate sizes so that A−
is p× n.



The nonsingular submatrix need not be in the A11 or A12 positions, as in the

above theorem and corollary. In this case, we can do row and column operations on

A to get a r × r leading minor. That is, there exists nonsingular matrix Pm×m and

Qn×n such that

RAC = B =

(

B11 B12

B21 B22

)

,

where B11 is r × r with rank(B11) = r. It can be shown that

G = C

(

B−1
11 O

O O

)

R

is a generalized inverse of A.



More general, we can find many generalized inverse of A by using the theorem of

singular value decomposition, there exists nonsingular matrices P and Q such that

PAQ =

(

Ir O

O O

)

.

Then

G = Q

(

Ir G12

G21 G22

)

P

is a generalized inverse ofA, whereG12,G21 andG22 are arbitrary with conformable

sizes.



To see this:

A = P−1

(

Ir O

O O

)

Q−1

AGA = P−1

(

Ir O

O O

)

Q−1Q

(

Ir G12

G21 G22

)

PP−1

(

Ir O

O O

)

Q−1

= P−1

(

Ir O

O O

)(

Ir G12

G21 G22

)(

Ir O

O O

)

Q−1

= P−1

(

Ir O

O O

)

Q−1

= A



For the above result, we can see that

(1) There exist infinitely many generalized inverse for any singular matrix.

(2) rank(A−) ≥ rank(A) (we can chooseA−
with rank(A−) = rank(A)).

(3) If A is symmetric, A−
needs not be symmetric.



In practice, we do not need to carry out row and column operations to get a r × r

nonsingular leading minor in order to find a generalized inverse. A general algorithm

for finding a generalized inverse A−
for any n × p matrix A of rank r (Searle 1982,

P.218) is as follows.

1. Find any nonsingular r× r submatrix C . It is not necessary that the elements

of C occupy adjacent rows and columns in A.

2. Find C−1
and (C−1)′.

3. Replace the elements of C by the elements of (C−1)′.

4. Replace all other elements in A by zeros.

5. Transpose the resulting matrix.



Some properties of generalized inverses are given in the following theorem.

Lemma 8.1 (i) For any matrix A we have A′A = O if and only if A = O.

(ii) Let X 6= O be an m×n matrix and A and B be n×n matrices, AX ′X =

BX ′X if and only if AX ′ = BX ′
.

PROOF: (i) If A = O, we have A′A = O. Conversely, if A′A = O, let A =

(a1, · · · ,an) be the columnwise partition, then

A′A = (a′

iaj) = O,

so that ai = 0 and A = O.

(ii) If AX ′ = BX ′
, we have AX ′X = BX ′X . Conversely, if AX ′X =

BX ′X , we have

(A−B)X ′X(A′ −B′) = O.

So (A−B)X ′ = O, i.e., AX ′ = BX ′
. �



Theorem 8.2 Let A be n× p of rank r, let A−
be any generalized inverse of A, and

let (A′A)− be any generalized inverse of A′A. Then:

(i) rank(A−A)=rank(AA−
)=rank(A)=r.

(ii) (A−)′ is a generalized inverse of A′
; that is, (A′)− = (A−)′.

(iii) A = A(A′A)−A′A and A′ = A′A(A′A)−A′
.

(iv) (A′A)−A′
is a generalized inverse of A; that is, A− = (A′A)−A′

.

(v) A(A′A)−A′
is symmetric, has rank=r, and is invariant to the choice of (A′A)−;

that is, A(A′A)−A′
remains the same, no matter what value of (A′A)− is used.



PROOF: (i) The result follows from

rank(A) = rank(AA−A) ≤ rank(A−A) ≤ rank(A).

(ii) SinceAA−A = A, andA′(A−)′A′ = A′
, hence, (A−)′ is a generalized

inverse of A′
.

(iii) Let B = A(A′A)−A′A−A, we can verify that

B′B = (A′A(A′A)−A′ −A′)(A(A′A)−A′A−A) = O

by the definition of a generalized inverse.

(iv) It follows from (iii).



(v) Since (A′A)−A′
is a generalized inverse of A, and (i) rank(AA−) = r,

so rank(A(A′A)−A′) = r.

Let G1 and G2 be any two generalized inverse of A′A, from (iii) we have

AG1A
′A = AG2A

′A = A.

By using the lemma, we have AG1A
′ = AG2A

′
, which means that A(A′A)−A′

is invariant to the choice of (A′A)−. �



Definition 8.2 (Moore-Penrose inverse) A matrix A+
satisfying the following condi-

tions is called the Moore-Penrose inverse of A:

(i) AA+A = A,

(ii) A+AA+ = A+
,

(iii) (A+A)′ = A+A,

(iv) (AA+)′ = AA+
.

A+
is unique.



PROOF: Proof for the uniqueness of Moore-Penrose inverse.

Suppose that X and Y are both A+
. From the definition of Moore-Penrose

inverse, we have

X = XAX = X(AX)′ = XX ′A′ = XX ′(AY A)′ = X(AX)′(AY )′

= (XAX)AY = XAY = (XA)′Y AY = A′X ′A′Y ′Y

= A′Y ′Y = (Y A)′Y = Y AY = Y .

This completes the proof. �

A+
is a special case of A−

. It possesses all of the properties that A−
has. In

addition, it is unique and possesses the following properties.



Theorem 8.3 Let A be an m× n-matrix. Then

(i) A regular, then A+ = A−1
.

(ii) (A+)+ = A.

(iii) (A+)′ = (A′)+.

(iv) rank(A) = rank(A+) = rank(A+A) = rank(AA+).

(v) If rank(A) = m, A+ = A′(AA′)−1 and AA+ = Im.

(vi) If rank(A) = n, A+ = (A′A)−1A′
and A+A = In.

(vii) If P is an m×m orthogonal matrix, Q is an n× n orthogonal matrix, (PAQ)+ =

Q−1A+P−1
.

(viii) (A′A)+ = A+(A′)+ and (AA′)+ = (A′)+A+
.

(ix) A+ = (A′A)+A′ = A′(AA′)+.



Theorem 8.4 Suppose that A can be expressed as in the singular value decomposi-

tion theorem, then

A+ = Q

(

A−1
r O

O O

)

P ′.

For any matrix A, A+
is unique.

PROOF: It can be easily verified that the A+
defined in the theorem satisfies all the

equations given in the definition of Moore-Penrose inverse. �



Theorem 8.5 Let A be an n × n symmetric matrix, a ∈ R(A), b ∈ R(A), and

assume 1 + b′A+a 6= 0. Then

(A+ ab′)+ = A+ − A+ab′A+

1 + b′A+a
.



9 Generalized Inverse and Systems of Equa-

tions

Theorem 9.1 The system of equations Ax = c has a solution (consistent) if and only

if for any generalized inverse A−
of A

AA−c = c.

PROOF: (sufficiency) If the system is consistent, then AA−c = c. Since AA−A =

A, we have

AA−Ax = Ax.

Substituting Ax = c on both sides, we have

AA−c = c.

(necessity) If AA−c = c, the system is consistent. Suppose AA−c = c, a

solution exists, namely x = A−c. �



Theorem 9.2 If the system of equations Ax = c is consistent, then all possible

solutions can be obtained in the following two ways.

(a) Use all possible values of A−
in x = A−c.

(b) Use a specific A−
in x = A−c+ (I −A−A)z, and use all possible values of the

arbitrary vector z. In particularly, we write x = A+c+(I −A+A)z. Among all the

solutions, x0 = A+c has the smallest length.



PROOF: Part (a): see Searle (1982, p.238). Part II of (b):

‖x‖2 = [A+c+ (I −A+A)z]′[A+c+ (I −A+A)z]

= ‖x‖2 + z′(I −A+A)2z + 2c′(A+)′(I −A+A)z

= ‖x‖2 + z′(I −A+A)2z

≥ ‖x‖2.

This is because (A+)′(I −A+A) = O, and z′(I −A+A)2z ≥ 0 for arbitrary

z. The results follows. �



10 Derivatives of Linear Functions and Quadratic

Forms

Letu = f(x) be a function of the variablex1, x2, · · · , xp inx = (x1, x2, · · · , xp)
′,

and let ∂u/∂x1, · · · , ∂u/∂xp be the partial derivatives. We define ∂u/∂x as

∂u

∂x
=













∂u
∂x1

∂u
∂x2

.

.

.

∂u
∂xp













.

Theorem 10.1 Let u = a′x = x′a, where a′ = (a1, a2, · · · , ap) is a vector of

constants. Then
∂u

∂x
=

∂(a′x)

∂x
=

∂(x′a)

∂x
= a.



Theorem 10.2 Let u = x′Ax, where A is a symmetric matrix of constants. Then

∂u

∂x
=

∂(x′Ax)

∂x
= 2Ax.


