
Ch14. Linear Mixed Models

1 The Linear Mixed Model

Consider the model

y = Xβ +Z1a1 +Z2a2 + · · ·+Zmam + ϵ, (1)

where X is a known n × p matrix, the Zi’s are known n × ri full-rank matrices, β is a

p × 1 vector of unknown parameters, ϵ is an n × 1 unknown random vector such that

E(ϵ) = 0 and Cov(ϵ) = σ2In, and the a′
is are ri × 1 unknown random vectors such

that E(ai) = 0 and Cov(ai) = σ2
i Iri . Furthermore, Cov(ai,aj) = O for i ̸= j, where

O is ri × rj, and Cov(ai, ϵ) = O for all i, where O is ri × n. Then E(y) = Xβ and

cov(y) = Σ =
∑m

i=1 σ
2
iZiZ

′
i + σ2In.

To simplify the notation, we let σ2
0 = σ2 and Z0 = In so that

Σ =
m∑
i=0

σ2
iZiZ

′
i.

2 Examples

Example 2.1 (Randomized blocks) An experiment involving three treatments was carried

out by randomly assigning the treatments to experimental units within each of four blocks

of size 3. We could use the model

yij = µ+ τi + aj + ϵij,

where i = 1, 2, 3, j = 1, 2, . . . , 4, aj is N(0, σ2
1), ϵij is N(0, σ2), and cov(aj, ϵij) = 0.

Example 2.2 (Subsampling) Five batches were produced using each of two processes.

Two samples were obtained and measured from each of the batches. Constraining the

process effects to sum to zero, the model is

yijk = µ+ τi + aij + ϵijk,

where i = 1, 2, j = 1, 2, . . . , 5, k = 1, 2; τ2 = −τ1; aij is N(0, σ2
1); ϵijk is N(0, σ2); and

cov(aij, ϵijk = 0.
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Example 2.3 (One-way random effects) A chemical plant produced a large number of

batches. Each batch was packaged into a large number of containers. We chose three

batches at random, and randomly selected four containers from each batch from which to

measure y. The model is

yij = µ+ ai + ϵij,

where i = 1, 2, 3, j = 1, 2, 3, 4, aj is N(0, σ2
1), ϵij is N(0, σ2), and cov(aj, ϵij) = 0.

3 Estimation of Variance Components

We consider the restricted (or residual) maximum likelihood (REML) approach for esti-

mation of the variance components of the model (1). The REML approach works based

on the following three theorems.

Theorem 3.1 Consider the model (1). A full-rank matrix K with maximal number of

rows such that KX = O, is an (n− r)× n matrix. Furthermore, K must be of the form

K = C(I − X(X ′X)−X ′) where C specifies a full-rank transformation of the rows of

I −X(X ′X)−X ′ := I −H.

Theorem 3.2 Consider the model (1). Let K be specified as in Theorem 3.1. Then

Ky is Nn−r(0,K(
m∑
i=0

σ2
iZiZ

′
i)K

′).

Theorem 3.3 Consider the model (1). Let K be specified as in Theorem 3.1. Then a

set of m+ 1 estimating equations for σ2
0, . . . , σ

2
m is given by

tr[K ′(KΣK ′)−1KZiZ
′
i] = y′K ′(KΣK ′)−1KZiZ

′
iK

′(KΣK ′)−1Ky,

for i = 0, 1, . . . ,m.

Example 3.1 One-way random effects: Details will be shown in class.

4 Inference for β

4.1 An estimator for β

Estimates of the variance components can be inserted into Σ to obtain

Σ̂ =
m∑
i=0

σ̂2
iZiZ

′
i.
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A sensible estimator for β can then be obtained as

β̂ = (X ′Σ̂
−1
X)−X ′Σ̂

−1
y.

This estimator, sometimes called the estimated generalized least-squares (EGLS) estima-

tor, is a nonlinear function of y (since Σ̂ is a nonlinear function of y). Even if X is

full-rank, β̂ is not in general a (minimum variance) unbiased estimator (MVUE) or nor-

mally distributed. However, it is always asymptotically MVUE and normally distributed.

Similarly, a sensible approximate covariance matrix for β̂ is given by

Cov(β̂) = (X ′Σ̂
−1
X)−X ′Σ̂

−1
X(X ′Σ̂

−1
X)−.

Of course, if X is full-rank, the above expression simplifies to

Cov(β̂) = (X ′Σ̂
−1
X)−1.

4.2 Large-sample Inference for Estimable Functions of β

For a known full-rank g × p matrix L whose rows define estimable functions of β,

Lβ̂ is approximately Ng(Lβ,L(X ′Σ̂
−1
X)−L′),

and therefore,

(Lβ̂ −Lβ)′[L(X ′Σ̂
−1
X)−L′]−1(Lβ̂ −Lβ) is approximately χ2(g).

An approximate general linear hypothesis test for the testable hypothesis H0 : Lβ = t is

carried out using the test statistic

G = (Lβ̂ − t)′[L(X ′Σ̂
−1
X)−L′]−1(Lβ̂ − t).

If H0 is true, G is approximately distributed as χ2(g). If H0 is false, G is approximately

distributed as χ2(g, λ), where λ = (Lβ − t)′[L(X ′Σ̂
−1
X)−L′]−1(Lβ − t). The test is

carried out by rejecting H0 if G ≥ χ2
α,g.

Similarly, an approximate 100(1−α)% confidence interval for a single estimable func-

tion c′β is given by

c′β̂ ± zα/2

√
c′(X ′Σ̂

−1
X)−c.
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4.3 Small-sample Inference for Estimable Functions of β

The inferences described in the previous section are not satisfactory for small samples.

Exact small-sample inferences based on the t distribution and F distribution are available

in rare cases, but are not generally available for mixed models. However, much work has

been done on approximate inference for small sample mixed models.

First we discuss the exact small-sample inferences that are available in rare cases,

usually involving balanced designs, nonnegative solutions to the REML equations, and

certain estimable functions. In order for this to occur, [L(X ′Σ̂
−1
X)−L′]−1 must be of the

form (d/w)Q, where w is a central chi-square random variable with d degrees of freedom,

and independently (Lβ̂−t)′Q(Lβ̂−t) must be distributed as a (possibly noncentral) chi-

square random variable with g degrees of freedom. Under these conditions, the statistic

(Lβ̂ − t)′Q(Lβ̂ − t)d

gw
=

(Lβ̂ − t)′[L(X ′Σ̂
−1
X)−L′]−1(Lβ̂ − t)

g
,

is F -distributed.

Example 4.1 Balanced Split-Plot Study.

In most cases, approximate small-sample methods must be used. The exact distribu-

tion of

t =
c′β̂√

c′(X ′Σ̂
−1
X)−c

,

is unknown in general. However, a satisfactory small-sample test of H0 : c′β = 0 is

available by assuming that t approximately follows a t-distribution with unknown degrees

of freedom d, where d can be approximated by

d ≈ 2[c′(X ′Σ̂
−1
X)−c]2

V ar[c′(X ′Σ̂
−1
X)−c]

.

Further V ar[c′(X ′Σ̂
−1
X)−c] can be approximated using the multivariate delta method.

5 Inference for the ai

Without loss of generality, we can rewrite (1) in the matrix form as

y = Xβ +Za+ ϵ,
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where Z = (Z1,Z2, . . . ,Zm), a = (a′
1,a

′
2, . . . ,a

′
m)

′, ϵ ∼ N(0, σ2I), a ∼ N(0,G), where

G = diag{σ2
1In1 , σ

2
2In2 , . . . , σ

2
mInm},

and Cov(ϵ,a) = 0. Then the problem can be expressed as that of estimating a or a linear

function Ua. To differentiate this problem from inference for an estimatable function of

β, the current problem is often referred to as prediction of a random effect.

The general problem is that of predicting a for a given value of the observation vector

y. Note that a and y are jointly multivariate normal, and that

Cov(a,y) = Cov(a,Xβ +Za+ ϵ) = GZ ′.

and

E(a|y) = E(a) + Cov(a,y)[Cov(y)]−1[y − E(y)] = GZ ′Σ−1(y −Xβ).

More generally, we have

E(Ua|y) = UGZ ′Σ−1(y −Xβ),

and

cov[E(Ua|y)] = UGZ ′Σ−1ZGU ′.

Replacing β by β̂ and replacing G and Σ by Ĝ and Σ̂ (based on the REML estimates of

the variance components), we obtain

̂E(Ua|y) = UĜZ ′Σ̂
−1
(y −Xβ̂),

and

cov[ ̂E(Ua|y)] ≈ Cov(UGZ ′Σ−1(y −Xβ̂))

≈ UĜZ ′[Σ̂
−1

− Σ̂
−1
X(X ′Σ̂

−1
X)−X ′Σ̂

−1
]ZĜU ′.

Example 5.1 One-way Random Effects.

6 Residual Diagnostics

Theorem 6.1 Consider the model in which y is Nn(Xβ,Σ), where Σ = σ2I+
∑m

i=1 σ
2
iZiZ

′
i.

Assume that Σ is known, and let β̂ = (X ′ΣX)−X ′Σ−1y. Then

cov[Σ−1/2(y −Xβ̂)] = I −H∗,

where H∗ = Σ−1/2X(X ′Σ−1X)−X ′Σ−1/2.

This the vector Σ̂
−1/2

(y−Xβ̂) can be examined for constant variance, normality and

approximate independence to verify the assumptions regarding ϵ.

A common approach to verifying the assumptions regarding ϵ is to compute and

examine y −Xβ̂ −Zâ by noting Cov(y −Xβ −Za) = σ2I.
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