Ch12. Analysis of Variance: Unbalanced Data

1 One-Way Model

The non-full-rank and cell means versions of the one-way unbalanced model are

$$
\begin{equation*}
y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}:=\mu_{i}+\epsilon_{i j}, \tag{1}
\end{equation*}
$$

for $i=1,2, \ldots, k$ and $j=1,2, \ldots, n_{i}$. For making inferences, we assume $\epsilon_{i j}$'s are independently distributed as $N\left(0, \sigma^{2}\right)$.

1.1 Estimation and Testing

To estimate the μ_{i} 's, we begin by writing the $N=\sum_{i} n_{i}$ observations for the above model by

$$
\boldsymbol{y}=\boldsymbol{W} \boldsymbol{\mu}+\boldsymbol{\epsilon}
$$

for which the normal equation is given by

$$
\boldsymbol{W}^{T} \boldsymbol{W} \hat{\boldsymbol{\mu}}=\boldsymbol{W}^{T} \boldsymbol{y}
$$

The resulting parameter estimator is given by

$$
\hat{\boldsymbol{\mu}}=\left(\boldsymbol{W}^{T} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{T} \boldsymbol{y}=\overline{\boldsymbol{y}}=\left(\bar{y}_{1 .}, \bar{y}_{2 .}, \ldots, \bar{y}_{k}\right)^{T},
$$

where $\bar{y}_{i} .=\sum_{j=1}^{n_{i}} y_{i j} / n_{i}$.
To test $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}$, we compare the full model in (1) with the reduced model $y_{i j}=\mu+\epsilon_{i j}^{*}$. The difference $S S\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)-S S(\mu)$ is denoted by

$$
S S B=\hat{\boldsymbol{\mu}}^{\prime} \boldsymbol{W}^{\prime} \boldsymbol{y}-N \bar{y}_{. .}^{2}=\sum_{i=1}^{k} \frac{y_{i .}^{2}}{n_{i}}-\frac{y_{.}^{2}}{N}=\sum_{i=1}^{k} n_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2},
$$

for "between" sum of squares, and it has $k-1$ degrees of freedom.
Then the F-statistic for testing $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}$ is given by

$$
F=\frac{S S B /(k-1)}{S S E /(N-k)} .
$$

If H_{0} is true, F is distributed as $F(k-1, N-k)$.

1.2 Contrasts

A contrast is defined as $\delta=c_{1} \mu_{1}+c_{2} \mu_{2}+\cdots+c_{k} \mu_{k}$, where $\sum_{i=1}^{k} c_{i}=0$. The contrast can be expressed as $\delta=\boldsymbol{c}^{\prime} \boldsymbol{\mu}$. Then the F-statistic for testing $H_{0}: \delta=0$ is given by

$$
F=\frac{\left(\boldsymbol{c}^{\prime} \hat{\boldsymbol{\mu}}\right)^{\prime}\left[\boldsymbol{c}^{\prime}\left(\boldsymbol{W}^{\prime} \boldsymbol{W}\right)^{-1} \boldsymbol{c}\right]^{-1} \boldsymbol{c}^{\prime} \hat{\boldsymbol{\mu}}}{s^{2}}=\frac{\left(\sum_{i=1}^{k} c_{i} \bar{y}_{i} .\right)^{2} /\left(\sum_{i=1}^{k} c_{i}^{2} / n_{i}\right)}{s^{2}},
$$

where $s^{2}=S S E /(N-k)$.
If $H_{0}: \delta=0$ is true, then F is distributed as $F(1, N-k)$.

2 Two-Way Model

The unbalanced two-way model is given by

$$
\begin{align*}
y_{i j k} & =\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\epsilon_{i j k} \tag{2}\\
& =\mu_{i j}+\epsilon_{i j k},
\end{align*}
$$

where $i=1,2, \ldots, a, j=1,2, \ldots, b$, and $k=1,2, \ldots, n_{i j}$. The $\epsilon_{i j k}$'s are assumed to be independently distributed as $N\left(0, \sigma^{2}\right)$. In this section, we consider the case in which all $n_{i j}>0$.

2.1 Unconstrained Model

We first consider the unconstrained model in which the $\mu_{i j}$'s are unrestricted. To illustrate the cell mean model (2), we use $a=2$ and $b=3$ with cell counts given by

$$
n_{11}=2, \quad n_{12}=1, \quad n_{13}=2, \quad n_{21}=1, \quad n_{22}=3, \quad n_{23}=2,
$$

for which $N=11$. The cell model can be written as

$$
\begin{aligned}
& y_{111}=\mu_{11}+\epsilon_{111}, \\
& y_{112}=\mu_{11}+\epsilon_{112}, \\
& \vdots \\
& y_{232}=\mu_{23}+\epsilon_{232} .
\end{aligned}
$$

In matrix form, we have

$$
\boldsymbol{y}=\boldsymbol{W} \boldsymbol{\mu}+\boldsymbol{\epsilon}
$$

where $\boldsymbol{\mu}=\left(\mu_{11}, \mu_{12}, \ldots, \mu_{23}\right)^{T}$, and

$$
\boldsymbol{W}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Since \boldsymbol{W} is of full rank, we have

$$
\hat{\boldsymbol{\mu}}=\left(\boldsymbol{W}^{\prime} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{\prime} \boldsymbol{y}=\bar{y}
$$

by noting that $\boldsymbol{W}^{\prime} \boldsymbol{W}=\operatorname{diag}\left\{n_{11}, n_{12}, \ldots, n_{23}\right\}$.
For general a, b and N, an unbiased estimator of σ^{2} is given by

$$
s^{2}=\frac{S S E}{\nu_{E}}=\frac{(\boldsymbol{y}-\boldsymbol{W} \hat{\boldsymbol{\mu}})^{\prime}(\boldsymbol{y}-\boldsymbol{W} \hat{\boldsymbol{\mu}})}{N-a b}
$$

Alternative forms of SSE are given by

$$
S S E=\boldsymbol{y}^{\prime}\left(I-\boldsymbol{W}\left(\boldsymbol{W}^{\prime} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{\prime}\right) \boldsymbol{y}
$$

and

$$
S S E=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{i j}}\left(y_{i j k}-\bar{y}_{i j}\right)^{2} .
$$

Further, we have

$$
s^{2}=\frac{\sum_{i=1}^{a} \sum_{j=1}^{b}\left(n_{i j}-1\right) s_{i j}^{2}}{N-a b}
$$

We now construct tests for the general linear hypotheses $H_{0}: \boldsymbol{a}^{\prime} \boldsymbol{\mu}=0$ and $H_{0}: \boldsymbol{C} \boldsymbol{\mu}=$ 0 . The hypothesis $H_{0}: \boldsymbol{a}^{\prime} \boldsymbol{\mu}=0$ can be tested using an F-statistic:

$$
F=\frac{\left(\boldsymbol{a}^{\prime} \hat{\boldsymbol{\mu}}\right)^{\prime}\left[\boldsymbol{a}^{\prime}\left(\boldsymbol{W}^{\prime} \boldsymbol{W}\right)^{-1} \boldsymbol{a}\right]^{-1}\left(\boldsymbol{a}^{\prime} \hat{\boldsymbol{\mu}}\right)}{s^{2}}:=\frac{S S A}{S S E / \nu_{E}}
$$

which is distributed as $F(1, N-a b)$ if H_{0} is true.
A test statistic for $H_{0}: \boldsymbol{C} \boldsymbol{\mu}=0$ is given by

$$
F=\operatorname{frac}\left(\boldsymbol{C}^{\prime} \hat{\boldsymbol{\mu}}\right)^{\prime}\left[\boldsymbol{C}^{\prime}\left(\boldsymbol{W}^{\prime} \boldsymbol{W}\right)^{-1} \boldsymbol{C}\right]^{-1}\left(\boldsymbol{C}^{\prime} \hat{\boldsymbol{\mu}}\right) / \nu_{A B} S S E / \nu_{E}
$$

which is distributed as $F\left(\nu_{A B}, \nu_{E}\right)$.
Note that different choice of \boldsymbol{C} can represent the main effects and interaction effects of the two-way model. For example, the interaction hypothesis can be written as

$$
H_{0}: \mu_{11}-\mu_{21}=\mu_{12}-\mu_{22}=\mu_{13}-\mu_{23}
$$

by noting

$$
\begin{gathered}
\mu_{11}-\mu_{12}=\mu+\alpha_{1}+\beta_{1}+\gamma_{11}-\left(\mu+\alpha_{1}+\beta_{1}+\gamma_{12}\right)=\beta_{1}-\beta_{2}+\gamma_{11}-\gamma_{12}, \\
\mu_{21}-\mu_{22}=\beta_{1}-\beta_{2}+\gamma_{21}-\gamma_{22},
\end{gathered}
$$

and

$$
\mu_{31}-\mu_{32}=\beta_{1}-\beta_{2}+\gamma_{31}-\gamma_{32} .
$$

Therefore equating them leads to testing

$$
\gamma_{11}-\gamma_{12}-\gamma_{21}+\gamma_{22}=0, \quad \gamma_{21}-\gamma_{22}-\gamma_{31}+\gamma_{32}=0 .
$$

The hypothesis $H_{0}: \mu_{11}-\mu_{21}=\mu_{12}-\mu_{22}=\mu_{13}-\mu_{23}$ can be expressed as $H_{0}: \boldsymbol{C} \mu=0$, where

$$
\boldsymbol{C}=\left(\begin{array}{cccccc}
2 & -1 & -1 & -2 & 1 & 1 \\
0 & 1 & -1 & 0 & -1 & 1
\end{array}\right),
$$

based on the formulation:

$$
2\left(\mu_{11}-\mu_{21}\right)-\left(\mu_{12}-\mu_{22}\right)-\left(\mu_{13}-\mu_{23}\right)=0,
$$

and

$$
\left(\mu_{12}-\mu_{22}\right)-\left(\mu_{13}-\mu_{23}\right)=0 .
$$

2.2 Constrained Model

For constriants $\boldsymbol{G} \mu=0$, the model can be expressed as

$$
\boldsymbol{y}=\boldsymbol{W} \boldsymbol{\mu}+\boldsymbol{\epsilon} \quad \text { subject to } \boldsymbol{G} \boldsymbol{\mu}=0 .
$$

One way to solve the model is to use the Langrange multiplier method. Alternatively, we can reparameterize the model using the matrix

$$
A=\binom{\boldsymbol{K}}{\boldsymbol{G}},
$$

such that \boldsymbol{A} is nonsingular under assumption that \boldsymbol{G} is of full-row-rank.
Therefore,

$$
\begin{aligned}
\boldsymbol{y} & =\boldsymbol{W} \boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{\epsilon}=\boldsymbol{Z}\binom{\boldsymbol{K} \boldsymbol{\mu}}{\boldsymbol{G} \boldsymbol{\mu}}+\boldsymbol{\epsilon}, \\
& :=\left(\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}\right)\binom{\boldsymbol{K} \boldsymbol{\mu}}{\boldsymbol{G} \boldsymbol{\mu}}+\boldsymbol{\epsilon} \\
& :=\boldsymbol{Z}_{1} \boldsymbol{\delta}_{1}+\boldsymbol{Z}_{2} \boldsymbol{\delta}_{2}+\boldsymbol{\epsilon} .
\end{aligned}
$$

Based on this reparameterization, the full-reduced-model approach can be applied to test $H_{0}: \boldsymbol{\delta}_{2}=\boldsymbol{G} \boldsymbol{\mu}=0$.

3 Two-Way Model with Empty Cells

Consider the unbalanced two-way model in (2), but allow $n_{i j}$ to be equal to 0 for one or more isolated cells. In some case, \boldsymbol{W} is non-full-rank in that it has m columns equal to 0 . In this case, the techniques of non-full-rank model we studied before can be applied for the analysis.

Consider an rearrangement of the matrix \boldsymbol{W} such that

$$
\boldsymbol{W}=\left(\boldsymbol{W}_{1}, \mathbf{0}\right)
$$

that is, we assume that columns of \boldsymbol{W} has been arranged with the columns of 0 occurring last. correspondingly, we have $\boldsymbol{\mu}=\left(\boldsymbol{\mu}_{o}^{T}, \boldsymbol{\mu}_{e}\right)^{T}$.

For such a model, we consider the reparameterization:

$$
A=\binom{K}{G} .
$$

Then the following theorem holds:

Theorem 3.1 Consider the constrained empty cells model with m empty cells. Partition A as

$$
\boldsymbol{A}=\binom{\boldsymbol{K}}{\boldsymbol{G}}=\left(\begin{array}{ll}
\boldsymbol{K}_{1} & \boldsymbol{K}_{2} \\
\boldsymbol{G}_{1} & \boldsymbol{G}_{2}
\end{array}\right)
$$

conformal with the partitioned vector $\boldsymbol{\mu}=\left(\boldsymbol{\mu}_{o}^{T}, \boldsymbol{\mu}_{e}^{T}\right)^{T}$. The elements of $\boldsymbol{\mu}$ are estimable (equivalently \boldsymbol{Z}_{1} is full-rank) if and only if $\operatorname{rank}\left(\boldsymbol{G}_{2}\right)=m$.

