
Ch11. Analysis of Variance Models

1 Non-Full-Rank Models

y = Xβ + ϵ,

where E(ϵ) = 0 and var(ϵ) = σ2I, but X does not have a full column rank, i.e.,

rank(X) = k < p ≤ n and X ′X is singular. In this model, the p parameters in β

are not unique.

Example 1.1 One-way Model:

y11

y12

y13

y21

y22

y23


=



1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1



µ

τ1

τ2

+



ϵ11

ϵ12

ϵ13

ϵ21

ϵ22

ϵ23


, (1)

where the rank of X is 2 since the first column is the sum of the second and third columns.

Therefore, in (1), µ, τ1 and τ2 are not unique and cannot be estimated.

There are various ways, each with its own advantages and disadvantages, to remedy

this lack of uniqueness of the parameters in the overparameterized model.

2 Estimation

2.1 Estimability of β

The least squares approach lead to solving the normal equations

X ′Xβ̂ = X ′y.

Theorem 2.1 If X is n × p of rank k < p ≤ n, the system of equations X ′Xβ̂ = X ′y

is consistent.

Proof: The system is consistent if and only if (AA−c = c)

X ′X(X ′X)−X ′y = X ′y.

Since X ′X(X ′X)−X ′ = X ′, the system is consistent. □
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Since the normal equations are consistent, one solution is β̂ = (X ′X)−X ′y. Some

general results are given below.

(1) β̂ is a linear function of y.

(2) E(β̂) = (X ′X)−X ′E(y) = (X ′X)−X ′Xβ, which depends on (X ′X)− and it is

biased.

3. β is not estimable. Suppose a linear function Ay estimates β,

β = E(Ay) = E(AXβ +Aϵ) = AXβ.

Since this must hold for all β, we must have AX = Ip. But rank(AX) ≤
rank(X) < p. Hence, AX ̸= Ip, and no such an A exists.

2.2 Estimable function of β

Definition 2.1 A linear function of parameters λ′β is said to be estimable if there exists

a linear combination of the observations with an expected value equal to λ′β, i.e., λ′β is

estimable if there exists a vector a such that E(a′y) = λ′β.

Theorem 2.2 In the model y = Xβ + ϵ, where E(y) = Xβ and X is n × p of rank

k < p ≤ n, the linear function λ′β is estimable if and only if any one of the following

conditions holds:

(i) λ′ is a linear combination of the row of X, i.e., there exists a vector a such that

a′X = λ′.

(ii) λ′ is a linear combination of the rows of X ′X or λ is a linear combination of the

columns of X ′X, i.e., there exists a vector r such that

r′X ′X = λ′ or X ′Xr = λ.

(iii) λ or λ′ is such that

X ′X(X ′X)−λ = λ or λ′(X ′X)−X ′X = λ′,

where (X ′X)− is any (symmetric) generalized inverse of X ′X.
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Proof: We only prove the “if” part. (i) If there exists a vector a such that λ′ = a′X,

then

E(a′y) = a′E(y) = a′Xβ = λ′β.

(ii) If there exists a solution to X ′Xr = λ, then by defining a = Xr, we have

E(a′y) = E(r′X ′y) = r′X ′E(y) = r′X ′Xβ = λ′β.

(iii) If X ′X(X ′X)−λ = λ, then (X ′X)λ is a solution to X ′Xr = λ in part (ii).

Conversely, if λ′β is estimable, then X ′Xr = λ has a solution vector, which can be

found as r = (X ′X)−λ. Substitution into X ′Xr = λ gives that X ′X(X ′X)−λ = λ. □

Thus we can examine linear combinations of the rows of X or of X ′X to see what

functions of the parameters are estimable.

Example 2.1 Consider

X =


1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

 , β =


µ

α1

α2

β1

β2

 .

For example, row(3)-row(1), we have λ′ = (0,−1, 1, 0, 0), thus λ′β = −α1 + α2 is

estimable.

We take linear combinations a′X of the rows of X to obtain three linearly independent

rows. Subtracting the first rows from each succeeding rows in X, then subtracting the

second and third rows from the fourth row of the matrix yields
1 1 0 1 0

0 0 0 −1 1

0 −1 1 0 0

0 0 0 0 0

 .

Thus we have three linearly independent estimable functions

λ′
1β = µ+ α1 + β1, λ′

2β = β2 − β1, λ′
3β = α2 − α1.
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3 Estimators

3.1 Estimators of λ′β

From theorem 2.2 (i) and (ii) we have the estimators a′y and r′X ′y for λ′β, where a′

and r′ satisfy λ′ = a′X and λ′ = r′X ′X, respectively. A third estimator of λ′β is λ′β̂,

where β̂ is a solution of X ′Xβ̂ = X ′y.

Theorem 3.1 Let λ′β be an estimable function of β in the model y = Xβ + ϵ, where

E(y) = Xβ and X is n×p of rank k < p ≤ n. Let β̂ be any solution to the normal equa-

tions X ′Xβ̂ = X ′y, and let r be any solution to X ′Xr = λ. Then the two estimators

λ′β̂ and r′X ′y have the following properties:

(i) E(λ′β̂) = E(r′X ′y) = λ′β.

(ii) λ′β̂ is equal to r′X ′y for any β̂ or any r.

(iii) λ′β̂ and r′X ′y are invariant to the choice of β̂ and r.

Proof: (i) Since

E(λ′β̂) = λ′E(β̂) = λ′(X ′X)−X ′Xβ.

By theorem 2.2 (iii), λ′(X ′X)−X ′X = λ′, therefore E(λ′β̂) becomes

E(λ′β̂) = λ′β.

By theorem 2.2 (ii),

E(r′X ′y) = r′X ′E(y) = r′X ′Xβ = λ′β.

(ii) By theorem 2.2(ii), if λ′β is estimable, λ′ = r′X ′X for some r. Multiplying the

normal equations X ′Xβ̂ = X ′y by r′ gives

r′X ′Xβ̂ = r′X ′y.

Since r′X ′X = λ′, we have

λ′β̂ = r′X ′y.

(iii) To show that r′X ′y is invariant to the choice of r, let r1 and r2 be such that

X ′Xr1 = X ′Xr2 = λ. Then

r′
1X

′Xβ̂ = r′
1X

′y and r′
2X

′Xβ̂ = r′
2X

′y.

Since r′
1X

′X = r′
2X

′X, we have r′
1X

′y = r′
2X

′y. It is clear that each is equal to λ′β̂. □
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Example 3.1 Example 12.3.1 (Rencher and Schaalje (2008), pp.310-311).

Theorem 3.2 Let λ′β be an estimable function in the model y = Xβ + ϵ, where X is

n × p of rank k < p ≤ n and cov(y) = σ2I. Let r be any solution to X ′Xr = λ and

let β̂ be any solution to X ′Xβ̂ = X ′y. Then the variance of λ′β̂ or of r′X ′y has the

following properties:

(i) var(r′X ′y) = σ2r′X ′Xr = σ2r′λ.

(ii) var(λ′β̂) = σ2λ′(X ′X)−λ.

(iii) var(λ′β̂) is unique, that is, invariant to the choice of r or of (X ′X)−.

Proof: (i)

var(r′X ′y) = r′X ′cov(y)Xy = σ2r′X ′Xr = σ2r′λ.

(ii)

var(λ′β̂) = λ′cov(β̂)λ = σ2λ′(X ′X)−X ′X(X ′X)−λ.

Since λ′(X ′X)−X ′X = λ′, therefore (ii) is proved.

(iii) Since

λ′(X ′X)−λ = r′(X ′X)(X ′X)−(X ′X)r = r′X ′Xr = r′λ,

it is only need to show that λ′(X ′X)−λ is invariant to the choice of (X ′X)−. Let G1

and G2 be two generalized inverse of X ′X. Then

XG1X
′ = XG2X

′.

Multiplying both sides by a such that a′X = λ′, we obtain

a′XG1X
′a = a′XG2X

′a

or

λ′
1G1λ2 = λ′

1G1λ2.

□

Theorem 3.3 If λ′β is an estimable function in the model y = Xβ + ϵ, where X is

n× p of rank k < p ≤ n, then the estimators λ′β̂ and r′X ′y are BLUE.
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Proof: Let a linear estimator of λ′β be denoted by a′y, where without loss of generality

a′y = r′bX ′y + c′y, that is, a′ = r′X ′ + c′, where r′ is a solution to λ′ = r′X ′X. For

unbiasedness we must have

λ′β = E(a′y) = a′Xβ = r′X ′Xβ + c′Xβ = (r′X ′X + c′X)β.

Thus must hold for all β, and we therefore have

λ′ = r′X ′X + c′X.

Since λ′ = r′X ′X, it follows that c′X = 0′.

var(a′y) = a′cov(y)a = σ2a′a

= σ2(r′X ′ + c′)(rX + c)

= σ2(r′X ′Xr + r′X ′c+ c′Xr + c′c)

= σ2(r′X ′Xr + c′c).

Therefore, to minimize var(a′y), we have c = 0 and that r′Xy is BLUE. □

3.2 Estimator of σ2

An estimator of σ2 is

s2 =
SSE

n− k
, (2)

where SSE = (y −Xβ̂)′(y −Xβ̂), β̂ is any solution to the normal equation X ′Xβ̂ =

X ′y, and k = rank(X).

Theorem 3.4 For s2 defined in equation (2) for the non-full-rank model y = Xβ + ϵ

with E(y) = Xβ and cov(y) = σ2I, we have the following properties:

(i) E(s2) = σ2.

(ii) s2 is invariant to the choice of β̂ or to the choice of generalized inverse (X ′X)−.

Proof: (i) Since SSE = y′(I −X(X ′X)−X ′)y, we have

E(SSE) = tr{[I −X(X ′X)−X ′](σ2I)}+ β′X ′[I −X(X ′X)−X ′]Xβ

= tr{[I −X(X ′X)−X ′](σ2I)}

= σ2{tr(I)− tr[I −X(X ′X)−X ′]}

= (n− k)σ2,

where k = rank(X ′X) = rank(X).

(ii)Since X(X ′X)−X ′ is invariant to the choice of (X ′X)−. □
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3.3 Normal Model

For the non-full-rank model y = Xβ + ϵ, we now assume that

y ∼ Nn(Xβ, σ2I) or ϵ ∼ Nn(0, σ
2I).

With the normality assumption we can obtain maximum likelihood estimators.

Theorem 3.5 If y is Nn(Xβ, σ2I), where X is n × p of rank k < p ≤ n, then the

maximum likelihood estimators for β and σ2 are

β̂ = (X ′X)−X ′y,

σ̂2 =
1

n
(y −Xβ̂)′(y −Xβ̂).

Proof: Exercise. □

Theorem 3.6 If y is Nn(Xβ, σ2I), where X is n × p of rank k < p ≤ n, then the

maximum likelihood estimators β̂ and s2 (corrected for bias) have the following properties:

(i) β̂ is Np((X
′X)−X ′Xβ, σ2(X ′X)−X ′X(X ′X)−).

(ii) (n− k)s2/σ2 is χ2(n− k).

(iii) β̂ and s2 are independent.

Proof: Exercise (the proof is the same with the full-rank case). □

4 Testing Hypothesis

It can be shown that unless a hypothesis can be expressed in terms of estimable functions,

it cannot be tested (see Searle 1971, pp.193-196). This leads to the following definition:

Definition 4.1 A hypothesis is said to be testable if it can be expressed in terms of

estimable functions.

Typically, a testable hypothesis can be written as

H0 : Cβ = t,

where C = (c′(1), c
′
(2), · · · , c′(m))

′, c(i)β = ti, i = 1, 2, · · · ,m. We assume that

(1) C has a full row rank, tank(C) = m.
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(2) c′(i)β are estimable for all i.

Theorem 4.1 If y is Nn(Xβ, σ2I), where X is n× p of rank k < p ≤ n, if C is m× p

of rank m ≤ k such that Cβ is a set of m linearly independent estimable functions, and

if β̂ = (X ′X)−X ′y, then

(i) C(X ′X)−C ′ is nonsingular and invariant to (X ′X)−.

(ii) Cβ̂ is Nm(Cβ, σ2C(X ′X)−C ′).

(iii) SSH/σ2 = (Cβ̂)′[C(X ′X)−C ′]−1(Cβ̂)/σ2 is χ2(m,λ),

where λ = (Cβ)′[C(X ′X)−C ′]−1(Cβ)/2σ2.

(iv) SSE/σ2 = y′[I −X(X ′X)−X ′]y/σ2 is χ2(n− k).

(v) SSH and SSE are independent.

Proof: Since

Cβ =


c(1)β
...

c(m)β


is a set of m linearly independent estimable functions, then by theorem 2.2 (iii) we have

c(i)(X
′X)−X ′X = c(i) for i = 1, 2, · · · ,m. Hence,

C(X ′X)−X ′X = C. (3)

Since rank(AB) ≤ rank(A), we have

rank(C) ≤ rank(C(X ′X)−X ′) ≤ rank(C).

That is, rank(C(X ′X)−X ′) = m. Since rank(A) = rank(AA′), we have

rank(C) = rank(C(X ′X)−X ′)

= rank(C(X ′X)−X ′X(X ′X)−C ′]

= rank(C(X ′X)−C ′)

(4)

In the last equality, we use the equality C(X ′X)−X ′X = C. Thus, C(X ′X)−C ′ is

nonsingular. The invariance of C(X ′X)−C ′ follows from the invariance of X(X ′X)−X ′.

(ii)

E(Cβ̂) = CE(β̂) = C(X ′X)−X ′Xβ.
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By (3), we have E(Cβ̂) = Cβ.

cov(Cβ̂) = Ccov(β̂C ′ = σ2C(X ′X)−X ′X(X ′X)−C ′.

By (4), we have cov(Cβ̂) = σ2C(X ′X)−C ′.

Due to that Cβ̂ is a linear function of y, (ii) is proved.

(iii) By part (ii), cov(Cβ̂) = σ2C(X ′X)−C ′. Since

σ2[C(X ′X)−C ′]−1C(X ′X)−C ′/σ2 = I,

the result is followed.

(iv) Exercise. (v) Exercise. □

Theorem 4.2 Let y be Nn(Xβ, σ2I), where X is n × p of rank k < p ≤ n, and let C,

Cβ, and β̂ be defined as in theorem 4.1. Then if H0 : Cβ = 0 is true, the statistic

F =
SSH/m

SSE/(n− k)

=
(Cβ̂)′[C(X ′X)−C ′]−1(Cβ̂)/m

SSE/(n− k)

is distributed as F (m,n− k).

Proof: Exercise. □

5 Reparameterization

In reparameterization, we transform the non-full-rank model y = Xβ + ϵ, where X is

n× p of rank k < p ≤ n, to the full-rank-model y = Zγ+ ϵ, where Z is n×n× k of rank

k and γ = Uβ is a set of k independent estimable functions of β. Thus, Zγ = Xβ, and

we write

Zγ = ZUβ = Xβ,

where X = ZU . Since UU ′ is nonsingular (rank(UU ′) = k), we have

ZUU ′ = XU ′,

and

Z = XU ′(UU ′)−1.
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Now Z is a full-column rank matrix (rank(Z) ≥ rank(X) = k), and the results for the

full-rank model can then be applied here. Hence, we have (the least square estimators)

γ̂ = (Z ′Z)−1Z ′y,

s2 =
1

n− k
(y −Zγ̂)′(y −Zγ̂) =

SSE

n− k
.

Since Zγ = Xβ,

Zγ̂ = Xβ̂,

and therefore

SSE = (y −Xβ̂)′(y −Xβ̂) = (y −Zγ̂)′(y −Zγ̂).

Also, for any estimable function λ′β, we have

λ′β = a′Xβ = a′Zγ,

hence,

λ̂′β̂ = a′Zγ̂.

i.e., the estimator of λ′β is invariant to the reparameterization.

Example 5.1 We illustrate the reparameterization technique for the model yij = µ+ τi+

ϵij, i = 1, 2, j = 1, 2. In matrix form, the model is

y = Xβ + ϵ =


1 1 0

1 1 0

1 0 1

1 0 1


µ

τ1

τ2

+


ϵ11

ϵ12

ϵ21

ϵ22

 .

Since X has rank 2, there exist two linearly independent estimable functions. We can

choose these in many ways, one of which is µ+ τ1 and µ+ tau2. Thus

γ =

(
γ1

γ2

)
=

(
µ+ τ1

µ+ τ2

)
=

(
1 1 0

1 0 1

)µ

τ1

τ2

 = Uβ.

U =


1 0

1 0

0 1

0 1

 .

It is easy to verify that Zγ = Xβ and ZU = X.
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6 Side Conditions

The technique of imposing side conditions provides (linear) constraints on a non-full-rank

model such that the parameters unique and individually estimable. Another use for side

conditions is to impose constraints on the estimates so as to simplify the normal equations.

Note that the side conditions must be nonestimable functions of β.

The matrix X is n× p of rank k < p. Hence the deficiency in the rank of X is p− k.

In order for all the parameters to be unique, we must define side conditions that make

up this deficiency in rank. Accordingly, we define side conditions Tβ = 0
¯
, where T is a

(p− k)× p matrix of rank p− k such that Tβ is a set of nonestimable functions.

Theorem 6.1 If y = Xβ + ϵ, where X is n × p of rank k < p ≤ n, and if T is a

(p − k) × p matrix of rank p − k such that Tβ is a set of nonestimable functions, then

there us a unique vector β̂ that satisfies both X ′Xβ̂ = X ′y and T β̂ = 0
¯
.

Proof: Combine the two equations, we have(
y

0
¯

)
=

(
X

T

)
β +

(
ϵ

0
¯

)
.

Thus,

(
X

T

)′(
X

T

)
is p× p of rank p (nonsingular), and we have

β̂ = [

(
X

T

)′(
X

T

)
]−1

(
X

T

)′(
y

b0

)
= (X ′X + T ′T )−1X ′y.

□

Example 6.1 Consider the model yij = µ + τi + ϵij, i = 1, 2, j = 1, 2. It can be shown

that the function τ1 + τ2 is not estimable. The side condition τ1 + τ2 = 0 can be expressed

as (0, 1, 1)β = 0, and X ′X + T ′T becomes

X ′X + T ′T =

4 2 2

2 2 0

2 0 2

+

0

1

1

(0 1 1
)
=

4 2 2

2 3 1

2 1 3

 .

Then

(X ′X + T ′T )−1 =
1

4

 2 −1 −1

−1 2 0

−1 0 2

 .
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With X ′y = (y.., y1., y2.), we obtain

β̂ = (X ′X + T ′T )−1X ′y

=

 ȳ..

ȳ1. − ȳ..

ȳ2. − ȳ..

 ,

since y1. + y2. = y.. and ȳi. = yi./2.

7 Full and Reduced Model Test

Suppose we are interested in testing H0 : β1 = · · · = βq in the non-full-rank model

y = Xβ + ϵ, where β is p × 1 and X is n × p of rank k < p ≤ n. If H0 is testable, we

can find a set of linearly independent estimable functions λ′
1β, · · · ,λ′

tβ such that H0 is

equivalent to

H0 : γ1 =


λ′

1β
...

λ′
tβ

 =


0
...

0

 .

It is also possible to find

γ2 =


λ′

t+1β
...

λ′
kβ


such that k functions λ′

1β, · · · ,λ′
kβ are linearly independent and estimable, where k =

rank(X). Let

γ =

(
γ1

γ2

)
.

We can now reparameterize from the non-full-rank model to the full rank model

y = Zγ + ϵ = Z1γ1 +Z2γ2 + ϵ,

where Z = (Z1,Z2) is partitioned to conform with the number of elements in γ1 and γ2.

Since y = Zγ + ϵ is a full-rank model, the hypothesis H0 : γ1 = 0
¯
can be tested as

in the full-rank model. The test is outlined in table 1. Note that the degrees of freedom,

t, for SS(γ1|γ2) is the number of linearly independent estimable functions required to

express H0.

Sine in the reparameterization model, we have Xβ̂ = Zγ̂, we have

β̂
′
X ′y = γ̂ ′Z ′y,
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Table 1: ANOVA for testing H0 : γ1 = 0
¯
in reparameterized balanced models

Source of Variation d.f. Sum of Squares F -Statistic

Due to γ1 adjusted for γ2 t SS(γ1|γ2) = γ̂ ′Z ′y − γ̂ ′
2Z

′
2y

SS(γ1|γ2)/t

SSE/(n−k)

Error n− k SSE = y′y − γ̂ ′Z ′y

Total n− 1 SST = y′y − nȳ2

Table 2: ANOVA for testing H0 : γ1 = 0
¯
in reparameterized balanced models

Source of Variation d.f. Sum of Squares F -Statistic

Due to β1 adjusted for β2 t SS(β1|β2) = β̂
′
X ′y − β̂

′
2X

′
2y

SS(β1|β2)/t

SSE/(n−k)

Error n− k SSE = y′y − β̂
′
X ′y

Total n− 1 SST = y′y − nȳ2

where β̂ is any solution to the normal equationX ′Xβ̂ = X ′y. Similarly, corresponding to

y = Z2γ
∗
2+ϵ∗, we have a reduced model y = X2β

∗
2+ϵ∗ obtained by setting β1 = · · · = βq.

Then

β̂
∗′

2 X
′
2y = γ̂∗′

2 Z
′
2y.

The test can then be expressed as in Table 2, in which β̂
′
X ′y is obtained from the

full model y = Xβ+ ϵ and β̂
′
2X

′
2y is obtained from the model y = X2β2+ ϵ, which has

been reduced by the hypothesis H0 : β1 = · · · = βq.

8 One Way analysis of Variance: Balanced Case

8.1 The one-way model

The one-way balanced model can be expressed as follows:

yij = µ+ αi + ϵij, i = 1, 2, · · · , k, j = 1, 2, · · · , n. (5)

If α1, · · · , αk represent the effects of k treatments, each of which is applied to n exper-

imental units, then yij is the response of the jth observation among the n units that

receive the ith treatment. The assumptions for the model are

(1) E(ϵij) = 0 for all i, j.

(2) var(ϵij) = σ2 for all i, j.
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(3) cov(ϵij, ϵrs) = 0 for all (i, j) ̸= (r, s).

We sometimes have the distribution assumption that

(4) ϵij is distributed as N(0, σ2).

In this model, we often use µi to denote the mean for the ith treatment, i.e., E(yij) =

µi, using assumption (1), we have µi = µ+ αi. We can thus write the model in the form

yij = µi + ϵij, i = 1, 2, · · · , k, j = 1, 2, · · · , n.

In this form of the model, the hypothesis H0 : µ1 = µ2 = · · · = µk is of interest.

8.2 Estimation of parameters

Extending (5) to a general k and n, the one-way model can be written in matrix form as


y1

y2
...

yk

 =


j j 0

¯
· · · 0

¯
j 0

¯
j · · · 0

¯...
...

...
...

j 0
¯

0
¯

· · · j





µ

α1

α2

...

αk


+


ϵ1

ϵ2
...

ϵk


or

y = Xβ + ϵ,

where j and 0
¯
are each of size n× 1, and yi and ϵi are defined as

yi =


yi1

yi2
...

yin

 , ϵi =


ϵi1

ϵi2
...

ϵin

 .

Thus, the normal equation X ′Xβ̂ = X ′y takes the form

kn n n · · · n

n n 0 · · · 0

n 0 n · · · 0
...

...
...

...

n 0 0 · · · n





µ̂

α̂1

α̂2

...

α̂k


=



y..

y1.

y2.
...

yk.


,

where y.. =
∑

ij yij and yi. =
∑

j yij.
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A generalized inverse of X ′X is given by

(X ′X)− =


0 0 · · · 0

0 1/n · · · 0
...

...
...

0 0 · · · 1/n

 . (6)

Then a solution to the normal equation is obtained as

β̂ = (X ′X)−X ′y =


0

ȳ1.
...

ȳk.

 . (7)

The estimators in (7) are different for different (X ′X)−, but they give the same estimates

of estimable functions, since λ′β̂ is invariant to the choice of β̂.

Using β̂ in (7), we can express SSE in the following form:

SSE = y′(I −X(X ′X)−X ′)y

= y′y − β̂
′
X ′y

=
k∑

i=1

n∑
j=1

y2ij −
k∑

i=1

ȳi.yi.

=
∑
ij

y2ij −
∑
i

y2i.
n
.

Thus, s2 (E(s2) = σ2) is given by

s2 =
1

k(n− 1)
[
∑
ij

y2ij −
∑
i

y2i.
n
].

8.3 Testing the hypothesis H0 : µ1 = µ2 = · · · = µk

Using the relationship µi = µ + αi, the hypothesis can be expressed as H0 : α1 = α2 =

· · · = αk, which is testable because it can be written in terms of k−1 linearly independent

estimable contrasts, for example, H0 : α1 − α2 = α1 − α3 = · · · = α1 − αk = 0.

For simplicity, we illustrate the testing procedure with k = 4. In this case, β =

(µ, α1, α2, α2, α4)
′ and the hypothesis is H0 : α1 = α2 = α3 = α4. Using three linearly

independent estimable contrasts, the hypothesis can be written in the form

H0 :

α1 − α2

α1 − α3

α1 − α4

 =

0

0

0

 ,
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which can be expressed as H0 : Cβ = 0
¯
, where

C =

0 1 −1 0 0

0 1 0 −1 0

0 1 0 0 −1

 . (8)

The matrix C in (8) is not unique, for example,

C2 =

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1


Using C in (8) and (X ′X)− in (6), we have

C(X ′X)−C ′ =
1

n

2 1 1

1 2 1

1 1 2

 . (9)

To find the inverse of (9), we write it in the form

C(X ′X)−C ′ =
1

n
{

1 0 0

0 1 0

0 0 1

+

1 1 1

1 1 1

1 1 1

} =
1

n
(I3 + j3j

′
3).

By the formula:

(B + cc′)−1 = B−1 − B−1cc′B−1

1 + c′B−1c
,

we have

[C(X ′X)−C ′]−1 = n(I3 −
I−1
3 j3j

′
3I

−1
3

1 + j ′3I
−1
3 j3

) = n(I3 −
1

4
J3), (10)

where J3 is 3× 3.

In addition, we have

C(X ′X)−X ′ =
1

n

j ′n −j ′n 0
¯
′ 0

¯
′

j ′n 0
¯
′ −j ′n 0

¯
′

j ′n 0
¯
′ 0

¯
′ −j ′n

 =
1

n
A, (11)

where j ′n and 0
¯
′ are 1× n.
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Using (10) and (11), we have

SSH = (Cβ̂)′[C(X ′X)−C ′]−1Cβ̂

= y′X(X ′X)−C ′[C(X ′X)−C ′]−1C(X ′X)−X ′y

= y′[
1

n
A′n(I3 −

1

4
J3)

1

n
A]y

= y′[
1

n
A′A− 1

4n
A′J3A]y

= y′[
1

4n


3Jn −Jn −Jn −Jn

−Jn 3Jn −Jn −Jn

−Jn −Jn 3Jn −Jn

−Jn −Jn −Jn 3Jn

]y′

= y′[
1

4n
B]y

Note that

1

4n
B =

1

n


4Jn O O O

O 4Jn O O

O O 4Jn O

O O O 4Jn

− 1

4n


Jn Jn Jn Jn

Jn Jn Jn Jn

Jn Jn Jn Jn

Jn Jn Jn Jn

 .

Hence, we have

SSH =
1

n

4∑
i=1

y′
iJnyi −

1

4n
y′J4ny

=
1

n

4∑
i=1

y′
ijnj

′
nyi −

1

4n
y′j4nj

′
4ny

=
1

n

4∑
i=1

y2i. −
1

4n
y2...

Example 8.1 (Ascorbic Acid) Three methods (A-C) of packaging frozen foods were com-

pared by Daniel (1974, p.196). The response variable was ascorbic acid. The data are

given in the table 8.1.

To test the hypothesis H0 : µ1 = µ2 = µ3, we calculate

y2..
kn

=
419.952

(3)(7)
= 8398.0001

1

7

3∑
i=1

y2i. =
1

7
[120.062 + 135.182 + 164.712] = 8545.3457

3∑
i=1

7∑
j=1

y2ij = 8600.3127
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Table 3: Ascorbic Acid (mg/100g) for three packaging methods

A B C

14.29 20.06 20.04

19.10 20.64 26.23

19.09 18.00 22.74

16.25 19.56 24.04

15.09 19.47 23.37

16.61 19.07 25.02

19.63 18.38 23.27

Totals (yi.) 120.06 135.18 164.71

Means (ȳi.) 17.15 19.31 23.53

Table 4: Analysis of Variance for the Ascorbic Acid Data

Source d.f. Sum of Squares Mean Square F

Method 2 147.3456 73.6728 24.1256

Error 18 54.9670 3.9537

Total 20 202.312

The sums of squares for the treatments, error, and total are then

SSH =
1

7

3∑
i=1

y2i. −
y2..
21

= 8545.3457− 8398.0001 = 147.3456,

SSE =
∑
ij

y2ij −
1

7

∑
i

y2i. = 8600.3127− 8545.3457 = 54.9670

SST =
∑
ij

y2ij −
y2..
21

= 8600.3127− 8398.0001 = 202.3126

These sums of squares can be used to obtain an F -test, as shown in table 8.1. The p-value

for F = 24.1256 is 8.07× 10−6. Thus, we reject H0 : µ1 = µ2 = µ3.

8.4 Hypothesis test for a contrast

In exercises, we have shown that for the one-way balanced model, contrasts in α’s are

estimable, that is
∑

i ciαi is estimable if and only if
∑

i ci = 0. Since

k∑
i=1

ciµi =
k∑

i=1

ci(µ+ αi) = µ
k∑

i=1

ci +
k∑

i=1

ciαi =
k∑

i=1

ciαi,
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the contrast
∑

i ciαi is equivalent to
∑

i ciµi.

A hypothesis of interest is

H0 :
k∑

i=1

ciαi = 0 or H0 :
k∑

i=1

ciµi = 0,

which represents a comparison of means if
∑

i ci = 0. For example,

H0 : 3µ1 − µ2 − µ3 − µ4 = 0

can be written as

H0 : µ1 =
1

3
(µ2 + µ3 + µ4),

which compares µ1 with the average of µ2, µ3 and µ4.

The hypothesis can be expressed as H0 : c′β = 0, where c′ = (0, c1, · · · , ck) and

β = (µ, α1, · · · , αk)
′. Assuming y is Nkn(Xβ, σ2I), H0 can be tested using the following

F statistic:

F =
(c′β̂)′[c′(X ′X)−c]−1c′β̂

SSE/k(n− 1)

=
(c′β̂)2

s2c′(X ′X)−c

=
(
∑k

i=1 ciȳi.)
2

s2
∑k

i=1 c
2
i /n

,

where s2 = SSE/k(n− 1) and (X ′X)− and β̂ are given by (6) and (7).

9 Two-Way Analysis of Variance: Balanced Case

Suppose we have the additive (no-interaction) model

yij = µ+ αi + βj + ϵij, i = 1, · · · , a, j = 1, · · · , b

This model is two-factor design with balanced data. Factor A (for α) has a levels. Factor

B (for β) has b levels. Only one observation yij in each (i, j) cell.

In matrix form, the model can be written as

y = Xβ + ϵ,

where y = (y11, · · · , y1b, y21, · · · , y2b, · · · , ya1, · · · , yab)′,
β = (µ, α1, · · · , αa, β1, · · · , βb),
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ϵ = (ϵ11, · · · , ϵ1b, ϵ21, · · · , ϵ2b, · · · , ϵa1, · · · , ϵab), and

X =



µ α1 α2 · · · αa β1 β2 · · · βb

1 1 0 · · · 0 1 0 · · · 0

1 1 0 · · · 0 0 1 · · · 0
...

...
...

...
...

...
...

1 1 0 · · · 0 0 0 · · · 1

1 0 1 · · · 0 1 0 · · · 0

1 0 1 · · · 0 0 1 · · · 0
...

...
...

...
...

...
...

1 0 1 · · · 0 0 0 · · · 1
...

...
...

...
...

...
...

1 0 0 · · · 1 1 0 · · · 0

1 0 0 · · · 1 0 1 · · · 0
...

...
...

...
...

...
...

1 0 0 · · · 1 0 0 · · · 1



X ′X =



ab b b · · · b a a · · · a

b b 0 · · · 0 1 1 · · · 1

b 0 b · · · 0 1 1 · · · 1
...

...
...

...
...

...
...

b 0 0 · · · b 1 1 · · · 1

a 1 1 · · · 1 a 0 · · · 0

a 1 1 · · · 1 0 a · · · 0
...

...
...

...
...

...
...

a 1 1 · · · 1 0 0 · · · a


It is not easy to find a generalized inverse (X ′X)−. Instead, we can impose two side

conditions
∑a

i=1 αi = 0 and
∑b

j=1 βj = 0 to solve the normal equation: X ′Xβ̂ = X ′y.

X ′Xβ̂ =



abµ+ b
∑

i αi + a
∑

j βj

b(µ+ α1) +
∑

j βj

...

b(µ+ αa) +
∑

j βj

a(µ+ β1) +
∑

i αi

...

a(µ+ βb) +
∑

i αi


=



abµ

b(µ+ α1)
...

b(µ+ αa)

a(µ+ β1)
...

a(µ+ βb)
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X ′y = (y.., y1., · · · , ya., y.1, · · · , y.b)′

So the solution are:

β̂ = (µ̂, α̂1, · · · , α̂a, β̂1, · · · , β̂b)
′,

where

µ̂ = y../(ab) = ȳ..,

α̂i = yi./b− µ̂ = ȳi. − ȳ.., i = 1, · · · , a

β̂j = y.j/a− µ̂ = ȳ.j − ȳ.., , j = 1, · · · , b.

We now proceed to obtain the test for H0 : α1 = · · · = αa following the outline in

table 2. The hypothesis H0 : α1 = α2 = α3 can be expressed as H0 : α1 − α2 = 0 and

α1−α3 = 0. ThusH0 is testable if α1−α2 and α1−α3 are estimable. Since each expectation

of observation E(yij) = µ+αi+βj is estimable, and any linear combination of (µ+αi+βj)’s

is estimable, α1−α2 and α1−α3 are both estimable. (α1−α2 = (µ+α1+β1)−(µ+α2+β1))

First, we calculate

SS(µ, α, β) = β̂X ′y = (µ̂, α̂1, · · · , α̂a, β̂1, · · · , β̂b)
′



y..

y1.

· · ·
ya.

y.1

· · ·
y.b


= ȳ..y.. +

a∑
i=1

(ȳi. − ȳ..)yi. +
b∑

j=1

(ȳ.j − ȳ..)y.j

=
y2..
ab

+ (
a∑

i=1

y2i.
b

− y2..
ab

) + (
b∑

j=1

y2.j
a

− y2..
ab

),

since
∑

i yi. = y.. and
∑

j y.j = y...

The error sum of squares SSE is given by

y′y − β̂
′
X ′y =

∑
ij

y2ij −
y2..
ab

− (
a∑

i=1

y2i.
b

− y2..
ab

)− (
b∑

j=1

y2.j
a

− y2..
ab

).

To obtain β̂
′
2X

′
2y in table 2, we use the reduced model yij = µ + α + βj + ϵij =

µ+ βj + ϵij, where α1 = α2 = α3 = α and µ+ α is replaced by µ. The normal equations
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Table 5: ANOVA for two-way models

Source of Variation d.f. Sum of Squares F -Statistic

Due to α adjusted for µ and β a− 1 SS(α|µ,β) =
∑a

i=1
y2i.
b
− y2..

ab
F1 =

SS(α|µ,β)/(a−1)

SSE/(a−1)(b−1)

Due to β adjusted for µ and α b− 1 SS(β|µ,α) =
∑b

j=1

y2.j
a
− y2..

ab
F2 =

SS(β|µ,α)/(b−1)

SSE/(a−1)(b−1)

Error (a− 1)(b− 1) SSE = y′y − β̂
′
X ′y

Total ab− 1 SST =
∑

ij y
2
ij −

y2..
ab

X ′
2X2β̂2 = X ′

2y for the reduced model are

abµ̂+ aβ̂1 + aβ̂2 = y..

aµ̂+ aβ̂1 = y.1

aµ̂+ aβ̂2 = y.2.

Using the side condition β̂1 + β̂2 = 0, the solution to the reduced normal equations is

easily obtained as

µ̂ = ȳ.., β̂1 = ȳ.1 − ȳ.., · · · , β̂b = ȳ.b − ȳ...

Thus, we have

SS(µ,β) = β̂
′
2X

′
2y = µ̂y.. + β̂1y.1 + · · ·+ β̂by.b =

y2..
ab

+ (
b∑

j=1

y2.j
a

− y2..
ab

).

SS(α|µ,β) = β̂
′
X ′y − β̂

′
2X

′
2y =

a∑
i=1

y2i.
b

− y2..
ab

.

The test is summarized in table 5. The test statistic for H0 : β1 = · · · = βb can be

obtained similarly.
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