Chapter 10: Multiple Regression: Bayesian Inference

This chapter considers Bayesian estimation and prediction for the multiple linear regression model in which x variables are fixed constants.

1 Elements of Bayesian Statistical Inference

Let $f(y|\theta)$ denote the joint likelihood function of y_1, y_2, \ldots, y_n, and let $p(\theta)$ denote the prior distribution imposed on θ. Then the posterior distribution of θ is given by

$$
\pi(\theta|y) = \frac{f(y|\theta)p(\theta)}{\int f(y|\theta)p(\theta)d\theta} = \frac{1}{c(y)}f(y|\theta)p(\theta),
$$

where $c(y) = \int f(y|\theta)p(\theta)d\theta$ is the normalizing constant of the posterior distribution.

Bayesian inference for the model is always based on the posterior distribution $\pi(\theta|y)$. For example, let $q(y_0|\theta)$ denote a prediction function for y_0 given θ. Then

$$
r(y_0|y) = \int q(y_0|\theta)\pi(\theta|y)d\theta,
$$

which leads to a conditional inference formula.

2 A Bayesian Multiple Linear Regression Model

For convenience, one often parameterizes Bayesian models using precision (τ) rather than variance (σ^2). With this reparameterization, one often assumes

$$
\begin{align*}
 y|\beta, \tau &\sim N_n(X\beta, \frac{1}{\tau}I), \\
 \beta|\tau &\sim N_{k+1}(\phi, \frac{1}{\tau}V), \\
 \tau &\sim Gamma(\alpha, \delta),
\end{align*}
$$

where α and δ are prior-hyperparameters.
Theorem 2.1. Consider the Bayesian multiple regression model, for which the prior distributions are as specified in (1). Then the joint prior distribution is conjugate, that is, \(\pi(\beta, \tau|y) \) is of the same form as \(\pi(\beta, \tau) \).

Theorem 2.2. Consider the Bayesian multiple regression model, for which the prior distributions are as specified in (1). The marginal posterior distribution \(\pi(\beta|y) \) is a multivariate \(\text{t} \) distribution with parameters \((n+2\alpha, \phi_*, W_*) \), where

\[
\phi_* = (V^{-1} + X'X)^{-1}(V^{-1}\phi + X'y),
\]

and

\[
W_* = \left(\frac{(y - X\phi)'(I + XV X')^{-1}(y - X\phi) + 2\delta}{n + 2\alpha} \right) (V^{-1} + X'X)^{-1}.
\]

Theorem 2.3. Consider the Bayesian multiple regression model, for which the prior distributions are as specified in (1). The marginal posterior distribution \(\pi(\tau|y) \) is a gamma distribution with parameters \(\alpha + n/2 \) and \((-\phi_0 V_*^{-1} \phi + \phi' V_*^{-1} \phi + y'y + 2\delta)/2 \), where \(V_* = (V^{-1} + X'X)^{-1} \) and \(\phi_* = V_*(V^{-1}\phi + X'y) \).

3 Inference in Bayesian Multiple Linear Regression

Point Estimate and Credible Interval A convenient property of the multivariate \(\text{t} \)-distribution is that linear functions of the random vector follow the (univariate) \(\text{t} \)-distribution. Thus, given \(y \),

\[
\frac{a'\beta - a'\phi_*}{a'W_*a} \sim t(n + 2\alpha),
\]

and, as an important special case,

\[
\frac{\beta_i - \phi_{si}}{w_{sii}} \sim t(n + 2\alpha),
\]

where \(\phi_{si} \) is the \(i \)th element of \(\phi_* \) and \(w_{sii} \) is the \(i \)th diagonal element of \(W_* \). Thus a Bayesian point estimate of \(\beta_i \) is its posterior mean \(\phi_{si} \) and a \(100(1-\omega)\% \) Bayesian credible interval for \(\beta_i \) is

\[
\phi_{si} + t_{\omega/2, n+2\alpha} w_{sii}.
\]

Hypothesis Test For example, to test the hypothesis test \(\beta_i > \beta_{i0} \), we can calculate the probability

\[
P \left(t(n + 2\alpha) > \frac{\beta_{i0} - \phi_{si}}{w_{sii}} \right).
\]

The larger the probability is, the more credible is the hypothesis.
Special cases of Inference First, we consider the use of a diffuse prior. Let $\phi = 0$, let V be a diagonal matrix with all diagonal elements equal to a large constant (say, 10^6), and let α and δ both be equal to a small constant (say, 10^{-6}). In this case, V^{-1} is close to 0, and so ϕ^*, and the Bayesian point estimate of β in (2) is approximately equal to

$$(X'X)^{-1}X'y.$$

Also, since $(I + XVX')^{-1} = I - X(X'X + V)^{-1}X'$, the covariance matrix W_* approaches

$$W_* = \frac{y'(I - X(X'X)^{-1}X')y}{n} (X'X)^{-1} = \frac{n - 1}{n} s^2 (X'X)^{-1}.$$

The second special case of inference is the case in which $\phi = 0$ and V is a diagonal matrix with a constant on the diagonal. Thus $V = aI$, where a is a positive number, and the Bayesian estimator of β becomes

$$(X'X + \frac{1}{a}I)^{-1}X'y,$$

which is known as the ridge estimator.

Bayesian Point and Interval Estimation of σ^2 A possible Bayesian point estimator of σ^2 is the mean of the marginal inverse gamma density given in Theorem 7:

$$\frac{(-\phi'V_*^{-1}\phi_* + \phi'V^{-1}\phi + y'y + 2\delta)/2}{\alpha + n/2 - 1},$$

and a 100$(1 - \omega)$% Bayesian credible interval for σ^2 is given by the $1 - \omega/2$ and $\omega/2$ quantiles of the inverse gamma distribution.

Consider a special case that α and δ are both close to 0, $\phi = 0$, and V is a diagonal matrix with all diagonal elements equal to a large constant. Then the Bayesian point estimator of σ^2 is approximately

$$\frac{(y'y - \phi_*V_*^{-1}\phi_*)/2}{n/2 - 1} = \frac{y'y - y'X(X'X)^{-1}X'y}{n - 2} = \frac{n - k - 1}{n - 2} s^2.$$

4 Bayesian Inference through MCMC Simulations

Consider the Bayesian multiple regression model, for which the prior distributions are as specified in (1). Then the conditional distribution of $\beta|\tau$, y is $N_{k+1}(\phi_*, \tau^{-1}V_*)$, and the conditional distribution of $\tau|\beta, y \sim Gamma((\alpha_{ss} + k + 3)/2, ([\beta - \phi_*/V_*^{-1}(\beta - \phi_*) + \delta_{ss}]/2)$, where $\alpha_{ss} = 2\alpha - 2 + n$, and $\delta_{ss} = -\phi'_V^{-1}\phi_* + \phi'V^{-1}\phi + y'y + \delta_*$. Then the Gibbs sampler can be used for simulating from the posterior distribution.