
Chapter 10: Multiple Regression: Bayesian Inference

This chpaper considers Bayesian estimation and prediction for the multiple linear regression

model in which x variables are fixed constants.

1 Elements of Bayesian Statistical Inference

Let f(y|θ) denote the joint likelihood function of y1, y2, . . . , yn, and let p(θ) denote the prior

distribution imposed on θ. Then the posterior distribution of θ is given by

π(θ|y) = f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ

=
1

c(y)
f(y|θ)p(θ),

where c(y) =
∫
f(y|θ)p(θ)dθ is the normalizing constant of the posterior distribution.

Bayesian inference for the model is always based on the posterior distribution π(θ|y). For

example, let q(y0|θ) denote a prediction function for y0 given θ. Then

r(y0|y) =
∫

q(y0|θ)π(θ|y)dθ,

which leads to a conditional inference formula.

2 A Bayesian Multiple Linear Regression Model

For convenience, one often parameterizes Bayesian models using precision (τ) rather than variance

(σ2). With this reparameterization, one often assumes

y|β, τ ∼ Nn(Xβ,
1

τ
I),

β|τ ∼ Nk+1(ϕ,
1

τ
V ),

τ ∼ Gamma(α, δ),

(1)

where α and δ are prior-hyperparameters.
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Theorem 2.1. Consider the Bayesian multiple regression model, for which the prior distributions

are as specified in (1). Then the joint prior distribution is conjugate, that is, π(β, τ |y) is of the

same form as π(β, τ).

Theorem 2.2. Consider the Bayesian multiple regression model, for which the prior distributions

are as specified in (1). The marginal posterior distribution π(β|y) is a multivariate t distribution

with parameters (n+ 2α,ϕ∗,W ∗), where

ϕ∗ = (V −1 +X ′X)−1(V −1ϕ+X ′y), (2)

and

W ∗ =

(
(y −Xϕ)′(I +XV X ′)−1(y −Xϕ) + 2δ

n+ 2α

)
(V −1 +X ′X)−1. (3)

Theorem 2.3. Consider the Bayesian multiple regression model, for which the prior distributions

are as specified in (1). The marginal posterior distribution π(τ |y) is a gamma distribution with

parameters α+ n/2 and (−ϕ′
∗V

−1
∗ ϕ∗ +ϕ′V −1ϕ+ y′y + 2δ)/2, where V ∗ = (V −1 +X ′X)−1 and

ϕ∗ = V ∗(V
−1ϕ+X ′y).

3 Inference in Bayesian Multiple Linear Regression

Point Estimate and Credible Interval A convenient property of the multivariate t-distribution

is that linear functions of the random vector follow the (univariate) t-distribution. Thus, given y,

a′β − a′ϕ∗
a′W ∗a

∼ t(n+ 2α),

and, as an important special case,

βi − ϕ∗i

w∗ii
∼ t(n+ 2α),

where ϕ∗i is the ith element of ϕ∗ and w∗ii is the ith diagonal element of W ∗. Thus a Bayesian

point estimate of βi is its posterior mean ϕ∗i and a 100(1− ω)% Bayesian credible interval for βi

is

ϕ∗i + tω/2,n+2αw∗ii.

Hypothesis Test For example, to test the hypothesis test βi > βi0, we can calculate the prob-

ability

P

(
t(n+ 2α) >

βi0 − ϕ∗i

w∗ii

)
.

The larger the probability is, the more credible is the hypothesis.
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Special cases of Inference First, we consider the use of a diffuse prior. Let ϕ = 0, let V be

a diagonal matrix with all diagonal elements equal to a large constant (say, 106), and let α and δ

both be equal to a small constant (say, 10−6). In this case, V −1 is close to 0, and so ϕ∗, and the

Bayesian point estimate of β in (2) is approximately equal to

(X ′X)−1X ′y.

Also, since (I +XV X ′)−1 = I −X(X ′X + V )−1X ′, the covariance matrix W ∗ approaches

W ∗ =
y′(I −X(X ′X)−1X ′)y

n
(X ′X)−1 =

n− 1

n
s2(X ′X)−1.

The second special case of inference is the case in which ϕ = 0 and V is a diagonal matrix

with a constant on the diagonal. Thus V = aI, where a is a positive number, and the Bayesian

estimator of β becomes

(X ′X +
1

a
I)−1X ′y,

which is known as the ridge estimator.

Bayesian Point and Interval Estimation of σ2 A possible Bayesian point estimator of σ2 is

the mean of the marginal inverse gamma density given in Theorem ??:

(−ϕ′
∗V

−1
∗ ϕ∗ + ϕ′V −1ϕ+ y′y + 2δ)/2

α + n/2− 1
,

and a 100(1− ω)% Bayesian credible interval for σ2 is given by the 1− ω/2 and ω/2 quantiles of

the inverse gamma distribution.

Consider a special case that α and δ are both close to 0, ϕ = 0, and V is a diagonal matrix

with all diagonal elements equal to a large constant. Then the Bayesian point estimator of σ2 is

approximately

(y′y − ϕ∗V
−1
∗ ϕ∗)/2

n/2− 1
=

y′y − y′X(X ′X)−1X ′y

n− 2
=

n− k − 1

n− 2
s2.

4 Bayesian Inference through MCMC Simulations

Consider the Bayesian multiple regression model, for which the prior distributions are as specified

in (1). Then the conditional distribution of β|τ,y is Nk+1(ϕ∗, τ
−1V ∗, and the conditional distribu-

tion of τ |β,y ∼ Gamma((α∗∗+k+3)/2, [(β−ϕ∗)
′V −1

∗ (β−ϕ∗)+ δ∗∗]/2), where α∗∗ = 2α−2+n,

and δ∗∗ = −ϕ′
∗V

−1
∗ ϕ∗ + ϕ′V −1ϕ+ y′y + δ∗. Then the Gibbs sampler can be used for simulating

from the posterior distribution.
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