Chapter 10: Multiple Regression: Bayesian Inference

This chapper considers Bayesian estimation and prediction for the multiple linear regression model in which x variables are fixed constants.

1 Elements of Bayesian Statistical Inference

Let $f(\boldsymbol{y}|\boldsymbol{\theta})$ denote the joint likelihood function of y_1, y_2, \ldots, y_n , and let $p(\boldsymbol{\theta})$ denote the prior distribution imposed on $\boldsymbol{\theta}$. Then the posterior distribution of $\boldsymbol{\theta}$ is given by

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{f(\boldsymbol{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int f(\boldsymbol{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}} \\ = \frac{1}{c(\boldsymbol{y})}f(\boldsymbol{y}|\boldsymbol{\theta})p(\boldsymbol{\theta}),$$

where $c(\mathbf{y}) = \int f(\mathbf{y}|\boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}$ is the normalizing constant of the posterior distribution.

Bayesian inference for the model is always based on the posterior distribution $\pi(\boldsymbol{\theta}|\boldsymbol{y})$. For example, let $q(y_0|\boldsymbol{\theta})$ denote a prediction function for y_0 given $\boldsymbol{\theta}$. Then

$$r(y_0|\boldsymbol{y}) = \int q(y_0|\boldsymbol{\theta})\pi(\boldsymbol{\theta}|\boldsymbol{y})d\boldsymbol{\theta},$$

which leads to a conditional inference formula.

2 A Bayesian Multiple Linear Regression Model

For convenience, one often parameterizes Bayesian models using precision (τ) rather than variance (σ^2). With this reparameterization, one often assumes

$$\begin{aligned} \boldsymbol{y} | \boldsymbol{\beta}, \tau &\sim N_n(\boldsymbol{X} \boldsymbol{\beta}, \frac{1}{\tau} \boldsymbol{I}), \\ \boldsymbol{\beta} | \tau &\sim N_{k+1}(\boldsymbol{\phi}, \frac{1}{\tau} \boldsymbol{V}), \\ \tau &\sim Gamma(\alpha, \delta), \end{aligned}$$
(1)

where α and δ are prior-hyperparameters.

Theorem 2.1. Consider the Bayesian multiple regression model, for which the prior distributions are as specified in (1). Then the joint prior distribution is conjugate, that is, $\pi(\boldsymbol{\beta}, \tau | \boldsymbol{y})$ is of the same form as $\pi(\boldsymbol{\beta}, \tau)$.

Theorem 2.2. Consider the Bayesian multiple regression model, for which the prior distributions are as specified in (1). The marginal posterior distribution $\pi(\boldsymbol{\beta}|\boldsymbol{y})$ is a multivariate t distribution with parameters $(n + 2\alpha, \boldsymbol{\phi}_*, \boldsymbol{W}_*)$, where

$$\phi_* = (V^{-1} + X'X)^{-1} (V^{-1}\phi + X'y), \qquad (2)$$

and

$$\boldsymbol{W}_{*} = \left(\frac{(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\phi})'(\boldsymbol{I} + \boldsymbol{X}\boldsymbol{V}\boldsymbol{X}')^{-1}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\phi}) + 2\delta}{n + 2\alpha}\right)(\boldsymbol{V}^{-1} + \boldsymbol{X}'\boldsymbol{X})^{-1}.$$
(3)

Theorem 2.3. Consider the Bayesian multiple regression model, for which the prior distributions are as specified in (1). The marginal posterior distribution $\pi(\tau|\mathbf{y})$ is a gamma distribution with parameters $\alpha + n/2$ and $(-\phi'_* V_*^{-1} \phi_* + \phi' V^{-1} \phi + \mathbf{y}' \mathbf{y} + 2\delta)/2$, where $\mathbf{V}_* = (\mathbf{V}^{-1} + \mathbf{X}' \mathbf{X})^{-1}$ and $\phi_* = \mathbf{V}_* (\mathbf{V}^{-1} \phi + \mathbf{X}' \mathbf{y}).$

3 Inference in Bayesian Multiple Linear Regression

Point Estimate and Credible Interval A convenient property of the multivariate *t*-distribution is that linear functions of the random vector follow the (univariate) *t*-distribution. Thus, given \boldsymbol{y} ,

$$\frac{\boldsymbol{a}^{\prime}\boldsymbol{\beta}-\boldsymbol{a}^{\prime}\boldsymbol{\phi}_{*}}{\boldsymbol{a}^{\prime}\boldsymbol{W}_{*}\boldsymbol{a}}\sim t(n+2\alpha),$$

and, as an important special case,

$$\frac{\beta_i - \phi_{*i}}{w_{*ii}} \sim t(n + 2\alpha),$$

where ϕ_{*i} is the *i*th element of ϕ_* and w_{*ii} is the *i*th diagonal element of W_* . Thus a Bayesian point estimate of β_i is its posterior mean ϕ_{*i} and a $100(1 - \omega)\%$ Bayesian credible interval for β_i is

$$\phi_{*i} + t_{\omega/2, n+2\alpha} w_{*ii}.$$

Hypothesis Test For example, to test the hypothesis test $\beta_i > \beta_{i0}$, we can calculate the probability

$$P\left(t(n+2\alpha) > \frac{\beta_{i0} - \phi_{*i}}{w_{*ii}}\right).$$

The larger the probability is, the more credible is the hypothesis.

Special cases of Inference First, we consider the use of a diffuse prior. Let $\phi = 0$, let V be a diagonal matrix with all diagonal elements equal to a large constant (say, 10⁶), and let α and δ both be equal to a small constant (say, 10⁻⁶). In this case, V^{-1} is close to 0, and so ϕ_* , and the Bayesian point estimate of β in (2) is approximately equal to

$$(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}.$$

Also, since $(I + XVX')^{-1} = I - X(X'X + V)^{-1}X'$, the covariance matrix W_* approaches

$$W_* = rac{y'(I - X(X'X)^{-1}X')y}{n} (X'X)^{-1} = rac{n-1}{n} s^2 (X'X)^{-1}.$$

The second special case of inference is the case in which $\phi = 0$ and V is a diagonal matrix with a constant on the diagonal. Thus V = aI, where a is a positive number, and the Bayesian estimator of β becomes

$$(\boldsymbol{X}'\boldsymbol{X}+\frac{1}{a}\boldsymbol{I})^{-1}\boldsymbol{X}'\boldsymbol{y},$$

which is known as the ridge estimator.

Bayesian Point and Interval Estimation of σ^2 A possible Bayesian point estimator of σ^2 is the mean of the marginal inverse gamma density given in Theorem ??:

$$\frac{(-\boldsymbol{\phi}'_*\boldsymbol{V}_*^{-1}\boldsymbol{\phi}_* + \boldsymbol{\phi}'\boldsymbol{V}^{-1}\boldsymbol{\phi} + \boldsymbol{y}'\boldsymbol{y} + 2\delta)/2}{\alpha + n/2 - 1},$$

and a $100(1-\omega)\%$ Bayesian credible interval for σ^2 is given by the $1-\omega/2$ and $\omega/2$ quantiles of the inverse gamma distribution.

Consider a special case that α and δ are both close to 0, $\phi = 0$, and V is a diagonal matrix with all diagonal elements equal to a large constant. Then the Bayesian point estimator of σ^2 is approximately

$$\frac{(\bm{y}'\bm{y} - \bm{\phi}_*\bm{V}_*^{-1}\bm{\phi}_*)/2}{n/2 - 1} = \frac{\bm{y}'\bm{y} - \bm{y}'\bm{X}(\bm{X}'\bm{X})^{-1}\bm{X}'\bm{y}}{n-2} = \frac{n-k-1}{n-2}s^2.$$

4 Bayesian Inference through MCMC Simulations

Consider the Bayesian multiple regression model, for which the prior distributions are as specified in (1). Then the conditional distribution of $\boldsymbol{\beta}|\tau, \boldsymbol{y}$ is $N_{k+1}(\boldsymbol{\phi}_*, \tau^{-1}\boldsymbol{V}_*)$, and the conditional distribution of $\tau|\boldsymbol{\beta}, \boldsymbol{y} \sim Gamma((\alpha_{**}+k+3)/2, [(\boldsymbol{\beta}-\boldsymbol{\phi}_*)'\boldsymbol{V}_*^{-1}(\boldsymbol{\beta}-\boldsymbol{\phi}_*)+\delta_{**}]/2)$, where $\alpha_{**} = 2\alpha - 2 + n$, and $\delta_{**} = -\boldsymbol{\phi}'_*\boldsymbol{V}_*^{-1}\boldsymbol{\phi}_* + \boldsymbol{\phi}'\boldsymbol{V}^{-1}\boldsymbol{\phi} + \boldsymbol{y}'\boldsymbol{y} + \delta_*$. Then the Gibbs sampler can be used for simulating from the posterior distribution.