
1/21

Lecture Notes for STAT546: Computational
Statistics

—Lecture 9: Monte Carlo

Faming Liang

Purdue University

September 11, 2024



2/21

Monte Carlo Dynamically Weighted Importance Sampling

The MCDWIS algorithm is a Monte Carlo version of the DWIS
algorithm. As in DWIS, the state space of the Markov chain is
augmented to a population, a collection of weighted samples
(x ,w) = {x1,w1; . . . ; xn,wn}. Given the current population
(xt ,wt), one iteration of the MCDWIS consists of two steps:

1. Monte Carlo Dynamic weighting (MCDW): Update each
individual state of the current population by a MCDW
transition.

2. Population control: Split or replicate the individual states with
large weights and discard the individual states with small
weights.
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The MCDW step allows for the use of Monte Carlo estimates in
MCMC simulations. The bias induced thereby is counterbalanced
by giving different weights to the new samples produced.
Therefore, a Monte Carlo estimate of Z (x)/Z (x ′) can be
incorporated into the simulation, while leaving π(x |D) invariant
with respect to dynamic importance weights. Note that
conventional MCMC algorithms do not allow for the use of Monte
Carlo estimates in simulations. Otherwise, the detailed balance
condition will be violated.
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A MCDW sampler

Let (xt ,wt) denote the current population, let (x ,w) denote an
individual state of the population, and let (x ′,w ′) denote the
individual state transmitted from (x ,w) in one transition step.

1. Draw x∗ from some proposal distribution T (x , x∗).

2. Simulate auxiliary samples D1, . . . ,Dm from f (D|x∗) using a
MCMC algorithm, say, the MH algorithm. Estimate the
normalizing constant ratio Rt(x , x

∗) = Z (x)/Z (x∗) by

R̂t(x , x
∗) =

1

m

m∑
i=1

p(Di , x)

p(Di , x∗)
, (1)

which is also known as the importance sampling (IS)
estimator of Rt(x , x

∗).
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3. Calculate the Monte Carlo dynamic weighting ratio

rd = rd(x , x
∗,w) = wR̂t(x , x

∗)
p(D, x∗)

p(D, x)

T (x∗, x)

T (x , x∗)
.

4. Choose θt = θt(xt ,wt) ≥ 0 and draw U ∼ unif (0, 1). Update
(x ,w) as (x ′,w ′)

(x ′,w ′) =

{
(x∗, rd/a), if U ≤ a,

(x ,w/(1− a)), otherwise,

where a = rd/(rd + θt); θt is a function of (xt ,wt), but
remains a constant for each individual state of the same
population.
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Remark 1:

R̂t(x , x
∗) is an unbiased and consistent estimator of Rt(x , x

∗).
Following from the central limit theorem, we have

√
m
(
R̂t(x , x

∗)− Rt(x , x
∗)
)
→ N

(
0, σ2

t

)
, (2)

where σ2
t can be expressed as

σ2
t = Var

(
p(D1, x)

p(D1, x∗)

)
+ 2

∞∑
i=2

Cov

(
p(D1, x)

p(D1, x∗)
,
p(Di , x)

p(Di , x∗)

)
.

Alternatively, we can write R̂t(x , x
∗) = Rt(x , x

∗)(1 + ϵt), where
ϵt ∼ N(0, σ2

t / [mR2
t (x , x

∗)]).
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Remark 2

This sampler is designed according to the scheme-R of DWIS. A
similar sampler can also be deigned according to the scheme-W of
DWIS. As discussed previously, the parameter θt can be specified
as a function of the population (xt ,wt). For simplicity, we here
concentrate only on the cases where θt = 0 or 1.
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Theorem 1
The Monte Carlo dynamic weighting sampler is IWIWp; that is, if
the joint distribution gt(x ,w) for (xt ,wt) is correctly weighted
with respect to π(x |D), after one Monte Carlo dynamic weighting
step, the new joint density gt+1(x

′,w ′) for (xt+1,wt+1) is also
correctly weighted with respect to π(x |D).
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For the case θt > 0,∫ ∞

0
w ′gt+1(x

′,w ′)dw ′

=

∫
X

∫ ∞

0

∫ ∞

−∞
[rd(x , x

′,w) + θt ]gt(x ,w)T (x , x ′)φ(ϵt)
rd(x , x

′,w)

rd(x , x ′,w) + θt
dϵtdwdx

+

∫
X

∫ ∞

0

∫ ∞

−∞

w [rd(x
′, z ,w) + θt ]

θt
gt(x

′,w)T (z |x ′)φ(ϵt)
θt

rd(x ′, z ,w) + θt
dϵtdwdz

=

∫
X

∫ ∞

0

∫ ∞

−∞
wR(x , x ′)(1 + ϵt)

p(D, x ′)π(x ′)

p(D, x)π(x)
T (x ′, x)gt(x ,w)φ(ϵt)dϵtdwdx

+

∫
X

∫ ∞

0

∫ ∞

−∞
wgt(x

′,w)T (x ′, z)φ(ϵt)dϵtdwdz
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=

∫
X

∫ ∞

0
wR(x , x ′)

p(D, x ′)π(x ′)

p(D, x)π(x)
T (x ′, x)gt(x ,w)dwdx

+

∫
X

∫ ∞

0
wgt(x

′,w)T (x ′, z)dwdz

=

∫
X

π(x ′|D)

π(x |D)
T (x ′, x)

( ∫ ∞

0
wgt(x ,w)dw

)
dx +

∫
X
ct,x ′π(x

′|D)T (x ′, z)dz

= π(x ′|D)

∫
X
ct,xT (x ′, x)dx + ct,x ′π(x

′|D)

= π(x ′|D)

∫
X
ct,xT (x ′, x)dx + ct,x ′π(x

′|D)

= 2ct,x ′π(x
′|D),

where φ(·) denotes the density of ϵt .
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For the case θt = 0, only the term (I) remains. Thus,∫ ∞

0
w ′gt+1(x

′,w ′)dw ′ = ct,x ′π(x
′|D).

By defining ct+1,x ′ = 2ct,x ′ for the case θt > 0 and ct+1,x ′ = ct,x ′

for the case θt = 0, it is easy to see that the condition (??) still
holds for the new population. Hence, gt+1(x

′,w ′) is still correctly
weighted with respect to π(x |D).
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Monte Carlo Dynamically Weighted Importance Sampling

Similar to the DWIS, we compose the following MCDWIS
algorithm, which alters between the MCDW and population
control steps. Since both the MCDW step and the population
control step are IWIWp, the MCDWIS algorithm is also IWIWp.
Let Wc denote a dynamic weighting move switching parameter,
which switches the value of θt between 0 and 1 depending on the
value of Wup,t−1. One iteration of the MCDWIS algorithm can be
described as follows.
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▶ MCDW: Apply the Monte Carlo dynamic weighting move to
the population (xt−1,wt−1). If Wup,t−1 ≤ Wc , then set
θt = 1. Otherwise, set θt = 0. The new population is denoted
by (x ′

t ,w ′
t).

▶ Population Control: Apply APEPCS to (x ′
t ,w ′

t). The new
population is denoted by (xt ,wt).
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To analyze the weight behavior of the MCDWIS, we introduce the
following lemma.

Lemma 2
Let f (D|x) = p(D, x)/Z (x) denote the likelihood function of D,
let π(x) denote the prior distribution of x , and let T (·, ·) denote a
proposal distribution of x . Define
p(x , x ′|D) = p(D, x)π(x)T (x , x ′), and
r(x , x ′) = R̂(x , x ′)p(x ′, x |D) /p(x , x ′|D) to be a Monte Carlo MH
ratio, where R̂(x , x ′) denotes an unbiased estimator of
Z (x)/Z (x ′). Then

e0 = E log r(x , x ′) ≤ 0,

where the expectation is taken with respect to the joint density
φ(R̂)× p(x , x ′|D)/Z (x).
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Proof.
By Jensen’s inequality,

e0 = E log

[
R̂(x , x ′)

p(x ′, x |D)

p(x , x ′|D)

]
≤ log E

[
R̂(x , x ′)

p(x ′, x |D)

p(x , x ′|D)

]
= 0,

where the equality holds when p(x ′, x |D) = p(x , x ′|D), and φ(·) is
a Dirac measure with φ(R̂ = R) = 1 and 0 otherwise.
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Given this lemma, it is easy to see that, theoretically, MCDWIS
shares the same weight behavior with scheme-R of DWIS; that is,
the following theorem holds for MCDWIS.

Theorem 3
MCDWIS has almost surely finite moments of any order.
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Sequentially dynamically weighed importance sampling

Although DWIS has significantly improved the mixing of the MH
algorithm, it may still have a hard time in simulating from a
system for which the attraction basin of the global minimum
energy solution is very narrow. One approach to alleviate this
difficulty is to use DWIS in conjunction with a complexity ladder
by simulating from a sequence of systems with gradually flattened
energy landscapes. The resulting approach is called sequentially
dynamically weighted importance sampling (SDWIS).
Suppose that one wants to simulate from a distribution f (x), and
a sequence of trial distributions f1, · · · , fk has been constructed
with fk ≡ f . For example, fk−1(xk−1) can be set as a marginal
distribution of fk(xk). See §?? for discussions on how to construct
such a complexity ladder of distributions.
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1.

• Sample: Sample x1,1, . . . , x1,N1 from f1(·) using a MCMC
algorithm, and set w1,i = 1 for i = 1, . . . ,N1. The samples
form a population (x1,w1) = (x1,1,w1,1; . . . ; x1,N1 , w1,N1).

• DWIS: Generate (x ′
1,w

′
1) from (x1,w1) using DWIS with

f1(x) working as the target distribution.

2.

• Extrapolation: Generate x2,i from x ′1,i with the extrapolation
operator T12(x

′
1,i , x2,i ), and set

w2,i = w ′
1,i

f2(x2,i )

f1(x ′1,i )T12(x ′1,i , x2,i )
,

for each i = 1, 2, · · · ,N ′
1.
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• DWIS: Generate (x ′
2,w

′
2) from (w2,w2) using DWIS with

f2(x) working as the target distribution.

· · · · · ·
k. • Extrapolation: Generate xk,i from x ′k−1,i with the extrapolation

operator Tk−1,k(x
′
k−1,i , xk,i ), and set

wk,i = w ′
k−1,i

fk(xk,i )

fk−1(x ′k−1,i )Tk−1,k(x ′k−1,i , xk,i )
,

for i = 1, 2, · · · ,N ′
k−1.

• DWIS: Generate (x ′
k ,w

′
k) from (xk ,wk) using DWIS with fk(x)

working as the target distribution.
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The advantage of SDWIS over conventional sequential importance
sampling (SIS) algorithms is apparent: The DWIS steps will
remove the bad seed samples at the early stages of sampling and
force the good seed samples to produce more offspring. More
importantly, SDWIS overcomes the sample degeneracy problem
suffered by conventional sequential importance sampling or particle
filter algorithms by including the DWIS step which maintains the
diversity of the population. Together with a radial basis function
network, SDWIS has been successfully applied to modeling of the
sea surface temperatures by Ryu, Liang and Mallick (2009). In a
numerical example, Ryu, Liang and Mallick (2009) showed that
SDWIS can be more efficient than the standard SIS and the partial
rejection control SIS (Liu, Chen and Wong, 1998) algorithms, and
SDWIS indeed avoids the sample degeneracy problem.
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The framework of SDWIS is so general that it has included several
other algorithms as special cases. If only the population control
scheme is performed at the DWIS step, SDWIS is reduced to the
pruned-enriched Rosenbluth method (Grassberger, 1997). If only
some MH or Gibbs steps are performed at the DWIS step (with
fk(x) being chosen as a power function of f (x)), SDWIS is reduced
to annealed importance sampling (Neal, 2001). Note that the MH
or Gibbs step will not alter the correctly weightedness of a
population, as they are IWIW. With this observation, MacEachern,
Clyde and Liu (1998) proposed to improve the performance of
sequential importance sampling by mixing with some MCMC steps.
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