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Dynamic Weighting

The MH algorithm has a stringent requirement for the detailed
balance condition. To move across an energy barrier, the expected
waiting time is roughly exponential in the energy difference.
Hence, the algorithm suffers from a waiting time dilemma: either
to wait forever in a deep local energy minimum or to have an
incorrect equilibrium distribution, in simulations from a complex
system for which the energy landscape is rugged.
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Wong and Liang (1997) proposed a way out of the waiting time
dilemma, which can be described loosely as follows: If necessary,
the system may make a transition against a steep probability
barrier without a proportionally long waiting time. To account for
the bias introduced thereby, an importance weight is computed and
recorded along with the sampled values. This transition rule does
not satisfy the detailed balance condition any more, but it satisfies
what is called invariance with respect to importance weights
(IWIW). At equilibrium, Monte Carlo approximations to integrals
are obtained by the importance-weighted average of the sampled
values, rather than the simple average as in the
Metropolis-Hastings algorithm.
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IWUW Principle

In dynamic weighting, the state of the Markov chain is augmented
by an importance weight to (x ,w), where the weight w carries the
information of the past samples and can help the system escape
from local-traps. Let (xt ,wt) denote the current state of the
Markov chain, a dynamic weighting transition involves the
following steps:

1. Draw y from a proposal function T (xt , y).

2. Compute the dynamic ratio

rd = wt
f (y)T (y , xt)

f (xt)T (xt , y)
.

3. Let θt be a non-negative number, which can be set as a
function of (xt ,wt). With probability a = rd/(θt + rd), set
xt+1 = y and wt+1 = rd/a; otherwise set xt+1 = xt and
wt+1 = wt/(1− a).
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This transition is called the R-type move in Wong and Liang
(1997). It does not satisfy the detailed balance condition, but is
invariant with respect to the importance weight (IWIW); that is, if∫

wtg(xt ,wt)dwt ∝ f (xt) (1)

holds for some constant c, then after one step of transition,∫
wt+1g(xt+1,wt+1)dwt+1 ∝ f (xt+1) (2)

also holds, where g(x ,w) denotes the joint density of (x ,w).
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Let x = xt , w = wt , x
′ = xt+1 and w ′ = wt+1. Then∫ ∞

0
w ′g(x ′,w ′)dw ′

=

∫
X

∫ ∞

0
[θt + rd(x , x

′,w)]g(x ,w)T (x , x ′)
rd(x , x

′,w)

θt + rd(x , x ′,w)
dwdx

+

∫
X

∫ ∞

0
w [θt + rd(x

′, z ,w)]g(x ′,w)T (x ′, z)
θt

θt + rd(x ′, z ,w)
dwdz

=

∫
X

∫ ∞

0
wg(x ,w)

f (x ′)T (x ′, x)

f (x)
dwdx +

∫
X

∫ ∞

0
wg(x ′,w)T (x ′, z)dwdz

∝ f (x ′)

∫
X
T (x ′, x)dx + f (x ′)

= 2f (x ′).

Hence, given a sequence of dynamic weighting samples (x1,w1),
(x2,w2), . . ., (xn,wn), the weighted average [of a state function
h(x) over the sample]

µ̂ =
n∑

i=1

wih(xi )/
n∑

i=1

wi (3)

will converge to Ef h(x), the expectation of h(x) with respect to
the target distribution f (x).
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The merit of dynamic weighting is as follows: If one trial is
rejected, then the dynamic weight will be self-adjusted to a larger
value by dividing the rejection probability of that trial, rendering a
smaller total rejection probability in the next trial. Using
importance weights provides a means for dynamic weighting to
make transitions that are not allowed by the standard MH rule,
and thus can traverse the energy landscape of the system more
freely. But this advantage comes with a price: The importance
weights have an infinite expectation, and the estimate (3) is of
high variability and converges to the true values very slowly,
seemingly at a rate of log(n) (Liu, Liang and Wong, 2001). In
short, the infinite waiting time in the standard MH process now
manifests itself as an infinite weight quantity in the dynamic
weighting process.
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It is interesting to point out that the usual MH transition can be
regarded as a special type of IWIW transition: If we apply a MH
transition to x and leave w unchanged, then the result satisfies
IWIW. This can be shown as follows:∫

w ′g(x ′,w ′)dw ′ =

∫
wg(x ,w)K (x → x ′)dwdx

∝
∫

f (x)K (x → x ′)dx =

∫
f (x ′)K (x ′ → x)dx

= f (x ′),

where K (· → ·) denotes a MH transition kernel with f (x) as its
invariant distribution. Therefore, correctly weighted distributions
will remain when dynamic weighting transitions and MH transitions
are alternated in the same run of the Markov chain. This
observation leads directly to the tempering dynamic weighting
algorithm (Liang and Wong, 1999).
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The tempering dynamic weighting (TDW) algorithm (Liang and
Wong, 1999) is essentially the same as the simulated tempering
algorithm except that a dynamic weight is now associated with the
configuration (x , i) and the dynamic weighting rule is used to
guide the transitions between adjacent temperature levels. Let
fi (x) denote the trial distribution at level i , i = 1, . . . ,N. Let
0 < α < 1 be specified in advance and let (xt , it ,wt) denote the
current state of the Markov chain. One iteration of the TDW
algorithm consists of the following steps:
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Tempering Dynamic Weighting Algorithm

1. Draw U from the uniform distribution U[0, 1].

2. If U ≤ α, set it+1 = it and wt+1 = wt and simulate xt+1 from
fit (x) via one or several MH updates.

3. If U > α, set xt+1 = xt and propose a level transition, it → i ′,
from a transition function q(it , i

′). Conduct a dynamic
weighting transition to update (it ,wt):
▶ Compute the dynamic weighting ratio

rd = wt
ci fi ′(xt)q(i

′, it)

ci ′ fi (xt)q(it , i ′)
,

where ci denotes the pseudo-normalizing constant of fi (x).
▶ Accept the transition with probability a = rd/(θt + rd), where

θt can be chosen as a function of (it ,wt). If it is accepted, set
it+1 = i ′ and wt+1 = rd/a; otherwise, set it+1 = it and
wt+1 = wt/(1− a).
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Ising Model Simulation at Sub-Critical Temperature

Consider a 2-D Ising model with the Boltzmann density

f (x) =
1

Z (K )
exp{K

∑
i∼j

xixj}, (4)

where the spins xi = ±1, i ∼ j denotes the nearest neighbors on
the lattice, Z (K ) is the partition function, and K is the inverse
temperature. When the temperature is at or below the critical
point (K=0.4407), the model has two oppositely magnetized states
separated by a very steep energy barrier.
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Liang and Wong (1999) performed TDW simulations on the
lattices of size 322, 642 and 1282 using 6, 11, and 21 temperature
levels (with the values of K being equally spaced between 0.4 and
0.5), respectively. At the same temperature level, the Gibbs
sampler (Geman and Geman, 1984) is used to generate new
configurations, meanwhile the weights were left unchanged. The
dynamic weighting rule is only used to govern transitions between
levels. After each sweep of Gibbs updates, it is randomly proposed
to move to an adjacent temperature level with equal probability.
The parameter θt is set to 1 if wt < 106 and 0 otherwise. Five
independent runs were performed for the model. In each run, the
simulation continues until 10,000 configurations are obtained at
the final temperature level. For the model of size 1282, the average
number of sweeps in each run is 776,547.
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Figure 1: Expectation of the absolute spontaneous magnetization against
the inverse temperature K for the lattices of size 322, 642 and 1282. The
points are averages over 5 independent runs. For clarity of picture, error
bars are plotted only for the lattice of size 1282. The smooth curve
corresponds to the theoretical result of infinite lattice. (Liang and Wong,
1999)
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Dynamic Weighting in Optimization

We use the traveling salesman problem (TSP) (Reinelt, 1994) to
illustrate the use of dynamic weighting in optimization. Let n be
the number of cities in an area and let dij denote the distance
between city i and city j . The TSP is to find a permutation x of
the cities such that the tour length

H(x) =
n−1∑
i=1

dx(i),x(i+1) + dx(n),x(1), (5)

is minimized. It is known that the TSP is a NP-complete problem.
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Let V denote the set of cities, let A denote the set of cities that
have been ordered, and let Ac = V \ A denote the set of cities not
yet ordered. Then the cities can be ordered as follows:

▶ Randomly select a city from V .
▶ Repeat steps (1) and (2) until Ac is empty:

(1) set k = argmaxi∈Ac minj∈A dij ;
(2) set A = A ∪ {k} and Ac = Ac \ {k}.

This procedure ensures that each time the city added into A is the
one having the maximum separation from the set of already
ordered cities.
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Att532 TSP
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Figure 2: The best tour found by dynamic weighting for a 532-city TSP.
The tour length is 27744 compared to the exact minimum of 27686.
(Wong and Liang, 1997)
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1600 gridpoints TSP
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Figure 3: One of the exactly optimal tour found by dynamic weighting for
a 1600-city TSP. (Wong and Liang, 1997)
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dynamically weighted importance sampling (Liang, 2002)

Because the importance weight in dynamic weighting is of high
variability, achieving a stable estimate requires techniques such as
stratification and truncation (Liu, Liang and Wong, 2001).
However, any attempt to shorten the tails of the weight distribution
may lead to a biased estimate. To overcome this difficulty, Liang
(2002b) proposed a population version of dynamic weighting, the
so-called the dynamically weighted importance sampling (DWIS)
algorithm, which has the importance weight successfully controlled
to a desired range while keeping the estimate unbiased. In DWIS,
the state space of the Markov chain is augmented to a population
of size N, denoted by (x ,w) = {x1,w1; . . . ; xN ,wN}. With a slight
abuse of notation, (xi ,wi ) is called an individual state of the
population. Given the current population (xt ,wt), one iteration of
DWIS (as illustrated by Figure 4) involves two steps:
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1. Dynamic weighting: Each individual state of the current
population is updated via one dynamic weighting transition
step to form a new population.

2. Population control: Duplicate the samples with large weights
and discard the samples with small weights. The bias induced
thereby is counterbalanced by giving different weights to the
new samples produced.
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The two steps ensure that DWIS can move across energy barriers
like dynamic weighting, but the weights are well controlled and
have a finite expectation, and the resulting estimate can converge
much faster than that of dynamic weighting.
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N
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Figure 4: A diagram of the DWIS algorithm.
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A Theory of DWIS

Let gt(x ,w) denote the joint density of (x ,w), an individual state
of (xt ,wt), and let f (x) denote the target distribution we are
working with.

Definition 1
The distribution gt(x ,w) defined on X × (0,∞) is called correctly
weighted with respect to f (x) if the following conditions hold,∫

wgt(x ,w)dw = ctx f (x), (6)∫
A ctx f (x)dx∫
X ctx f (x)dx

=

∫
A
f (x)dx , (7)

where A is any Borel set, A ⊆ X .
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Definition 2
If gt(x ,w) is correctly weighted with respect to f (x), and samples
(xt,i ,wt,i ) are simulated from gt(x ,w) for i = 1, 2, . . . , nt , then
(xt ,wt) = (xt,1,wt,1; · · · ; xt,nt ,wt,nt ) is called a correctly weighted
population with respect to f (x).

Let (xt ,wt) be a correctly weighted population with respect to
f (x), and let y1, . . . , ym be distinct states in xt . Generate a
random variable/vector Y such that

P{Y = yi} =
∑nt

j=1 wj I (yi = xt,j)∑nt
j=1 wj

, i = 1, 2, . . . ,m, (8)

where I (·) is an indicator function. Then Y is approximately
distributed as f (·) if nt is large. This can be summarized as the
following theorem:
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Theorem 3
The distribution of the random vector Y generated in (8)
converges as nt →∞ to f (·), if the importance weight has a finite
expectation.
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Let (x1,w1), . . ., (xN ,wN) be a series of correctly weighted
populations generated by a DWIS algorithm with respect to f (x).
Then the quantity µ = Ef h(x), provided its existence, can be
estimated by

µ̂ =

∑N
t=1

∑nt
i=1 wt,ih(xt,i )∑N

t=1

∑nt
i=1 wt,i

. (9)

Let Ut =
∑nt

i=1 wt,ih(xt,i ), St =
∑nt

i=1 wt,i , S = ESt , and
Vt = Ut − µSt . If the variance of Ut and Vt are both finite, then
the standard error of µ̂ can be calculated using the ratio estimate
as in finite population sampling (Ripley, 1987, pp.158). As shown
by Liang (2002b), µ̂ is consistent and asymptotically normally
distributed; that is,

√
N(µ̂− µ)→ N(0, σ2), (10)

where σ2 is defined as Var(Vt)/S
2.
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Definition 4
A transition rule for a population (x ,w) is said to be invariant
with respect to the importance weight (IWIWp) if the joint density
of (x ,w) remains correctly weighted whenever the initial joint
density is correctly weighted.

To make this rule distinguishable from the IWIW rule given in (1)
and (2), which is defined for the single Markov chain, we denote it
by IWIWp with the subscript representing for population.
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Some IWIWp Transition Rules

Many transition rules are IWIWp exactly or approximately. The
following are some useful examples. Let (xt ,wt) denote the
current population, let (x ,w) denote an individual state of
(xt ,wt), and let (x ′,w ′) denote the individual state transmitted
from (x ,w) in one transition step.
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A general dynamic weighting sampler

1. Draw y from some transition proposal distribution T (x , y),
and compute the dynamic ratio

rd = w
f (y)T (y , x)

f (x)T (x , y)
.

2. Choose θt = θ(xt ,wt) ≥ 0 and draw U ∼ unif (0, 1). Update
(x ,w) as (x ′,w ′)

(x ′,w ′) =

{
(y , (1 + δt)rd/a) if U ≤ a

(x , (1 + δt)w/(1− a)) otherwise.

where a = rd/(rd + θt); and θt and δt are both functions of
(xt ,wt), but they remain constants for each individual state
of the same population.
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Adaptive pruned-enriched population control scheme

Given the current population (θt ,wt), adjusting the values of the
importance weights and the population size to suitable ranges
involves the following scheme. Let (xt,i ,wt,i ) be the ith individual
state of the population, let nt and n′t denote the current and new
population sizes, let Wlow ,t and Wup,t denote the lower and upper
weight control bounds, let nmin and nmax denote the minimum and
maximum population size allowed by the user, and let nlow and nup
denote the lower and upper reference bounds of the population
size.
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1. (Initialization) Initialize the parameters Wlow ,t and Wup,t by

Wlow ,t =
nt∑
i=1

wt,i/nup, Wup,t =
nt∑
i=1

wt,i/nlow .

Set n′t = 0 and λ > 1. Do steps 2–4 for i = 1, 2, · · · , nt .
2. (Pruned) If wt,i < Wlow ,t , prune the state with probability

q = 1− wt,i/Wlow ,t . If it is pruned, drop (xt,i ,wt,i ) from (xt ,wt);
otherwise, update (xt,i ,wt,i ) as (xt,i ,Wlow ,t) and set n′t = n′t + 1.

3. (Enriched) If wt,i > Wup,t , set d = [wt,i/Wup,t + 1], w ′
t,i = wt,i/d ,

replace (xt,i ,wt,i ) by d identical states (xt,i ,w
′
t,i ), and set

n′t = n′t + d , where [z ] denotes the integer part of z .

4. (Unchanged) If Wlow ,t ≤ wt,i ≤Wup,t , keep (xt,i ,wt,i ) unchanged,
and set n′t = n′t + 1.

5. (Checking) If n′t > nmax, set Wlow ,t ← λWlow ,t , Wup,t ← λWup,t

and n′t = 0, do step 2–4 again for i = 1, 2, · · · , nt . If n′t < nmin, set
Wlow ,t ←Wlow ,t/λ, Wup,t ←Wup,t/λ and n′t = 0, do step 2–4
again for i = 1, 2, · · · , nt . Otherwise, stop.
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Dynamically Weighted Importance Sampling (scheme-R)

▶ Dynamic weighting: Apply the R-type move to the population
(xt−1,wt−1). If Wup,t−1 ≤Wc , then set θt = 1. Otherwise,
set θt = 0. The new population is denoted by (x ′

t ,w ′
t).

▶ Population Control: Apply APEPCS to (x ′
t ,w ′

t). The new
population is denoted by (xt ,wt).
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Dynamically Weighted Importance Sampling (scheme-W )

▶ Preweight control: If nt−1 < nlow , then set
Wlow ,t = Wlow ,t−1/λ and Wup,t = Wup,t−1/λ. If nt−1 > nup,
then set Wlow ,t = λWlow ,t−1 and Wup,t = λWup,t−1.
Otherwise, set Wlow ,t = Wlow ,t−1 and Wup,t = Wup,t−1.

▶ Dynamic weighting: Apply the W -type move to the
population (xt−1,wt−1) with δt = 1/(α+ βW 1+ϵ

up,t ) for some
ϵ > 0. The new population is denoted by (x ′

t ,w ′
t).

▶ Population Control: Apply APEPCS to (x ′
t ,w ′

t). The new
population is denoted by (xt ,wt).
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Weight Behavior Analysis

To analyze the weight behavior of the DWIS, we first introduce the
following lemma.

Lemma 5
Let π(x0) denote the marginal equilibrium distribution under
transition T and let π(x0, x1) = π(x0)× T (x0, x1) and
r(x0, x1) = π(x1, x0)/π(x0, x1) be the MH ratio. Then

e0 = Eπ log r(x0, x1) ≤ 0,

where the equality holds when it induces a reversible Markov chain,
that is, π(x0, x1) = π(x1, x0).
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For simplicity, let (xt ,wt) denote an individual state of the
population (xt ,wt). When δt ≡ 0 and θt ≡ 0, the weights of the
W -type move and the R-type move evolve as

logwt = logwt−1 + log r(xt−1, xt),

which results in

logwt = logw0 +
t∑

s=1

log r(xs−1, xs). (11)

Following from Lemma 5 and the ergodicity theorem (under
stationarity),

1

t

t∑
s=1

log r(xs−1, xs)→ e0 < 0, a.s. (12)

as t →∞. Hence, wt will go to 0 almost surely as t →∞.
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Scheme-R

When θt ≡ 1, the expectation of wt , conditional on xt−1, xt and
wt−1, can be calculated as

E [wt |xt−1, xt ,wt−1] = (rd + 1)
rd

rd + 1
+ wt−1(rd + 1)

1

rd + 1

= rd + wt−1

= wt−1[1 + r(xt−1, xt)].

(13)

Since r(xt−1, xt) ≥ 0, the weight process {wt} is driven by an
inflation drift. Hence, wt will go to infinity almost surely as t
becomes large.
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To prevent the weight process from going to 0 or ∞, scheme-R
alters the use of θt = 0 and θt = 1. When Wup,t > Wc , θt is set
to 0, so the weight process of scheme-R can be bounded above by

logwt = logw0 +
t∑

s=1

log r(xs−1, xs)−
t∑

s=1

log(ds),

provided that θ1 = · · · = θt = 0, where ds is a positive integer as
defined in the APEPCS.
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Moments of DWIS weights

The weight process of the two DWIS schemes can be characterized
by the following process:

Zt =

{
Zt−1 + log r(xt−1, xt)− log(dt), if Zt−1 > 0 ,

0, if Zt−1 < 0 ,
(14)

where there exists a constant C such that |Zt − Zt−1| ≤ C almost
surely. Let T0 = 0, Ti = min{t : t > Ti−1,Zt = 0}, and
Li = Ti − Ti−1 for i ≥ 1. From (12) and the fact that dt ≥ 1, it is
easy to see that Li is almost surely finite; that is, there exists an
integer M such that P(Li < M) = 1. This implies that for any
fixed η > 0,

E exp(ηZt) ≤ exp(ηMC ), a.s.
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This leads to the following theorem:

Theorem 6
Under the assumption (??), the importance weight in DWIS
almost surely has finite moments of any order.
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Suppose we are interested in simulating from a distribution
f ∝ (1, 1000, 1, 2000) with the transition matrix

T =


1
2

1
2 0 0

2
3 0 1

3 0
0 4

7 0 3
7

0 0 1
2

1
2

 .

This example characterizes the problem of simulation from a
multimodal distribution.
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Figure 5: Comparison of MH, dynamic weighting (DW) and DWIS for the
4-state example. (a) Time plot of standardized errors of f̂MH against
log-iterations. (b) Time plot of state transitions of the MH run. (c) Time
plot of standardized errors of f̂DW against log-iterations. (d) Time plot of
the log-weights collected at state 4 in the run of dynamic weighting. (e)
Time plot of standardized errors of f̂DWIS against log-iterations. (f) Time
plot of the log-weights collected at state 4 in the run of DWIS. (Liang,
2002b)
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