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Sequential parallel tempering

With the development of science and technology, we more and
more need to deal with high dimensional systems. For example, we
need to align a group of protein or DNA sequences to infer their
homology, identify a single-nucleotide polymorphism (SNP)
associated with certain disease from millions of SNPs, estimate the
volatility of asset returns to understand the price trend of the
option market, simulate from spin systems to understand their
physical properties, and etc. In these problems, the dimensions of
the systems often range from several hundreds to several
thousands or even higher, and the solution space are so huge that
Monte Carlo has been an indispensable tool for making inference
for them. How to efficiently sample from these high dimensional
systems puts a great challenge on the existing MCMC methods.
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For many problems the slow convergence is not due to the
multimodality, but the curse of dimensionality; that is, the number
of samples increase exponentially with dimension to maintain a
given level of accuracy. For example, the witch’s hat distribution
(Matthews, 1993) has only a single mode, but the convergence
time of the Gibbs sampler on it increases exponentially with
dimension. For this kind of problems, although the convergence
can be improved by the tempering-based or importance
weight-based algorithms to some extent, the curse of
dimensionality cannot be much reduced, as these samplers always
work in the same sample space.
To eliminate the curse of dimensionality, Liang (2003) provided a
sequential parallel tempering (SPT) algorithm, which makes use of
the sequential structure of high dimensional systems. As an
extension of parallel tempering, SPT works by simulating from a
sequence of systems of different dimensions. The idea is to use the
information provided by the simulation of low dimensional systems
as a clue for simulating high dimensional systems.
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A buildup ladder (Wong and Liang, 1997) comprises a sequence of
systems of different dimensions. Consider m systems with density
fi (xi ), where xi ∈ Xi for i = 1, . . . ,m. Typically,

dim(X1) < dim(X2) < · · · < dim(Xm),

The principle of buildup ladder construction is to approximate the
original system by a system with a reduced dimension, the reduced
system is again approximated by a system with a further reduced
dimension, until a system of a manageable dimension is reached;
that is, the corresponding system can be easily sampled using a
local updating algorithm, such as the MH algorithm or the Gibbs
sampler. The solution of the reduced system is then extrapolated
level by level until the target system is reached. For many
problems, the buildup ladder can be constructed in a simple way.
For example, for both the traveling salesman problem (Wong and
Liang, 1997) and the phylogenetic tree reconstruction problem
(Cheon and Liang, 2008), the build-up ladders were constructed by
the method of marginalization.
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Sequential Parallel Tempering

1. Local Updating: Update each xi independently by a local
updating algorithm for a few steps.

2. Between-level transition: Try between-level transitions for N
pairs of neighboring levels, with i being sampled uniformly on
{1, 2, · · · ,N} and j = i ± 1 with probability qe(i , j), where
qe(i , i + 1) = qe(i , i − 1) = 0.5 for 1 < i < N and
qe(1, 2) = qe(N,N − 1) = 1.
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The between-level transition involves two operations, namely,
projection and extrapolation. Two different levels, say, i and j , are
proposed to make the between level transition. Without loss of
generality, we assume that Xi ⊂ Xj . The transition is to
extrapolate xi (∈ Xi ) to x ′j (∈ Xj), and simultaneously project xj
(∈ Xj) to x ′i (∈ Xi ). The extrapolation and projection operators
are chosen such that the pairwise move (xi , xj) to (x ′i , x

′
j ) is

reversible. The transition is accepted with probability

min

{
1,

fi (x
′
i )fj(x

′
j )

fi (xi )fj(xj)

Te(x
′
i → xj)Tp(x

′
j → xi )

Te(xi → x ′j )Tp(xj → x ′i )

}
, (1)

where Te(· → ·) and Tp(· → ·) denote the extrapolation and
projection probabilities, respectively. For simplicity, the between
level transitions are only restricted to neighboring levels, i.e.,
|i − j | = 1.



7/18

Witch’s Hat distribution

The witch’s hat distribution has the density

πd(x) = (1− δ)

(
1√
2πσ

)d

exp

{
−
∑d

i=1(x̃i − θi )
2

2σ2

}
+ δIx∈C ,

where x = (x̃1, . . . , x̃d), d is dimension, C denotes the open
d-dimensional hypercube (0, 1)d , and δ, σ and θi ’s are known
constants. In the case of d = 2, the density shapes like a witch’s
hat with a broad flat brim and a high conical peak, so the
distribution is called the witch’s hat distribution. This distribution
is constructed by Matthews (1993) as a counterexample to the
Gibbs sampler, on which the mixing time of the Gibbs sampler
increases exponentially with dimension.
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As a test, Liang (2003) applied to SPT to simulate from πd(x),
with d = 5, 6, . . . , 15, δ = 0.05, σ = 0.05, and
θ1 = · · · = θd = 0.5. For each value of d , the build-up ladder was
constructed by setting fi (x) = πi (x) for i = 1, 2, · · · , d , where
πi (·) is the i-dimensional witch’s hat distribution, which has the
same parameter as πd(·) except for the dimension. In the local
updating step, each xi is updated iteratively by the MH algorithm
for i steps. At each MH step, one coordinate is randomly selected
and then proposed to be replaced by a random draw from
uniform(0,1). The between-level transition, say, between level i
and level i + 1, proceeds as follows:
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Table 1: Comparison of SPT and parallel tempering for the witch’s hat
distribution (Liang, 2003).

SPT PT
d1 Time2(s) α̂ SD(×10−4) Time2(s) α̂ SD(×10−4)

5 72.5 0.6546 8.5 58.8 0.6529 9.7
6 94.9 0.6540 9.1 84.7 0.6530 10.5
7 118.6 0.6541 9.2 115.6 0.6525 11.2
8 145.8 0.6530 9.3 152.4 0.6530 13.2
9 174.6 0.6534 9.2 190.8 0.6538 15.8

10 206.0 0.6533 9.4 236.7 0.6517 20.5
11 239.3 0.6528 9.3 711.7 0.6531 17.7
12 275.5 0.6525 9.9 847.7 0.6530 21.3
13 312.9 0.6532 9.7 996.1 0.6527 33.8
14 353.7 0.6531 10.0 1156.4 0.6506 47.5
15 397.4 0.6532 10.4 1338.0 0.6450 84.5
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Figure 1: Estimated running times T (SPT , d) (solid line) and T (PT , d)
(dotted line) for d = 5, 6, . . . , 15. (Liang, 2003)
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▶ Extrapolation: draw u ∼ unif (0, 1) and set x ′i+1 = (xi , u).

▶ Projection: set x ′i to be the first i coordinates of xi+1.

The corresponding extrapolation and projection probabilities are
Te(· → ·) = Tp(· → ·) = 1.
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Equi-energy sampler (Kou, Zhou and Wong, 2006)

Let f (x) ∝ exp{−H(x)}, x ∈ X , denote the target distribution,
where H(x) is called the energy function. Let
E0 < E1 < · · · < EN < ∞ denote a ladder of energy levels, and let
T0 < T1 < · · · < TN < ∞ denote a ladder of temperatures, where
E0 = −∞ and T0 = 1. Based on the two ladders, the equi-energy
sampler defines the trial distributions of the population by

fi (x) ∝ exp{−max(H(x),Ei )/Ti}, i = 0, 1, 2 . . . ,N. (2)

Thus, f0(x) corresponds to the target distribution.
Define Di = {x : H(x) ∈ [Ei ,Ei+1)} for i = 0, . . . ,N, where
EN+1 = ∞. Thus, D0,D1, . . . ,DN form a partition of the sample
space. Each Di is called an energy ring associated with the energy
ladder. Let I (x) denote the index of the energy ring that x belong
to; that is, I (x) = k if and only if H(x) ∈ [Ek ,Ek+1). The
equi-energy sampler consists of N + 1 stages:
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1. The equi-energy sampler begins with a MH chain {XN},
which targets the highest order distribution fN(x). After a
burn-in period of B steps, the sampler starts to group its

samples into energy rings D̂
(N)
i , i = 0, . . . ,N, where the

sample XN,j is grouped into D̂
(N)
i if I (XN,j) = i .

2. After a period of M steps, the equi-energy sampler starts to
construct a parallel MH chain {XN−1}, which targets the
second highest order distribution fN−1(x), while keeping the
chain {XN} running and updating. The chain {XN−1} is
updated with two types of moves, local MH move and
equi-energy jump, with respective probabilities 1−pee and pee .
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▶ Local MH move: Update the chain {XN−1} with a single MH
transition.

▶ Equi-energy jump: Let xN−1,t denote the current state of the
chain {XN−1}, and let k = I (xN−1,t). Choose y uniformly

from the energy ring hD
(N)
k , and accept y as the next state of

the chain {XN−1} with probability

min

{
1,

fN−1(y)fN(xN−1,t)

fN−1(xN−1,t)fN(y)

}
.

Otherwise, set xN−1,t+1 = xN−1,t .

After a burn-in period of B steps, the equi-energy sampler starts to

group its samples into different energy rings D̂
(N−1)
i ,

i = 0, 1, . . . ,N.
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3. After a period of another M steps, the equi-energy sampler
starts to construct another parallel MH chain {XN−2}, which
targets the third highest order distribution fN−2(x), while
keeping the chains {XN} and {XN−1} running and updating.
As for the chain {XN−1}, the chain {XN−2} is updated with
the local MH move and the equi-energy jump with respective
probabilities 1− pee and pee .

▶ · · · · · ·
N + 1. Repeat the above procedure until the level 0 has been

reached. Simulation at level 0 results in the energy rings D̂
(0)
i ,

which deposit samples for the target distribution f (x).
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Under the assumptions (i) the highest order chain {XN} is
irreducible and aperiodic, (ii) for i = 0, 1, . . . ,N − 1, the MH
transition kernel Ki of {Xi} connects adjacent energy rings in the
sense that for any j , there exist sets A1 ⊂ Dj , A2 ⊂ Dj , B1 ⊂ Dj−1

and B2 ⊂ Dj+1 with positive measure such that the transition
probabilities Ki (A1,B1) > 0 and Ki (A2,B2) > 0, and (iii) the
energy ring probabilities pij = Pfi (X ∈ Dj) > 0 for all i and j , Kou,
Zhou and Wong (2006) showed that each chain {Xi} is ergodic
with fi as its invariant distribution.
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It is clear that the equi-energy sampler stems from parallel
tempering, but different from parallel tempering in two respects.
The first difference is on the exchange operation, which is called
the equi-energy jump in the equi-energy sampler. In parallel
tempering, the current state of a lower order Markov chain is
proposed to be exchanged with the current state of a higher order
Markov chain. While, in the equi-energy sampler, the current state
of a lower order Markov chain is proposed to be replaced by a past,
energy-similar state of a higher order Markov chain. Since the two
states have similar energy values, the equi-energy jump has usually
a high acceptance rate, and this increases the interaction between
different chains. The second difference is on distribution tempering.
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Parallel tempering gradually tempers the target distribution, while
the equi-energy sampler tempers a sequence of low-energy
truncated distributions. It is apparent that simulation of the
low-energy truncated distribution reduces the chance of getting
trapped in local energy minima. As demonstrated by Kou, Zhou
and Wong (2006), the equi-energy sampler is more efficient than
parallel tempering. For example, for the multimodal example
studied in EMC, the equi-energy sampler can sample all the modes
within a reasonable CPU time, while parallel tempering fails to do
so.
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