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An actively pursued research direction for alleviating the local-trap
problem suffered by the Metropolis-Hastings (MH) algorithm is the
population-based MCMC, where a population of Markov chains are
run in parallel, each equipped with possibly different but related
invariant distributions. Information exchange between different
chains provides a means for the target chains to learn from past
samples, and this in turn improves the convergence of the target
chains.



Mathematically, the population-based MCMC may be described as
follows. In order to simulate from a target distribution f(x), one
simulates of an augmented system with the invariant distribution

N
Fxa, - xn) =[] ilx), (1)
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where (x1,...,xy) € XN, N is called the population size,

f(x) = fi(x) for at least one i € {1,2,..., N}, and those different
from f(x) are called the trial distributions in terms of importance
sampling. Different ways of specification of the trial distributions
and updating the population of Markov chains lead to different
algorithms, such as the adaptive direction sampling (Gilks et al.,
1994), conjugate gradient Monte Carlo (Liu, Liang and Wong,
2000), parallel tempering (Geyer, 1991; Hukushima and Nemoto,
1996), evolutionary Monte Carlo (Liang and Wong, 2000, 2001),
sequential parallel tempering (Liang, 2003), and equi-energy
sampler (Kou, Zhou and Wong, 2006).



Adaptive direction sampling

Adaptive direction sampling (ADS) (Gilks et al., 1994) is an early
population-based MCMC method, in which each distribution f;(x)
is identical to the target distribution, and at each iteration, one
sample is randomly selected from the current population to
undergo an update along a direction toward another sample
randomly selected from the remaining set of the current
population. An important form of the ADS is the snooker
algorithm.



Snooker Algorithm
1. Select one individual, say xgt), at random from the current

population x(t), The xét) is called the current point.

2. Select another individual, say x‘gt), from the remaining set of

the current population, i.e., {x,.(t) i # c}, and form a
direction e; = x{?) — x{. The individual x{?) is called the
anchor point.

3. Set y. = xgt)

density

+ rye¢, where r; is a scalar sampled from the

F(r) o< |0 + ree), (2)

where d is the dimension of x, and the factor |r|9! is derived

from a transformation Jacobian (Roberts and Gilks, 1994).

4. Form the new population x(t+t1) by replacing xgt) by y. and
leaving all other individuals unchanged (i.e., set x,-(t+1) = x,.(t)

for i # ¢).



To show the sampler is proper, we need to show that at the
equilibrium the new sample y. is independent of the x,-(t) for i # a
and is distributed as f(x). This fact follows directly from the
following lemma, which is a generalized version of Lemma 3.1 of
Roberts and Gilks (1994) and was proved by Liu, Liang and Wong

(2000).

Lemma 1

(Liu, Liang and Wong, 2000) Suppose x ~ m(x) and y is any fixed
point in a d-dimensional space. Let e = x — y. If r is drawn from
distribution f(r) o< |r|?"1x(y + re), then x' = y + re follows the
distribution 7(x). If y is generated from a distribution independent
of x, then x' is independent of y.



Conjugate gradient Monte Carlo (Liu, Liang and Wong,
2000)

Let x(t) = (xl(t), . ,x,(vt)) denote the current population of
samples. One iteration of the CGMC sampler consists of the
following steps.

1. Select one individual, say xét), at random from the current

population x(t)

2. Select another individual, say xgt), at random from the
remaining set of the population, i.e. {x,.(t) . i # c¢}. Starting
with x‘.f,t), conduct a deterministic search, using the conjugate
gradient method or the steepest descent method, to find a
local mode of f(x). Denote the local mode by 289, which is
called the anchor point.



3. Set y. = zgt) + ries, where e; = xét) — §t), and r; is a scalar
sampled from the density

F(r) o |r|@ (D + reey), (3)

where d is the dimension of x, and the factor |r|9! is derived
from the transformation Jacobian.

. Form the new population x(t*1) by replacing xgt) by y. and
leaving other individuals unchanged (i.e., set xl.(t“) = x,.(t) for

i #c).



The gradient-based optimization procedure performed in step 2
can be replaced by some other optimization procedures, for
example, a short run of simulated annealing (Kirkpatrick et al.,
1983). Since the local optimization step is usually expensive in
computation, Liu, Liang and Wong (2000) proposed the
multiple-try MH algorithm for the line sampling step, which
enables effective use of the local modal information of the
distribution and thus improve the convergence of the algorithm.



Sample MH Algorithm

(Lewandowski and Liu, 2008)

In adaptive direction sampling and conjugate gradient Monte
Carlo, when updating the population, one first selects an individual
from the population and then updates the selected individual using
the standard Metropolis-Hastings procedure. If the candidate state
is of high quality relative to the whole population, one certainly
wants to keep it in the population. However, the acceptance of the
candidate state depends on the quality of the individual that is
selected for updating. To improve the acceptance rate of high
quality candidates and to improve the set {x,.(t) ci=1,...,N} as a
sample of size N from f(x), Lewandowski and Liu (2008) proposed
the sampling Metropolis-Hastings (SMH) algorithm.



Sample MH Algorithm

» Take one candidate draw XO ) from a proposal distribution g(x) on
X, and compute the acceptance probability
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where i is chosen from (1, ..., n) with the probability weights

giq?)  g(x)
F) ) )

Thus, x;41 and x; differ by one element at most.




It is easy to see that in the case of N = 1, SMH reduces to the
traditional MH with independence proposals. The merit of SMH is
that to accept a candidate state, it compares the candidate with
the whole population, instead of a single individual randomly
selected from the current population. Lewandowski and Liu (2008)
show that SMH will converge under mild conditions to the target
distribution H,N:1 f(x;) for {x1,....,xn}, and can be more efficient
than the traditional MH and adaptive direction sampling.



Parallel tempering(Geyer, 1991)

Parallel tempering simulates in parallel a sequence of distributions
fi(x) cexp(—=H(x)/T;), i=1,...,n, (4)

where T; is the temperature associated with the distribution f;(x).
The temperatures form aladder 1y > To > --- > T,_1 > T, =1,
so fo(x) = f(x) corresponds to the target distribution. The idea
underlying this algorithm can be explained as follows: Raising
temperature flattens the energy landscape of the distribution and
thus eases the MH traversal of the sample space, the high density
samples generated at the high temperature levels can be
transmitted to the target temperature level through the exchange
operations, and this in turn improves convergence of the target
Markov chain.



Let x(t) = (xl(t), . ,x,(vt)) denote the current population of
samples. One iteration of parallel tempering consists of the
following steps.

1. Parallel MH step: Update each x,-(t) to x,-(tH) using the MH
algorithm.

2. State swapping step: Try to exchange x,.(t+1) with its
neighbors: Set j =i — 1 or i + 1 according to probabilities

Ge(i,j), where qe(i,i+1) =qe(i,i—1)=05for 1 <i< N
and ge(1,2) = ge(N, N — 1) = 1, and accept the swap with
probability

min {1, exp ([H(x}””) - H(xj(tﬂ))} [; - %D } . (5)



Evolutionary Monte Carlo

The genetic algorithm (Holland, 1975) has been successfully
applied to many hard optimization problems, such as the traveling
salesman problem, protein folding, machine learning, among
others. It is known that its crossover operator is the key to the
power of the genetic algorithm, which makes it possible to explore
a far greater range of potential solutions to a problem than
conventional optimization algorithms. Motivated by the genetic
algorithm, Liang and Wong (2000, 2001) proposed the
evolutionary Monte Carlo algorithm (EMC), which incorporates
most attractive features of the genetic algorithm into the
framework of Markov chain Monte Carlo.



EMC works in a fashion similar to parallel tempering: A population
of Markov chains are simulated in parallel with each chain having a
different temperature. The difference between the two algorithms
is that EMC includes a genetic operator, namely, the crossover
operator in its simulation. The numerical results indicate that the
crossover operator improves the convergence of the simulation and
that EMC can outperform parallel tempering in almost all
scenarios.



Suppose the target distribution of interest is written in the form
f(x) o exp{—H(x)}, x € X CRY,

where the dimension d > 1, and H(x) is called the fitness function
in terms of genetic algorithms. Let x = {x1,...,xy} denote a
population of size N with x; from the distribution with density

fi(x) o< exp{—H(x)/ T;}.

In terms of genetic algorithms, x; is called a chromosome or an
individual, each element of x; is called a gene, and a realization of
the element is called a genotype. As in parallel tempering, the
temperatures form a decreasing ladder 71 > T > --- > Ty =1,
with fy(x) being the target distribution.



Mutation

The mutation operator is defined as an additive
Metropolis-Hastings move. One chromosome, say xx, is randomly
selected from the current population x. A new chromosome is
generated by adding a random vector e so that

Yk = Xk + ek, (6)

where the scale of e, is chosen such that the operation has a
moderate acceptance rate, e.g., 0.2 to 0.5, as suggested by
Gelman, Roberts and Gilks (1996). The new population
y={x1, ", Xk—1, Yk, Xk+1, " - - s Xn} is accepted with probability
min(1,ry), where

, ) Tlxly) _ exp{_H(Yk) - H(Xk)} T(x|y)
" f(x) T(ylx) Tk T(ylx)’

and T(+|) denotes the transition probability between populations.

(7)



Crossover

One type of crossover operators that works for the real-coded
chromosomes is the so-called “real crossover”, which includes the
k-point and uniform crossover operators. They are called real
crossover by Wright (1991) to indicate that they are applied to
real-coded chromosomes.

In addition to the real crossover, Liang and Wong (2001a)
proposed the snooker crossover operator, which works as follows:



. Randomly select one chromosome, say x;, from the current
population x.

. Select the other chromosome, say x;, from the sub-population
x \ {x;} with a probability proportional to exp{—H(x;)/ T},
where T; is called the selection temperature.

. Let e = x;i — xj, and y; = x; + re , where r € (—00,0) is a
random variable sampled from the density

f(r) o« \r\d_lf(xj- + re). (8)

. Construct a new population by replacing x; with the
“offspring” y;, and replace x by y.



Exchange

This operation is the same as that used in parallel tempering
(Geyer, 1991; Hukushima and Nemoto, 1996). Given the current
population x and the temperature ladder t,

(x,t) = (x1, T1,- ,xn, Tn), one tries to make an exchange
between x; and x; without changing the t's. The new population is
accepted with probability min(1,r.),

G0 Tt ~ = e = e (- 7 )} 0

Typically, the exchange is only performed on neighboring
temperature levels.




The Algorithm

Based on the operators described above, the algorithm can be
summarized as follows. Given an initial population

x ={x1, -+ ,xn} and a temperature ladder t = {T1, Tp,---, Tn},
EMC iterates between the following two steps:

1. Apply either mutation or crossover operator to the population
with probability g, and 1 — g, respectively. The g, is called
the mutation rate.

2. Try to exchange x; with x; for N pairs (i, j) with i being
sampled uniformly on {1,--- | N} and j = i+ 1 with
probability ge(/,j), where ge(i,i + 1) = ge(i,i —1) = 0.5 and
ge(1,2) = qe(N,N - 1) = 1.



Consider simulating from a 2D mixture normal distribution

1 20

0= oy 2 exp{ g (x — i) (x— )}, (10)

where 0 = 0.1, wg = --- = wpg = 0.05. The mean vectors u1, u2,
-++, 20 (given in Table 1) are uniformly drawn from the rectangle
[0,10] x [0, 10]. Among them, components 2, 4, and 15 are well
separated from the others. The distance between component 4 and
its nearest neighboring component is 3.15, and the distance
between component 15 and its nearest neighboring component
(except component 2) is 3.84, which are 31.5 and 38.4 times of
the standard deviation, respectively. Mixing the components across
so long distances puts a great challenge on EMC.



Table 1: Mean vectors of the 20 components of the mixture normal
distribution (Liang and Wong, 2001).

ko pkr pk2 |k ok pk2 |k ik pko |k pkr pk2
1 218 5.76 6 325 347 |11 541 265 |16 4.93 1.50
2 8.67 9.59 7 170 0501|12 270 788 |17 1.83 0.09
3 424 8.48 8 459 560 |13 498 3.70| 18 226 0.31
4 841 1.68 9 691 581 |14 1.14 239 |19 554 6.86
5 393 882|10 6.87 540 (|15 833 950 |20 1.69 8.11




(a) evolutionary sampling (b) parallel tempering
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Figure 1: The sample path of the first 10000 iterations at temperature
t =1. (a) EMC. (b) Parallel tempering. (Liang and Wong, 2001a)



(a) evolutionary sampling (b) parallel tempering
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Figure 2: The plot of whole samples. (a) EMC. (b) Parallel tempering.
(Liang and Wong, 2001a)



Table 2: Comparison of EMC and parallel tempering for the mixture

normal example. (Liang and Wong, 2001)

parameter | true value EMC-A EMC-B PT
est. SD est. SD est. SD
1 4.48 448 0.004 | 444 0.026 | 3.78 0.032
7% 491 491 0.008 | 4.86 0.023 | 4.34 0.044
Y11 5.55 555 0.006 | 5.54 0.051 | 3.66 0.111
P 9.86 9.84 0.010 | 9.78 0.048 | 8.55 0.049
Y1 2.61 259 0.011 | 258 0.043|1.29 0.084
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