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Slice sampler:

Suppose that one is interested in sampling from a density f (x),
x ∈ X . Recall that sampling x ∼ f (x) is equivalent to sampling
uniformly from the area under the graph f (x):

A = {(x , u) : 0 ≤ u ≤ f (x)},

which is the basis of the acceptance-rejection algorithm described
in §??. To achieve this goal, one can augment the target
distribution by an auxiliary variable U, which, conditional on x , is
uniformly distributed on the interval [0, f (x)]. Therefore, the joint
density function of (X ,U) is

f (x , u) = f (x)f (u|x) ∝ 1(x ,u)∈A,

which can be sampled using the Gibbs sampler as follows:
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Slice Sampler

▶ Draw ut+1 ∼ Uniform[0, f (xt)].

▶ Draw xt+1 uniformly from the region {x : f (x) ≥ ut+1}.
This sampler is called the slice sampler by Higdon (1998), which
potentially can be more efficient than the simple MH algorithm for
the multimodal distributions, due to the free
between-mode-transitions within a slice (as illustrated by Figure 1).
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Figure 1: The slice sampler for a multimodal distribution: Draw X |U
uniformly from the sets labeled by A, B and C .
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Edwards and Sokal (1988) noted that when f (x) can be
decomposed into a product of k distribution functions, i.e.,
f (x) ∝ f1(x)× f2(x)× · · · × fk(x), the slice sampler can be easily
implemented. To sample from such a distribution, Edwards and
Sokal introduced k auxiliary variables, U1, . . . ,Uk , and proposed
the following algorithm:

▶ Draw u
(i)
t+1 ∼ Uniform[0, fi (xt)], i = 1, . . . , k .

▶ Draw xt+1 uniformly from the region

S = ∩k
i=1{x : fi (x) ≥ u

(i)
t+1}.

This algorithm is a generalization of the Swendsen-Wang algorithm
(Swendsen and Wang, 1987).
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Consider a 2-D Ising model with the Boltzmann density

f (x) ∝ exp

K
∑
i∼j

xixj

 , (1)

where the spins xi = ±1, K is the inverse temperature, and i ∼ j
represents the nearest neighbors on the lattice.
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When the temperature is high, this model can be easily simulated
using the Gibbs sampler (Geman and Geman, 1984): Iteratively
reset the value of each spin according to the conditional
distribution

P(xi = 1|xj , j ∈ n(i)) =
1

1 + exp{−2K
∑

j∈n(i)}
,

P(xi = −1|xj , j ∈ n(i)) = 1− P(xi = 1|xj , j ∈ n(i)),

(2)

where n(i) denotes the set of neighbors of spin i .
However, the Gibbs sampler slows down rapidly when the
temperature is approaching or below the critical temperature. This
is the so-called “critical slowing down”.
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Swendsen-Wang algorithm

As in slice sampling, the density (1) is rewritten in the form

f (x) ∝
∏
i∼j

exp{K (1 + xixj)} =
∏
i∼j

exp{βI (xi = xj)}, (3)

where β = 2K and I (·) is the indicator function, as 1 + xixj is
either 0 or 2. If we introduce auxiliary variables u = (ui∼j), where
each component ui∼j , conditional on xi and xj , is uniformly
distributed on [0, exp{βI (xi = xj)}], then

f (x ,u) ∝
∏
i∼j

I (0 ≤ ui∼j ≤ exp{βI (xi = xj)}).

In Swendsen and Wang (1987), ui∼j is called a “bond variable”,
which can be viewed as a variable physically sitting on the edge
between spin i and spin j .
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If ui∼j > 1, then exp{βI (xi = xj) > 1 and there must be xi = xj .
Otherwise, there is no constraint on xi and xj . Let bi∼j be an
indicator variable for the constraint. If xi and xj are constrained to
be equal, we set bi∼j = 1 and 0 otherwise. Note that for any two
“like-spin” (i.e., the two spins have the same values) neighbors,
they are bonded with probability 1− exp(−β). Based on the
configurations of u, we can “cluster” the spins according to
whether they are connected via a “mutual bond” (i.e., bi∼j = 1).
Then all the spins within the same cluster will have identical
values, and flipping all the spins in a cluster simultaneously will not
change the equilibrium of f (x ,u).
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The Swendsen-Wang Algorithm

▶ Update bond values: Check all “like-spin” neighbors, and set
bi∼j = 1 with probability 1− exp(−β).

▶ Update spin values: Cluster spins by connecting neighboring
sites with a mutual bond, and then flip each cluster with
probability 0.5.

For the Ising model, the introduction of the auxiliary variable u has
the dependence between neighboring spins partially decoupled, and
the resulting sampler can thus converge substantially faster than
the single site updating algorithm. As demonstrated by Swendsen
and Wang (1987), this algorithm can eliminate much of the critical
slowing down.
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spatial autologistic model

Spatial models, e.g., the autologistic model, the Potts model, and
the autonormal model (Besag, 1974), have been used in modeling
of many scientific problems. A major problem with these models is
that the normalizing constant is intractable. Suppose we have a
dataset X generated from a statistical model with the likelihood
function

f (x |θ) = 1

Z (θ)
exp{−U(x , θ)}, x ∈ X , θ ∈ Θ, (4)

where θ is the parameter, and Z (θ) is the normalizing constant
which depends on θ and is not available in closed form. Let f (θ)
denote the prior density of θ. The posterior distribution of θ given
x is then given by

f (θ|x) ∝ 1

Z (θ)
exp{−U(x , θ)}f (θ). (5)
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Let y denote the auxiliary variable, which shares the same state
space with x . Let

f (θ, y |x) = f (x |θ)f (θ)f (y |θ, x), (6)

denote the joint distribution of θ and y condional on x , where
f (y |θ, x) is the distribution of the auxiliary variable y .
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To simulate from (6) using the MH algorithm, one can use the
proposal distribution

q(θ′, y ′|θ, y) = q(θ′|θ, y)q(y ′|θ′), (7)

which corresponds to the usual change on the parameter vector
θ → θ′, followed by an exact sampling (Propp and Wilson, 1996)
step of drawing y ′ from q(·|θ′).
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If q(y ′|θ′) is set as f (y ′|θ), then the MH ratio can be written as

r(θ, y , θ′, y ′|x) = f (x |θ′)f (θ′)f (y ′|θ′, x)q(θ|θ′, y ′)f (y |θ)
f (x |θ)f (θ)f (y |θ, x)q(θ′|θ, y)f (y ′|θ′)

, (8)

where the unknown normalizing constant Z (θ) can be canceled.
To ease computation, Møller et al. further suggested to set the
proposal distributions q(θ′|θ, y) = q(θ′|θ) and
q(θ|θ′, y ′) = q(θ|θ′), and to set the auxiliary distributions

f (y |θ, x) = f (y |θ̂), f (y ′|θ′, x) = f (y ′|θ̂), (9)

where θ̂ denotes an estimate of θ, for example, which can be
obtained by maximizing a pseudo-likelihood function.
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The Møller Algorithm

▶ Generate θ′ from the proposal distribution q(θ′|θt).
▶ Generate an exact sample y ′ from the distribution f (y |θ′).
▶ Accept (θ′, y ′) with probability min(1, r), where

r =
f (x |θ′)f (θ′)f (y ′|θ̂)q(θt |θ′)f (y |θt)
f (x |θt)f (θt)f (y |θ̂)q(θ′|θt)f (y ′|θ′)

.

If it is accepted, set (θt+1, yt+1) = (θ′, y ′). Otherwise, set
(θt+1, yt+1) = (θt , yt).
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The exchange algorithm

▶ Propose θ′ ∼ q(θ′|θ, x).
▶ Generate an auxiliary variable y ∼ f (y |θ′) using an exact

sampler.

▶ Accept θ′ with probability min{1, r(θ, θ′, y |x)}, where

r(θ, θ′, y |x) = π(θ′)f (x |θ′)f (y |θ)q(θ|θ′)
π(θ)f (x |θ)f (y |θ′)q(θ′|θ)

. (10)
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The exchange algorithm can be viewed as an auxiliary variable
MCMC algorithm with the proposal distribution being augmented,
for which the proposal distribution can be written as

T (θ → (θ′, y)) = q(θ′|θ)f (y |θ′), T (θ′ → (θ, y)) = q(θ|θ′)f (y |θ).

This simply validates the algorithm, following the arguments for
auxiliary variable Markov chains made in previous lectures.
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Monte Carlo Metropolis-Hastings Algorithm (Liang and
Jin, 2010)

Let θt denote the current draw of θ by the algorithm. Let

y
(t)
1 , . . . , y

(t)
m denote the auxiliary samples simulated from the

distribution f (y |θt). The MCMH algorithm works by iterating
between the following steps:

1. Draw ϑ from some proposal distribution Q(θt , ϑ).

2. Estimate the normalizing constant ratio
R(θt , ϑ) = κ(ϑ)/κ(θt) by

R̂m(θt , yt , ϑ) =
1

m

m∑
i=1

g(y
(t)
i , ϑ)

g(y
(t)
i , θt)

,

where g(y , θ) = exp{−U(y , θ)}, and yt = (y
(t)
1 , . . . , y

(t)
m )

denotes the collection of the auxiliary samples.
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3. Calculate the Monte Carlo MH ratio

r̃m(θt , yt , ϑ) =
1

R̂m(θt , yt , ϑ)
g(x , ϑ)f (ϑ)

g(x , θt)f (θt)

Q(ϑ, θt)

Q(θt , ϑ)
,

where f (θ) denotes the prior distribution imposed on θ.

4. Set θt+1 = ϑ with probability
α̃(θt , yt , ϑ) = min{1, r̃m(θt , yt , ϑ)}, and set θt+1 = θt with
the remaining probability.

5. If the proposal is rejected in step 4, set yt+1 = yt . Otherwise,
draw samples yt+1 = (y

(t+1)
1 , . . ., y

(t+1)
m ) from f (y |θt+1)

using either a MCMC algorithm or an automated rejection
sampling algorithm.
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Since the algorithm involves a Monte Carlo step to estimate the
unknown normalizing constant ratio, it is termed as “Monte Carlo
MH”. Clearly, the samples {(θt , yt)} forms a Markov chain, for
which the transition kernel can be written as

P̃m(θ, y ; dϑ, dz) = α̃(θ, y , ϑ)Q(θ, dϑ)f mϑ (dz)

+ δθ,y (dϑ, dz)
[
1−

∫
Θ×Y

α̃(θ, y , ϑ)Q(θ, dϑ)f mθ (dy)
]
,

(11)

where f mθ (y) = f (y1, . . . , ym|θ) denotes the joint density of
y1, . . . , ym.
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However, since here we are mainly interested in the marginal law of
θ, in what follows we will consider only the marginal transition
kernel

P̃m(θ, dϑ) =

∫
Y
α̃(θ, y , ϑ)Q(θ, dϑ)f mθ (dy)

+ δθ(dϑ)
[
1−

∫
Θ×Y

α̃m(θ, y , ϑ)Q(θ, dϑ)f mθ (dy)
]
,

(12)

showing that P̃m(θ, dϑ) will converge to the posterior distribution
f (θ|x) when m is large and the number of iterations goes to
infinity.
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Monte Carlo MH Algorithm II

1. Draw ϑ from some proposal distribution Q(θt , ϑ).

2. Draw auxiliary samples yt = (y
(t)
1 , . . . , y

(t)
m ) from f (y |θt)

using a MCMC algorithm.

3. Estimate the normalizing constant ratio
R(θt , ϑ) = κ(ϑ)/κ(θt) by

R̂m(θt , yt , ϑ) =
1

m

m∑
i=1

g(y
(t)
i , ϑ)

g(y
(t)
i , θt)

.



23/26

4. Calculate the Monte Carlo MH ratio

r̃m(θt , yt , ϑ) =
1

R̂m(θt , yt , ϑ)
g(x , ϑ)f (ϑ)

g(x , θt)f (θt)

Q(ϑ, θt)

Q(θt , ϑ)
.

5. Set θt+1 = ϑ with probability
α̃(θt , yt , ϑ) = min{1, r̃m(θt , yt , ϑ)} and set θt+1 = θt with the
remaining probability.
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Convergence of the MCMH sampler

(A1) Assume that P defines an irreducible and aperiodic Markov
chain such that πP = π, and for any θ0 ∈ Θ,
limk→∞ ∥Pk(θ0, ·)− π(·)∥ = 0.

(A2) For any (θ, ϑ) ∈ Θ×Θ,

γm(θ,u, ϑ) > 0, f mθ (·)− a.s.

(A3) For any θ ∈ Θ and any ϵ > 0,

lim
m→∞

Q (θ, f mθ (λm(θ,u, ϑ) > ϵ)) = 0,

where

Q (θ, f mθ (λm(θ,u, ϑ) > ϵ)) =

∫
{(ϑ,u):λm(θ,u,ϑ)>ϵ}

f mθ (du)Q(θ, dϑ).
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Theorem 1.

Assume (A1), (A2) and (A3) hold. For any ε ∈ (0, 1], there exist
M ∈ N and K ∈ N such that for any m > M and k > K

∥P̃k
m(θ0, ·)− π(·)∥ ≤ ε,

where π(·) denotes the posterior density of θ.
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Table 1: Computational results for the U.S. cancer mortality data (Liang
and Jin, 2010).

Algorithm Setting α̂ β̂ CPU

m = 20 −0.3018 (1.2× 10−3) 0.1232 (6.0× 10−4) 11
MCMH I m = 50 −0.3018 (1.1× 10−3) 0.1230 (5.3× 10−4) 24

m = 100 −0.3028 (6.7× 10−4) 0.1225 (3.8× 10−4) 46

m = 20 −0.3028 (1.2× 10−3) 0.1226 (5.9× 10−4) 26
MCMH II m = 50 −0.3019 (1.0× 10−3) 0.1228 (5.3× 10−4) 63

m = 100 −0.3016 (8.2× 10−4) 0.1231 (3.8× 10−4) 129

Exchange — −0.3015 (4.3× 10−4) 0.1229 (2.3× 10−4) 33
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