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Difficulties with MH algorithm

The MH algorithm suffers from two difficulties:

▶ The local-trap problem;

▶ Inability to sample from distributions with intractable
integrals.

The local-trap problem refers to that in simulations of a complex
system whose energy landscape is rugged, the sampler gets
trapped in a local energy minimum indefinitely, rendering the
simulation ineffective.
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Let f (x) ∝ c(x)ψ(x) denote a distribution of interest, where c(x)
denotes an intractable integral. Clearly, the MH algorithm cannot
be applied to sample from f (x), as the acceptance probability
would involve an unknown ratio c(x ′)/c(x), where x ′ denotes the
proposed value. This difficulty naturally arises in Bayesian inference
for many statistical models, such as spatial statistical models,
random effects models, and exponential random graph models.
To alleviate or overcome these two difficulties, various advanced
MCMC methods have been proposed in the literature, including
the auxiliary variable-based methods, the population-based
methods, importance weight-based methods, and stochastic
approximation-based methods, which will be described in the
followed lectures.
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Auxiliary variable MCMC Methods

Consider the problem of sampling from a multivariate distribution
with density function f (x). It is known that Rao-Blackwellization
(Bickel and Doksum, 2000) is the first principle of Monte Carlo
simulation: In order to achieve better convergence of the
simulation, one should try to integrate out as many components of
x as possible. However, sometimes, one can include one or more
additional variables in simulations to accelerate or facilitate the
simulations. This often occurs in two scenarios:
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▶ The target distribution f (x) is multimodal: An auxiliary
variable, such as temperature or some unobservable
measurement, is included in simulations to help the system to
escape from local-traps.

▶ The target distribution f (x) includes an intractable
normalizing constant: An auxiliary realization of X is included
in simulations to have the normalizing constants canceled in
simulations.
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The MH algorithm involves two basic components, the target
distribution and the proposal distribution. Accordingly, the
auxiliary variable methods can also be performed in two ways,
namely augmenting auxiliary variables to the target distribution
and augmenting auxiliary variables to the proposal distribution. We
refer to the former as the method of target distribution
augmentation and to the latter as the method of proposal
distribution augmentation.
The method of target distribution augmentation:

▶ Specify an auxiliary variable u and the conditional distribution
f (u|x) to form the joint distribution f (x , u) = f (u|x)f (x).

▶ Update (x , u) using the MH algorithm or the Gibbs sampler.

The samples of f (x) can then be obtained from the realizations,
(x1, u1), . . ., (xN , uN), of (X ,U) through marginalization or
projection.
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The method of proposal distribution augmentation:

▶ Specify a proposal distribution T (x ′, u|x) and its reversible
version T (x , u|x ′) such that

∫
T (x ′, u|x)du = T (x ′|x) and∫

T (x , u|x ′)du = T (x |x ′).
▶ Generate a candidate sample x ′ from the proposal T (x ′, u|x),

and accept it with probability min{1, r(x , x ′, u)}, where

r(x , x ′, u) =
f (x ′)

f (x)

T (x , u|x ′)
T (x ′, u|x)

.

Repeat this step to generate realizations x1, . . . , xN , which will
be approximately distributed as f (x) when N becomes large.
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The validity of this method can be shown as follows. Let

K (x ′|x) =
∫
U
s(x , x ′, u)g(u)du+I (x = x ′)[1−

∫
X

∫
U
s(x , x∗, u)g(u)dudx∗],

(1)
denote the integrated transitional kernel from x to x ′, where
s(x , x ′, u) = T (x ′, u|x) r(x , x ′, u), and I (·) is the indicator
function. Then

f (x)

∫
U
s(x , x ′, u)g(u)du =

∫
U
min{f (x ′)T (x , u|x ′), f (x)T (x ′, u|x)}g(u)du,

(2)

which is symmetric about x and x ′. This implies
f (x)K (x ′|x) = f (x ′) K (x |x ′).
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Simulated Annealing

Suppose that one aims to find the global minimum of an objective
function H(x), which is also called the energy function in the
standard terms of simulated annealing. By augmenting to the
system an auxiliary variable, the so-called temperature T ,
minimizing H(x) is equivalent to sampling from the Boltzmann
distribution f (x ,T ) ∝ exp(−H(x)/T ) at a very small value
(closing to 0) of T . In this sense, we say that sampling is more
basic than optimization.
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In order to sample successfully from f (x ,T ) at a very small value
of T , Kirkpatrick and co-authors suggested to simulate from a
sequence of Boltzmann distributions, f (x ,T1), . . . , f (x ,Tm), in a
sequential manner, where the temperatures form a decreasing
ladder T1 > T2 > · · · > Tm with Tm ≈ 0 and T1 being reasonably
large such that most uphill MH moves at that level can be
accepted. The simulation at high temperature levels aims to
provide a good initial sample, hopefully a point in the attraction
basin of the global minimum of H(x), for the simulation at low
temperature levels.



11/15

Simulated Annealing Algorithm

▶ Initialize the simulation at temperature T1 and an arbitrary
sample x0.

▶ At each temperature Ti , simulate of the distribution f (x ,Ti )
for Ni iterations using a MCMC sampler. Pass the final sample
to the next lower temperature level as the initial sample.
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Simulated Tempering

Suppose that it is of interest to sample from the distribution
f (x) ∝ exp(−H(x)), x ∈ X . As in simulated annealing, simulated
tempering (Marinari and Parisi, 1992; Geyer and Thompson, 1995)
augments the target distribution to f (x ,T ) ∝ exp(−H(x)/T ) by
including an auxiliary variable T , called temperature, which takes
values from a finite set pre-specified by the user.
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Simulated Tempering

Simulated Tempering

▶ Draw a random number U ∼ Uniform[0, 1], and determine the
value of j according to the proposal transition matrix (qij).

▶ If j = it , let it+1 = it and let xt+1 be drawn from a MH kernel
Kit (x , y) which admits f (x ,Tit ) as the invariant distribution.

▶ If j ̸= it , let xt+1 = xt and accept the proposal with probability

min

{
1,

Ẑj

Ẑit

exp

{
−H(x)(

1

Tj
− 1

Tit

)

}
qj ,it
qit ,j

}
,

where Ẑi denotes an estimate of Zi . If it is accepted, set
it+1 = j . Otherwise, set it+1 = it .
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Issues on Simulated Tempering

▶ Choice of the temperature ladder: The highest temperature
T1 should be set such that most of the uphill moves can be
accepted at that level. The intermediate temperatures can be
set in a sequential manner: Start with T1, and sequentially set
the next lower temperature such that

Vari (H(x))δ2 = O(1), (3)

where δ = 1/Ti+1 − 1/Ti , and Vari (·) denotes the variance of
H(x) taken with respect to f (x ,Ti ). This condition is
equivalent to requiring that the distributions f (x ,Ti ) and
f (x ,Ti+1) have considerable overlap. In practice, Vari (H(x))
can be estimated roughly through a preliminary run of the
sampler at level Ti .
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▶ Estimation of Zi ’s: This is the key to the efficiency of
simulated tempering. If the Zi ’s are well estimated, simulated
tempering will perform like a “symmetric random walk” along
the temperature ladder (if ignoring the x-updating steps).
Otherwise, it may get stuck at a certain temperature level,
rendering a failure of the simulation. In practice, the Zi ’s can
be estimated using the stochastic approximation Monte Carlo
method (Liang et al., 2007; Liang, 2005). Alternatively, the
Zi ’s can be estimated using the reverse logistic regression
method as suggested by Geyer and Thompson (1995).


	Lecture 4: Markov Chain Monte Carlo

