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Why do we need MCMC?

For some problems, the exact sampler is not available or very
expensive, we have to resort to MCMC for simulating some
approximate samples for inference.

Some convergence theorems (Tierney, 1994)

Theorem 1
Suppose {X,} is an irreducible, aperiodic Markov chain with
transition kernel P and invariant distribution . Then

[P"(x,") ==(-)| =0
for m-almost all x.

Theorem 2
Suppose {X,} is an irreducible Markov chain with transition kernel
P and invariant distribution m, and let h be a real-valued function
such that E;|h(x)| < co. Then P(h(x) — E;h(x)) = 1, for

1

m-almost all x, where h(x) = X 3" | h(x;).



How to constrcut such a Markov chain with the desired invariant
distribution 7(x)?
General Metropolis-Hastings Recipe

> Start with any x(°) and a proposal distribution T(- — -).

» Compute the ratio

L 7ly) Ty —x)
N 7r(x(t)) T(x(t) —y)

» Accept/Rejection decision:

L+ _ 1Y with p = min(1, r)
x(1)  otherwise



Why Does It Work?

It satisfies the detailed balance condition:

)Tl ),
m(x)T(x = y)

=min{n(x)T(x = y),7(y)T(y — x)}

m(x)T(x = y)
m(y)T(y = x)

m(x)T(x — y)min{1,

=m(y)T(y — x) min{1, }

Write P(x,y) = T(x — y)min{1, ﬂ(i);g:;)} then we have

m(x)P(x,y) = 7(y)P(y, x),

and

[ 7Py = [ )Py x)de = 7).

i.e., m(x) is invariant for the Markov chain.



Summary:

In the standard Markov chain theory, if the chain is irreducible,
aperiodic [this is almost sure for the Metropolis-Hastings algorithm,
(Tierney, 1994) ], and possesses an invariant distribution, then the
chain will become stationary at its traget distribution 7(x).

Therefore, if we run the chain long enough, the samples
Xto+1, - - - XT (after a burin-in period of ty iterations), can be
regarded as approximately following the target distribution 7(x).



Proposal distribution
» Independence sampler:
T(X,Y) = q(Y)
In this case, the Metropolis ratio is

o TW)alx) _ wly)

- m(x)aly)  w(x)’

where w(y) = m(y)/q(y).
» Random-walk proposal:

T(X,Y)=q(Y — X).
This is very popular, for example,

Y|X ~ N(X,c?).



Example: Metropolis-Hastings algorithm

e The moves are very “local”.

e Tend to be trapped in a local mode.
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Gibbs sampler

e Purpose: Draw from a joint distribution m(xi, ..., xk).

e Method: lterative conditional sampling
VI., Draw Xj ~ 7T(X,'|X[_,-]).

Example: Simulating m(x1, ..., xk).
Given the current sample x* = (x{,..., x{),
> Draw x{tt ~ w(xt|xs, ..., x});
> draw xi Tt ~ Tl T L xE):;
> ...
> draw X,f+1 ~ (XL ,X,ffi)

Alternatively, x1,...,xx can be updated in a random order.



lllustrating the Gibbs sampler

e Suppose the target distribution is

(x,y) ~ N(p, ),

_ (9 _ (1 »r
Whereu—<0>,and2—<p 1>.

e Gibbs sampler:
> [X|Y =yl ~ N(py,1-p?)
> [YIX = x] ~ N(px, 1 - p?)
Start form, say, (X, Y) = (10, 10), we can take a look at the
trajectories. We took p = 0.6.
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Why does the Gibbs sampler work?

Compute the Metropolis ratio:

m(x, y)mlylx

(x; )
lx, y)?f( *x)
_ mxy)n(x,y)
( )

m(x y)?T(

/7(x)
/

[y

A special case of the Metropolis-Hastings algorithm!



Data Augmentation

The DA algorithm can be described in the context of Bayesian
analysis of incomplete data.

» X,..: the observed data
> X.i: the missing-data
» Xeom = (Xobs, Xunis): the complete data



Suppose that the complete-data model has density g(X,ns, Xumis|0)
with the parameter # € © C RY for some positive integer d. The
objective is to make Bayesian inference with a prior distribution
p(6) for the parameter 6. Let f(X,..|0) be the observed-data
model, i.e.,

F(Xl6) = / g Xon|)dX,oe  (6€0) (1)
X

mis

For Bayesian inference about 6 using MCMC methods, it requires
to sampling the true or observed-data posterior

P(O1Xops) o< f(Xonsl0)p(0) (0 € ©) (2)
or more generally the joint distribution of 6 and X,

p(07 Xmis

Xobs) X &(Xobs, Xunis|0)p(0) (0 €0) (3)



Let h(Xuic|0, Xobs) be the conditional distribution of X, given 6
and X,,.. Suppose that both h(X,;|0, X,s) and

P(0] Xobss Xinis) X &(Xons, Xmis|@)p(0) are easy to draw samples
from. The two-step Gibbs sampler based on these two conditionals
becomes a natural choice and is known as the DA algorithm. More
precisely, the DA algorithm can be summarized as follows.



The DA algorithm: a two-step Gibbs sampler

Take 6 € ©, and iterate fort = 1,2, ...
|-Step. Generate X . ( Xoio| 01 X00).

P-Step. Generate (1) ~ p(9\ obss Xinis) -
As a two-step Gibbs sampler, DA creates two interleaving Markov
chains {0() : t = 1,2, ...} and {X(t t=1,2,...}.

mis *



Consider a complete-data set consisting of a sample of n,

Y1, ..., Ya, from the p-dimensional multivariate normal distribution
Np(t, X) with unknown mean vector p € RP and p x p (positive
definite) covariance matrix X. Each component of Y; is either fully
observed or missing for each i = 1,...,n. Let YO(Q denote the
observed components and let Yn(]’lz the missing components of Y;.
The conditional distribution of Y() given Y7 and (u,X) is

. -1 )
YI$‘1)5 ‘( 7#’ z) Nd (Ysms)(ﬂ( ) +an)15 »obs {zggswobs} ()/ivmis _’ufrlx)ls))
(4)

Suppose that for Bayesian analysis, we use the prior distribution

plu, =) o [ (@HD/2, (5)

where g is a known integer. With g = p, this prior becomes the
the Jeffreys prior for .



Let Y =n"13" Yiandlet S=37 (Y= Y)(Yi— Y). The
complete-data posterior distribution p(u, X| Y1, ..., Y,) can be
characterized by

1 1 _
Z‘Y]_,...,Yn’\’ Wexp{—ztrace (Z 15)}3 (6)

that is, the inverse Wishart distribution, and
/‘L|za Yl, ) Yo ~ NP(?’ Z/n) (7)

Thus, the DA algorithm has the following | and P steps.
|-step. Fori=1,...,n, draw Y[(’lz from (4).

n

P-step. First draw ¥ from (6) given Y1, ..., Y, and
then draw p from (7) given Y1, ..., Y, and ¥.



Convergence Diagnostic: Trace plot

» One intuitive and easily implemented diagnostic tool is a trace
plot, which plots the sample at time t against the iteration
number.

» A clear sign of non-convergence with a trace plot occurs when
we observe some trending in sample space.

» For the single modal distribution, the traceplot will move
snake around the mode after convergence.

» The problem with the trace plot is that it may appear we have

converged, however, the chain is actually trapped in a local
region rather exploring the full distribution.



Convergence Diagnostic: Gelman-Rubin Statistic

» Gelmans argues that the best way to identify non-convergence
is to simulate multiple sequences with over-dispersed starting
points.

» The inuition is that the behavior of all of the chains should be
basically the same. Or, the variance within the chain should
be the same as the variance across the chains.

» Formulas:

» Within chain variance W = P 1) > 121 ((xi — xi)2.
> Between chain variance B = = > (% — X)*.
> Estimated variance V = 1-Hw+ i

> Gelman-Rubin Statistic: R =/ V/W.

» The chain is considered as converged when R < 1.1 or 1.2.
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