Lecture 26: Time-Varying Dynamic Bayesian Network Learning for fMRI Data

Based on the joint work: L. Sun, A. Zhang, and F. Liang (2024), published in *Statistics in Medicine*.

Outline

- Motivation and Background
- 2 Modeling Framework
- Markov Neighborhood Regression (MNR)
- 4 Joint GGM + MNR for DBN Learning
- Synthetic Experiments
- 6 fMRI Emotion Processing Study
- Discussion and Conclusion

fMRI and BOLD Signals

- Functional MRI (fMRI) measures neuronal activity indirectly via blood oxygenation-level dependent (BOLD) signal.
- Typical fMRI study:
 - Many time points, many regions of interest (ROIs).
 - Massive multivariate time series.

Brain Connectivity from fMRI

- Nodes: ROIs (brain regions).
- Edges: statistical dependence or causal influence.
- Two main types of connectivity:
 - Functional connectivity: undirected; temporal correlation/dependence.
 - Effective connectivity: directed; information flow, causal influence.
- Goal: learn effective connectivity networks from task-based fMRI data.

Challenges

- High dimensionality:
 - Hundreds of ROIs \Rightarrow tens of thousands of potential edges.
- Time-varying structure:
 - Brain connectivity may change over the course of a task.
- Multi-subject data:
 - Many subjects, possibly missing time points.
- Existing approaches:
 - Vector Autoregressive Model, dynamic Bayesian networks, hidden Markov models.
 - Often assume stationarity or are not scalable in p or T.

Aim of the Paper

- Develop a method to learn time-varying dynamic Bayesian networks (DBNs) from high-dimensional, multi-subject fMRI data.
- Requirements:
 - Scalable in the number of ROIs p.
 - Allow time-varying connectivity.
 - Naturally handle multi-subject data.
 - Provide statistical guarantees (consistency).
- Application: emotion-processing task fMRI (Human Connectome Project).

Main Contributions

- Propose a two-stage method:
 - Joint Gaussian graphical model (JGGM) estimation across time.
 - Markov Neighborhood Regression (MNR) for dynamic DBN learning.
- Break DBN learning into a sequence of regression problems.
- Use graphical structure (Markov neighborhoods) to reduce dimension.
- Show consistency and good empirical performance.
- Apply to large-scale fMRI emotion-processing data; identify key roles for subcortical-cerebellum.

Task-Based fMRI Model

For subject *i* at time *t*:

$$oldsymbol{Y}_t^{(i)} = oldsymbol{\mu}^{(i)} + \sum_{k=1}^K oldsymbol{W}_k(t) \circ oldsymbol{\gamma}_k^{(i)} + oldsymbol{X}_t^{(i)},$$

- $\mathbf{Y}_t^{(i)} \in \mathbb{R}^p$: BOLD signal at p ROIs.
- ullet $\mu^{(i)}$: baseline mean.
- $W_k(t) \in \mathbb{R}^p$: design vector for stimulus k (HRF-convolved).
- $\gamma_k^{(i)} \in \mathbb{R}^p$: subject-specific activation coefficients.
- $\mathbf{X}_t^{(i)} \in \mathbb{R}^p$: residual process containing effective connectivity.

Stimulus Modeling via HRF

Each ROI-specific design component:

$$W_{rk}(t) = \int_0^t w_k(\tau) h_r(t-\tau) d\tau,$$

where

- $w_k(\tau)$: external stimulus function.
- $h_r(\cdot)$: hemodynamic response function (HRF).
- Use canonical HRF, common in motor, visual, and emotion tasks.
- In practice:
 - \bullet First estimate activation $\gamma_k^{(i)}$ using GLM (Friston et al.).
 - ullet Then regress out activation, and analyze residual $oldsymbol{X}_t^{(i)}$.

Time-Varying VAR for Effective Connectivity

Residual process:

$$m{X}_{t}^{(i)} = \sum_{l=1}^{L} m{A}_{t,l} m{X}_{t-l}^{(i)} + m{e}_{i}(t),$$

- $\mathbf{A}_{t,l} \in \mathbb{R}^{p \times p}$: time-varying transition matrices.
- L: lag order (typically small, e.g., L = 1 or 2).
- $e_i(t) \sim N_p(0, \Sigma)$, often Σ diagonal.
- Different components of X_t are conditionally independent given past, but generally dependent marginally.

Goal: infer time-varying directed edges encoded in $A_{t,l}$.

Dynamic Bayesian Network Interpretation

- The time-varying VAR defines a dynamic directed acyclic graph (DAG) over time.
- Directed Markov property:

$$X_{t,v} \perp \boldsymbol{X}_{t,an(v)\setminus pa(v)} \mid \boldsymbol{X}_{t,pa(v)}$$

- Assume:
 - Directed Markov property.
 - Faithfulness
- Resulting dynamic DAG encodes effective connectivity between ROIs.

High-Dimensional Regression Setup

• Classical model:

$$Y = \beta_0 + X_1 \beta_1 + \dots + X_p \beta_p + \varepsilon,$$

with $\varepsilon \sim N(0, \sigma^2)$, $\boldsymbol{X} \sim N_p(0, \Sigma)$.

- $p \gg n$: direct inference on β_j is challenging.
- MNR idea:
 - Use the Markov blanket (neighborhood) in the GGM for X.
 - Reduce to a low-dimensional subset regression.

Markov Neighborhoods

- Let GGM for X be $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- Markov neighborhood of X_j :

$$\xi_j = \{k : e_{jk} = 1\},$$

such that

$$X_j \perp X_i \mid \mathbf{X}_{\xi_j}, \quad \forall i \notin \xi_j \cup \{j\}.$$

- Any superset containing ξ_i is a valid Markov neighborhood.
- Key fact:
 - Inference for β_j can be done using regression on $\{j\} \cup \xi_j \cup \text{active set.}$

Subset Regression for β_j

Under suitable screening conditions:

$$D_j = \{j\} \cup \hat{\xi}_j \cup \hat{\varpi}^*,$$

where

- $\hat{\varpi}^*$: estimated set of active variables.
- $\hat{\xi}_j$: estimated Markov neighborhood of X_j .
- Run OLS on subset:

$$Y = \beta_0 + \mathbf{X}_{D_j} \mathbf{\beta}_{D_j} + \varepsilon.$$

• Result: $\hat{\beta}_j$ has (approximate) standard low-dimensional asymptotics.

MNR Algorithm (Summary)

Variable selection:

• Use SCAD, MCP, Lasso, or SIS to obtain $\hat{\varpi}^*$ containing all truly active variables.

Graph estimation:

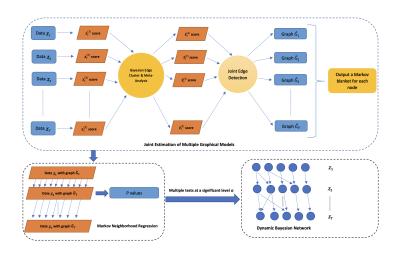
- Fit a GGM for \boldsymbol{X} (e.g., ψ -learning, nodewise regression, graphical Lasso).
- Extract $\hat{\xi}_j$ for each node j.

Subset regressions:

- For each j, regress Y on X_{D_j} .
- Obtain estimates, standard errors, p-values, confidence intervals for β_j .

MNR turns one high-dimensional problem into many low-dimensional ones.

Overall Pipeline



- Stage 1: Joint estimation of multiple GGMs across time.
- Stage 2: MNR-based regression to construct dynamic DBN.

Data Structure

Observations:

$$\{X_t^{(i)}: t=1,\ldots,T, i=1,\ldots,n_t\},\$$

with possible missingness across t for each subject.

- At each time t:
 - \mathcal{X}_t : $n_t \times p$ matrix of ROIs.
 - Assume $\boldsymbol{X}_t^{(i)} \sim N_p(0, \Sigma_t)$.
- Goal Stage 1:
 - Jointly estimate G_t (GGM) for t = 1, ..., T.

Stage 1 (i): Edgewise Score Evaluation

- For each time t and node pair (i, j):
 - Construct super-Markov blankets via SIS:
 - Reduce conditioning set size to $O(n_t/\log n_t)$.
 - Onditional independence test:

$$X_{t,i} \perp X_{t,j} \mid \tilde{S}_{t,ij} \setminus \{i,j\}.$$

3 Obtain *p*-values $p_{ij}^{(t)}$ and transform to *z*-scores:

$$z_{ij}^{(t)} = \Phi^{-1}(1 - p_{ij}^{(t)}).$$

• Complexity per time: $O(p^2)$.

Stage 1 (ii): Bayesian Data Integration

- For each edge I (pair of ROIs):
 - Edge status over time: $\mathbf{e}_l = (e_l^{(1)}, \dots, e_l^{(T)})$.
 - Temporal prior:

$$P(\boldsymbol{e}_l \mid q) \propto q^{\# ext{no-change}} (1-q)^{\# ext{changes}},$$

with $q \sim \text{Beta}(a_1, b_1)$.

z-scores modeled as mixture:

$$z_{l}^{(t)} \sim \begin{cases} N(\mu_{l0}, \sigma_{l0}^{2}), & e_{l}^{(t)} = 0, \\ N(\mu_{l1}, \sigma_{l1}^{2}), & e_{l}^{(t)} = 1. \end{cases}$$

Use stochastic EM / IRO-type algorithm for clustering.

Stage 1 (iii): Integrated z-Scores and Edge Detection

- Given posterior samples of e_l :
 - For each time t, compute Bayesian Stouffer integrated z-score $\hat{z}_{l}^{(t)}$ by meta-analysis across times in which $e_{l}^{(i)} = 0$ or 1.
- Multiple testing on $\hat{z}_{l}^{(t)}$:
 - Empirical Bayes mixture modeling of z-scores.
 - Control FDR via q-values (Storey, 2002).
- Output:
 - GGMs $\mathcal{G}_1, \ldots, \mathcal{G}_T$.
 - Markov blankets (neighborhoods) for each ROI at each time.

Stage 2: Dynamic DBN via MNR

For t = 2, ..., T and each ROI j:

$$X_{t,j} = \beta_{t,j}^{(0)} + \sum_{k=1}^{p} \beta_{t,j}^{(k)} X_{t-1,k} + \varepsilon_{t,j}.$$

- Treat $X_{t,j}$ as response; predictors: X_{t-1} .
- Use MNR:
 - Variable selection for relevant lagged ROIs.
 - Markov blankets from \mathcal{G}_{t-1} .
 - Subset regression to get p-values $q_{k,j}^{(t)}$.
- Transform $q_{k,j}^{(t)}$ to z-scores and apply joint multiple testing to decide directed edges from $X_{t-1,k}$ to $X_{t,j}$.

Tuning Parameters α_1 and α_2

- \bullet α_1 :
 - Significance level in joint edge detection for GGMs.
 - Controls size of Markov neighborhoods.
 - Recommend relatively large (e.g., 0.1–0.2) to avoid missing neighbors.
- α₂:
 - Significance level in joint link detection for DBN edges.
 - Controls sparsity of dynamic DBNs.
 - Choose based on desired network density.
- ullet α_1 and α_2 play roles analogous to regularization parameters.

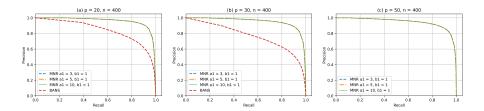
Computational Complexity and Parallelism

- Complexity roughly $O(p^2)$ (with $p \gg n$, $p \gg T$).
- Highly parallelizable:
 - Edgewise score evaluation: parallel over edges.
 - Bayesian edge clustering: parallel over edges.
 - MNR regressions: parallel over ROIs and times.
- Empirical Bayes mixture estimation can use stochastic gradient / minibatch.
- Practical implementation in R, parallelized on multi-core CPU.

Simulation Setup: Comparison with BANS

- Data mimic task-based fMRI:
 - n = 400 subjects, T = 60 time points.
 - p = 20, 30, 50 ROIs.
- Competing method:
 - BANS (Bayesian nodewise selection), designed for multi-layer GGM / DBN.
 - Regressions with spike-and-slab priors.
- Performance metrics:
 - Precision-recall curves.
 - AUC.
 - Computational time.

Precision-Recall Performance



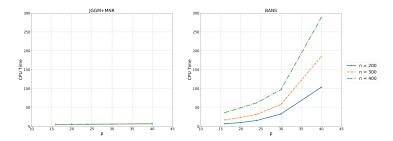
- JGGM+MNR consistently achieves higher AUC than BANS.
- For p = 50, BANS becomes prohibitively slow; omitted in plot.

AUC and Time Summary

р	Method	AUC	Time (min)
20	JGGM+MNR BANS	pprox 0.959 $pprox 0.84$	≈ 5.1 ≈ 48
30	JGGM+MNR BANS	≈ 0.952 ≈ 0.77	≈ 5.8 ≈ 96
50	JGGM+MNR BANS	pprox 0.945 - (¿12 hrs)	≈ 7.7 >12h

• New method scales well in p; BANS does not.

Time Complexity vs. p and n



- JGGM+MNR: time grows mildly with p and almost flat in n.
- BANS: exponential-like growth in both p and n.

High-Dimensional and Large-Scale Cases

- Two scenarios:
 - **1** n = 800, p = 300, T = 60.
 - 2 n = 400, p = 500, T = 60 (small-n, large-p).
- Compare JGGM+MNR with:
 - Lasso.
 - Elastic Net.
 - MCP.
- Strategy:
 - Fit separate high-dimensional regressions for each ROI and time with regularization.
 - Compare edge recovery to JGGM+MNR.

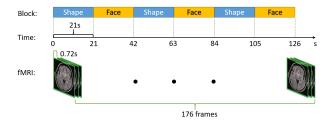
High-Dimensional Results (Summary)

- JGGM+MNR outperforms regularization methods in edge recovery (higher AUC / F1).
- Regularization methods struggle to capture subtle structure and often select too many or too few edges.
- MNR benefits from:
 - Graph-based dimension reduction.
 - Low-dimensional inference with proper uncertainty quantification.
- Supports feasibility of whole-brain time-varying DBN learning.

Human Connectome Project Emotion Task

- Data from HCP S1200 release.
- 867 subjects (22–35 years; 409 males, 458 females).
- Use task fMRI (emotion processing) with left-to-right encoding.
- Acquisition parameters:
 - TR/TE = 720/33.1 ms, multiband factor 8, voxel size $2 \times 2 \times 2$ mm.

Emotion Processing Task Design



- 6 blocks: 3 face-matching, 3 shape-matching.
- Each block: 21 s (6 trials, 2 s stimulus + 1 s ITI).
- Total duration: 2:16, 176 frames per subject.
- Faces show angry or fearful expressions.

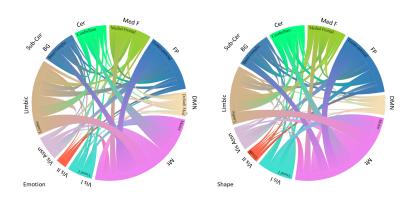
Preprocessing and ROI Definition

- HCP minimal preprocessing pipeline:
 - Distortion correction, motion correction, normalization to MNI, intensity normalization, etc.
- Additional steps:
 - Regress out 12 motion parameters (and derivatives).
 - Remove linear trends.
 - Band-pass filter (0.01–0.25 Hz).
- ROIs:
 - 268 ROIs from functional atlas (Finn et al., 2015).
 - Averaged voxel signals within each ROI.
 - Organized into 8 functional modules: Med F, FP, DMN, Sub-Cer, Motor, Vis I, Vis II, Vis Assn.

Parameter Settings for Analysis

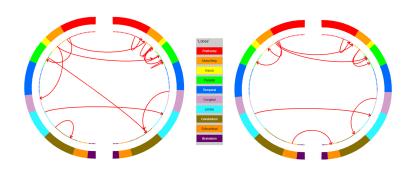
- JGGM stage:
 - Significance level $\alpha_1 = 0.2$ for multiple testing.
- DBN stage:
 - Main results: $\alpha_2 = 0.1$, lag order L = 1.
 - Sensitivity analysis: other α_1, α_2 , and L = 2 in supplement.
- Output:
 - 175 dynamic DAGs (one per time transition) partitioned into emotion vs shape blocks.

Task-Related Networks: Chord Plots



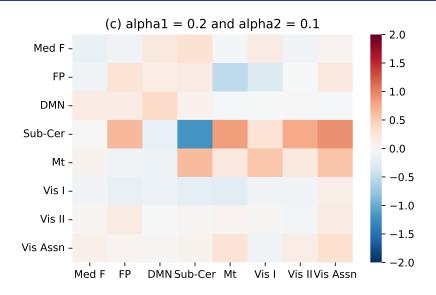
- Module-level chord plots for emotion and shape tasks.
- Overall similar structure, but different inter-module connectivity patterns.

Characteristic Edges



- Characteristic edges: edges appearing at least 2 SD above mean frequency.
- Emotion task: 14 characteristic edges.
- Shape task: 10 characteristic edges.
- Overlap: 6 common edges (e.g., bilateral motor strip, limbic connections).

Module-Level Differences



• Heat man: difference in mean edge degree (module-wise)
L. Sun, A. Zhang, F. Liang
Time-Varying DBN Learning
36/44

Role of Subcortical-Cerebellum

- Sub-Cer module includes subcortical structures and cerebellum.
- Emotion task:
 - Increased connectivity along:
 - Sub-Cer ↔ Motor.
 - Sub-Cer → Vis II.
 - Sub-Cer \rightarrow Vis Assn.
- Interpretation:
 - Consistent with known roles in emotion, autonomic regulation, and complex network processing.
 - Supports cerebellum's involvement in emotional face processing and recognition.

Identification of Emotion-Related Hubs

- Examine node degrees over time:
 - Row degree: number of outgoing edges from each ROI at each time.
- Compare emotion vs shape using Wilcoxon signed-rank test.
- ROI 32 stands out:
 - Significantly higher outgoing degree in emotion vs shape.
 - Belongs to Brodmann area 6 (BA6).
- Literature: BA6 implicated in facial emotion processing and evaluation.

Network Dynamics and Time Variation

- ullet Use ψ -learning to test for differential edges across time:
 - Within emotion task (between consecutive transitions).
 - Within shape task.
 - Between emotion and shape tasks.
- At 10% significance:
 - Many differential edges within each task ⇒ strong time variation.
 - Fewer differences detected for L=2 than L=1, suggesting higher-order Markov structure.
- Supports assumption of time-varying connectivity rather than stationarity.

Summary of fMRI Findings

- Emotion processing engages:
 - Stronger inter-module connectivity involving Sub-Cer, Motor, Vis II, Vis Assn.
 - Distinct dynamic patterns compared to shape processing.
- Subcortical-cerebellum:
 - Central hub coordinating motor and visual modules in emotion task.
- Hub ROI 32 (BA6):
 - Differentially connected in emotion vs shape, consistent with emotion-related function.
- Overall:
 - Method recovers biologically plausible and interpretable dynamic networks.

Methodological Advantages

- Scalable:
 - $O(p^2)$ complexity, parallelizable.
- Flexible:
 - Handles time-varying structure and multi-subject data.
 - Allows different n_t at different times.
- Statistically grounded:
 - Uses Markov blankets and MNR to leverage graph structure.
 - Consistency results under mild conditions.
- Uncertainty quantification:
 - z-scores for all possible edges.
 - Empirical Bayes FDR control and q-values.

Limitations and Extensions

- Current implementation assumes:
 - Gaussian data for GGMs and MNR.
 - Diagonal noise covariance Σ (with extension in remark).
- Extensions:
 - Mixed data: joint GGMs and MNR for mixed types (Sun & Liang, 2022).
 - Incorporate task information directly into graphical modeling and regressions.
 - Subject-specific weights via weighted MNR.

Conclusion

- Proposed a new framework (JGGM + MNR) for learning time-varying dynamic Bayesian networks from high-dimensional, multi-subject fMRI data.
- Demonstrated:
 - Superior performance to BANS and regularization methods in simulations.
 - Scalability to whole-brain networks.
 - Meaningful neuroscientific findings in an emotion processing task.
- Provides a general toolbox for spatio-temporal causal graph learning beyond fMRI.

Thank You

Questions?

- Paper: Sun, L., Zhang, A., and Liang, F. (2024). Time-varying dynamic Bayesian network learning for an fMRI study of emotion processing. Statistics in Medicine, 43 (14), 2713-2733.
- https://doi.org/10.1002/sim.10096