Latent Trajectory: A New Framework for Deep Actor-Critic Reinforcement Learning

Lecture 25

Joint work: F. Shih and F. Liang (2025) published in TMLR

Motivation

- Reinforcement Learning (RL): sequential decision making via interaction with an environment.
- Central object: value function (or Q-function) under a policy.
- Uncertainty quantification (UQ) for value functions is important for:
 - safety
 - robustness
- In actor–critic RL, actor and critic are *interdependent*, complicating theory and UQ.

Challenges in Deep RL UQ

- Deep neural networks: highly non-linear, over-parameterized
- RL: data are generated online by the current policy;
- Actor–critic:
 - Critic guides actor updates.
 - Actor formulates policy, which in turn determines the distribution of data for the critic.
- Many Bayesian / ensemble / bootstrap approaches:
 - often produce mis-calibrated intervals,
 - coverage can be far below nominal level when deep networks are involved.

Existing Approaches for UQ in RL

- Bayesian / approximate Bayesian:
 - Randomized prior functions,
 - Bayesian dropout,
 - Gaussian-process-based TD.
- Frequentist / ensemble methods:
 - Bootstrapped DQN,
 - Deep ensembles, distributional RL.
- Issues in deep actor-critic setting:
 - Theoretical guarantees for coverage are largely absent.

Our Contributions

- Introduce a Latent Trajectory Framework (LTF) for deep actor–critic RL:
 - Treat transition trajectories as latent variables.
 - Account for the interdependence between actor and critic updates.
- Propose an adaptive stochastic gradient MCMC (SGMCMC) algorithm:
 - SGD-style update for actor,
 - SGMCMC sampling for critic (conditional on actor).
- Prove convergence:
 - Actor parameters converge in probability to a solution of a mean-field equation.
 - Critic parameters converge in distribution to a target conditional law.
- Empirically:
 - Well-calibrated UQ for value function,
 - Improved policy search in benchmark environments.

Background: Actor-Critic RL

- MDP with states s_t , actions a_t , rewards r_t , discount factor γ .
- Policy $\pi_{\theta}(a \mid s)$ parameterized by θ (actor).
- Critic network $V_{\psi}(s)$ approximates $V_{\pi_{\theta}}(s)$.
- Advantage Actor–Critic uses

$$A_{\psi}(s_t, a_t) = R_t - V_{\psi}(s_t),$$

where $R_t = \sum_{\tau=t}^n \gamma^{\tau-t} r_{\tau}$ is a truncated return up to horizon n.

6/35

Advantage Actor-Critic Policy Gradient

Policy gradient:

$$g_{\psi}^{ac}(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{n} A_{\psi}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) \right].$$

- In practice:
 - Approximate expectation by sample trajectories.
 - Update θ by SGD:

$$\theta \leftarrow \theta + \upsilon \, \hat{\mathbf{g}}_{\psi}^{ac}(\theta).$$

- \bullet Update ψ to fit returns or TD targets.
- The difficulty:
 - heta-updates depend on ψ ,
 - ψ -updates depend on trajectories generated under θ .

Interdependence Between Actor and Critic

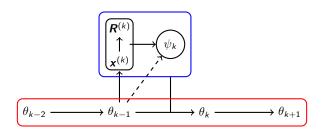
- For deep, multi-layer networks and general state spaces:
 - Theory is scarce.
 - UQ for values is even more challenging.
- Our key idea:

Treat trajectories as latent

Simulate critic parameters via MCMC, and learn actor parameters via optimization (SGD).

8/35

Latent Markov Sampling Diagram



Trajectories act as latent variables: $\psi_k \perp \theta_{k-1} \mid \mathbf{x}^{(k)}$.

9/35

Pseudo-Population and Conditional Law

- For a fixed policy π_{θ} , consider a large (but finite) *pseudo-population* of transitions of size \mathcal{N} .
- ullet Critic parameter ψ has a conditional distribution

$$\pi_{\mathcal{N}}(\psi \mid \theta),$$

induced by fitting V_{ψ} to this pseudo-population.

- Intuition:
 - Avoid degenerate behavior as number of tuples $\to \infty$.
 - Keep a non-trivial distribution over critic parameters, even asymptotically.
- Actor update should account for the variability in ψ : we work with a mean-field policy gradient.

Mean-Field Equation for the Actor

• Define the mean-field gradient

$$g(heta) = \int g_{\psi}^{ac}(heta) \, \pi_{\mathcal{N}}(\psi \mid heta) \, d\psi.$$

Actor parameter is defined by solving

$$g(\theta^*) = 0.$$

• Training actor–critic networks becomes a stochastic approximation problem driven by samples from $\pi_{\mathcal{N}}(\psi \mid \theta)$.

Adaptive SGMCMC Overview

High-level iteration (at step k)

- **1** Sample a trajectory batch $(\mathbf{x}^{(k)}, \mathbf{R}^{(k)})$ using current policy $\pi_{\theta_{k-1}}$.

$$\psi_{k} \sim \pi_{\mathcal{N}}(\psi \mid \theta_{k-1})$$

using SGMCMC (e.g. SGLD or SGHMC).

o θ -update:

$$\theta_k = \theta_{k-1} + \upsilon_k \, \hat{g}_{\psi_k}^{ac}(\theta_{k-1}),$$

where \hat{g}^{ac} is an unbiased estimator of g_{ψ}^{ac} .

- Stepsizes ϵ_k (for ψ) and v_k (for θ) decay over time with appropriate rates.
- Under mild conditions, we obtain convergence of both θ_k and ψ_k .

Reward Model and Gradient for ψ

• For convenience, assume a Gaussian reward model:

$$R_t \mid x_t, \psi \sim \mathcal{N}(V_{\psi}(s_t), \sigma^2).$$

Then

$$\nabla_{\psi} \log \pi_{\mathcal{N}}(\psi \mid \boldsymbol{x}^{(k)}, \boldsymbol{R}^{(k)}) = \sum_{t=1}^{n} \nabla_{\psi} \log \pi(\boldsymbol{R}_{t}^{(k)} \mid \boldsymbol{x}_{t}^{(k)}, \psi) + \frac{n}{\mathcal{N}} \nabla_{\psi} \log \pi(\psi).$$

• This is the "critic gradient" used in SGMCMC:

$$\psi_{k} = \psi_{k-1} + \frac{\epsilon_{k}}{2} \nabla_{\psi} \tilde{L}(\theta_{k-1}, \psi_{k-1}) + \sqrt{\frac{n}{N} \epsilon_{k}} e_{k},$$

where e_k is Gaussian noise.

Importance Weighting and Latent Gradient

Latent gradient uses importance weight

$$w_k = \frac{\pi(\mathbf{R}^{(k)} \mid \mathbf{x}^{(k)}, \psi_k)}{\pi(\mathbf{R}^{(k)} \mid \mathbf{x}^{(k)})}.$$

- Numerator from Gaussian model; denominator can be estimated by:
 - Monte Carlo over auxiliary ψ ,
 - or kernel conditional density estimator (Nadaraya-Watson).
- Effective critic gradient:

$$\nabla_{\psi} \tilde{L}(\theta_{k-1}, \psi_{k-1}) = w_k \left\{ \sum_{t=1}^n \nabla_{\psi} \log \pi(R_t^{(k)} \mid x_t^{(k)}, \psi_{k-1}) + \frac{n}{\mathcal{N}} \nabla_{\psi} \log \pi(\psi_{k-1}) \right\}.$$

Algorithm: LT-A2C (High-Level)

Algorithm Latent Trajectory A2C (LT-A2C) – overview

- 1: Initialize actor π_{θ_0} , critic V_{ψ_0} .
- 2: **for** k = 1 to \mathcal{K} **do**
- 3: Generate trajectories $\mathbf{x}^{(k)}, \mathbf{R}^{(k)}$ with policy $\pi_{\theta_{k-1}}$.
- 4: Draw auxiliary critic samples $\tilde{\psi}_j$ via SGMCMC to approximate $\pi(\psi \mid \boldsymbol{x}^{(k)})$.
- 5: Compute importance weight \hat{w}_k using auxiliary samples.
- 6: Update critic via SGMCMC:

$$\psi_k = \psi_{k-1} + \text{SGLD step using } \hat{w}_k.$$

7: Update actor:

$$heta_k = heta_{k-1} + v_k \sum_{t=1}^n A_{\psi_k}(s_t^{(k)}, a_t^{(k)}) \nabla_{\theta} \log \pi_{\theta_{k-1}}(a_t^{(k)} \mid s_t^{(k)}).$$

8: end for

Convergence Conditions (Sketch)

Step sizes:

$$\epsilon_{\mathbf{k}} = \frac{C_{\epsilon}}{c_{\epsilon} + \mathbf{k}^{\alpha}}, \quad v_{\mathbf{k}} = \frac{C_{v}}{c_{v} + \mathbf{k}^{\beta}},$$

with $0 < \beta \le \alpha \le \min\{1, 2\beta\}$.

- Regularity:
 - Smoothness of $L(\theta, \psi)$ in θ and ψ .
 - Dissipativity in ψ (e.g. Gaussian prior on ψ).
- Gradient noise:
 - Unbiased stochastic gradients,
 - Controlled second moments (depend on $\|\theta \theta^*\|^2$ and $\|\psi\|^2$).

Theorem 1: Convergence of Actor

Theorem (informal)

Under the regularity assumptions and step-size conditions, there exists a solution θ^* to the mean-field equation $g(\theta)=0$ such that

$$\mathbb{E}\|\theta_k - \theta^*\|^2 \le \xi \, v_k, \quad k \ge k_0,$$

where $\xi > 0$ is a constant.

- θ_k converges (in mean square) to a root of $g(\theta)$.
- ullet This root corresponds to a stationary point of the marginal actor objective that accounts for uncertainty in ψ .
- Standard in stochastic approximation / adaptive MCMC theory.

Theorem 2: Convergence of Critic Distribution

Theorem (informal)

Let $\pi^* = \pi(\psi \mid \theta^*)$ and let $T_k = \sum_{i=1}^k \epsilon_i$. Let μ_{T_k} be the law of ψ_k . Then

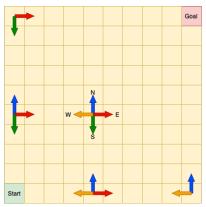
$$W_2(\mu_{T_k}, \pi^*) \leq (\hat{C}_0 \delta_{\tilde{L}}^{1/4} + \hat{C}_1 v_1^{1/4}) T_k + \hat{C}_2 e^{-T_k/c_{LS}},$$

where W_2 is the 2-Wasserstein distance and c_{LS} is a logarithmic Sobolev constant of π^* .

- Critic samples ψ_k converge in distribution to $\pi(\psi \mid \theta^*)$.
- Enables **proper UQ** for V_{ψ} and Q-values.
- This is not available from plain SGD-based training.

Experiments: Indoor Escape Environment

- 10×10 grid, start at bottom left, goal at top right.
- Actions: N, E, S, W.
- Reward: $r_t \sim \mathcal{N}(-1, 0.01)$ each step.
- Episode length capped (e.g. 200 steps).



Indoor Escape environment

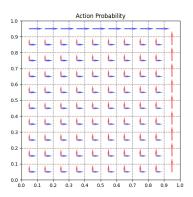
Policy Diversity: KL Divergence

- Define optimal policy $\pi^*(\cdot \mid s)$:
 - uniform over optimal actions,
 - zero on sub-optimal actions.
- For a learned policy $\pi_{\theta}(\cdot \mid s)$, measure

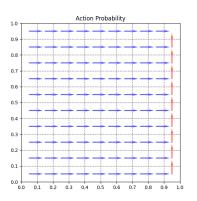
$$D_{KL}(\pi^* \parallel \pi_{\theta}) = \sum_{a} \pi^*(a \mid s) \log \frac{\pi^*(a \mid s)}{\pi_{\theta}(a \mid s)}.$$

- Small D_{KL} : policy spreads mass correctly over optimal actions (good diversity).
- Large D_{KL} : policy collapses onto a single action, poor coverage.

Policy Distributions Across States



LTF (LT-A2C): nearly uniform over optimal actions



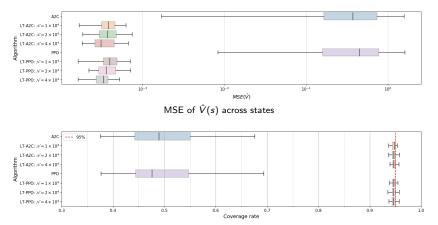
A2C: collapsed policy, large D_{KL}

Indoor Escape: Quantitative Metrics

Algorithm	\mathcal{N}	$D_{\mathit{KL}}(\pi^* \ \pi_{ heta^*})$	$MSE(\hat{V})$	Coverage
A2C	_	4.647	0.535	0.489
LT-A2C	10k	0.010	0.00038	0.947
LT-A2C	20k	0.014	0.00039	0.947
LT-A2C	40k	0.014	0.00033	0.947
PPO	_	4.773	0.561	0.487
LT-PPO	10k	0.011	0.00041	0.947
LT-PPO	20k	0.009	0.00038	0.947
LT-PPO	40k	0.011	0.00032	0.947

Averages over 100 runs. LT methods dramatically reduce KL and MSE, and achieve $\approx 95\%$ coverage.

Value Estimation and Coverage



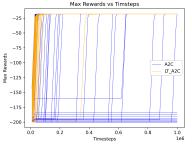
Coverage rate of 95% prediction intervals for $V^*(s)$

Existing UQ Methods for Q in Escape

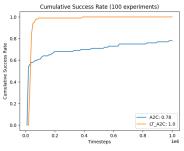
Algorithm	$MSE(\hat{Q})$	Coverage	CI width
BootDQN	0.0998	0.39	0.188
QR-DQN	0.0046	0.82	0.278
RPN (0.1)	0.0334	0.80	0.679
RPN (1.0)	0.0372	0.82	0.693
RPN (5.0)	0.0366	0.79	0.782

- None achieves nominal 95% coverage.
- Calibration of UQ with deep networks is nontrivial.
- ullet Our LTF gives calibrated coverage for V; conceptually extendable to Q.

Optimal Policy Search and Success Rate



Best-so-far reward vs. time steps



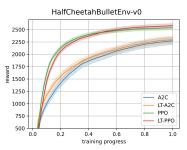
Success rate of reaching optimal policy

LT-A2C finds the optimal policy in essentially all runs; A2C fails in a substantial fraction.

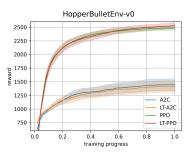
PyBullet Continuous Control Tasks

- PyBullet environments:
 - HalfCheetahBulletEnv-v0
 - HopperBulletEnv-v0
 - ReacherBulletEnv-v0
 - Walker2DBulletEnv-v0
- Use RL Baselines3 Zoo for implementations.
- Compare:
 - A2C vs LT-A2C,
 - PPO vs LT-PPO.
- Evaluate training curves and best evaluation rewards over time.

PyBullet: Performance Curves (1)

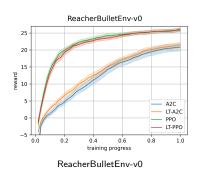


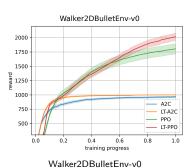
HalfCheetahBulletEnv-v0



HopperBulletEnv-v0

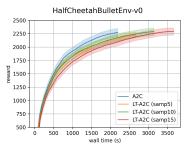
PyBullet: Performance Curves (2)



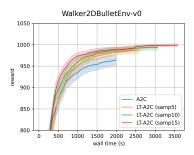


LT-A2C / LT-PPO perform comparably to baselines on some tasks and substantially better on Walker-2D.

Wall-Clock Time and Inner Sampling Steps



HalfCheetah: best reward vs wall time



Walker2D: best reward vs wall time

Using 5-10 critic-sampling steps is enough in practice; improvements plateau beyond that.

When Does LTF Help Most?

- Rugged actor objective landscapes:
- LTF adds structured randomness through critic sampling:
 - Additional exploration in parameter space,
 - Helps escape bad local optima.

Flexibility of the Framework

- Critic-sampling step:
 - SGLD, SGHMC, or other SGMCMC variants.
- Actor step:
 - A2C, PPO, SAC, etc.
- Critic distributions can encode more advanced RL tricks:
 - Ensembles (e.g., REDQ),
 - Optimistic critics (e.g., OAC),
 - SUNRISE-style uncertainty scaling.
- LTF provides a general wrapper.
 - improves and stabilizes training,
 - while providing UQ for the value function.

Computational Considerations

- Per-iteration cost of SGLD / SGHMC is similar to SGD:
 - one gradient evaluation + Gaussian noise.
- Extra cost comes from:
 - inner critic-sampling loop (5–10 steps).
- In practice:
 - Training time increases moderately,
 - Gains in policy quality and calibrated UQ can justify the cost.
- Scales to large networks:
 - no change in big-O complexity,
 - implementation similar to modern deep RL pipelines.

Summary

- Proposed a Latent Trajectory Framework for deep actor-critic RL.
- Trained via adaptive SGMCMC:
 - Actor: stochastic approximation to a mean-field gradient.
 - Critic: MCMC sampling from $\pi_{\mathcal{N}}(\psi \mid \theta)$.
- Theoretical guarantees:
 - Actor convergence to stationary point,
 - Critic distribution converges in Wasserstein distance.
- Empirical results:
 - Calibrated uncertainty for value function in Indoor Escape.
 - Improved policy search, especially in harder tasks (e.g. Walker-2D).

Practical Tips

- Step sizes:
 - Choose ϵ_k, υ_k decreasing, with ϵ_k not smaller than υ_k .
- Number of critic samples per iteration:
 - 5–10 SGMCMC steps typically enough.
- Pseudo-population size \mathcal{N} :
 - Larger $\mathcal{N} \Rightarrow$ more accurate UQ, slightly narrower CIs.
- Initialization:
 - Using standard deep RL initializations and hyperparameters works well as a starting point.

Thank You

Questions?

- Paper: Shi, F. and Liang, F. (2025). Latent Trajectory: A New Framework for Deep Actor-Critic Reinforcement Learning with Uncertainty Quantification, Transactions on Machine Learning Research.
- OpenReview: https://openreview.net/forum?id=8B74xdaRHa