
1/22

Deep Network Embedding with Dimension
Selection

Faming Liang

Purdue University

November 24, 2024

2/22

Network Data

Networks are a powerful tool for describing complex relationships
among a large number of entities (also known as nodes in network
terminology) in a real-world system.

▶ social networks

▶ biological networks

▶ citation networks

Information extracted from networks can help uncover hidden
patterns in complex systems, predict future interactions among
entities, and support data-driven decision-making.

3/22

Embedding

▶ The embedding method assigns a low-dimensional vector,
known as an embedding vector, to each node in the network.

▶ This transformation converts non-Euclidean structured
network data into Euclidean data, facilitating downstream
statistical analyses such as node classification, community
detection, and link prediction.

▶ In the realm of network information extraction, embedding
has emerged as a popular method in recent literature.

4/22

Embedding

▶ Early embedding methods are often developed based on the
spectral decomposition of the adjacency matrix or other graph
operators.

▶ Generative model-based methods: They assume that the
observed network is compatible with a predefined generative
model in the Euclidean space and the model parameters can
be learned to achieve a good fit to the observed network.
These generative models can be approximated using neural
networks of different structures, such as shallow neural
networks, autoencoders, and convolutional neural networks
(CNNs).

5/22

Embedding: Dimension Selection

▶ A common practice is to treat the embedding dimension as a
hyperparameter of the model or simply set it as a constant.

▶ An excessively high embedding dimension can cause the
model overfitted, leading to high variability in prediction.

To address this issue, there have been only scattered efforts in the
literature, see e.g., Seshadhri et al. (2020), Chanpuriya et al.
(2020), and Gu et al. (2021).

6/22

Deep Embedding

For deep embedding methods, it is important to note that they
might suffer from an identifiability issue due to the universal
approximation ability of deep neural networks.

▶ We address this issues by performing sparse deep embedding
within the framework of missing data imputation.

▶ Specifically, we treat the embedding vectors as missing data,
reconstruct the network features using a sparse decoder, and
simultaneously impute the embedding vectors and train the
sparse encoder using an adaptive stochastic gradient MCMC
algorithm (Liang et al., 2022).

▶ Under mild conditions, we show that the sparse decoder
provides a parsimonious mapping (defined later in an
appropriate sense) from the embedding space to network
features, enabling an effective selection of the embedding
dimension.

7/22

Skip-gram model
Let G = (V ,E) denote a network, where V = {v1, v2, . . . , vn}
denotes the set of nodes, and E = {eij}ni ,j=1 denotes the associated
adjacency matrix. We define Ni = {vk : eik = 1} as the
neighborhood of node i . Each node vi has an embedding vector
zi ∈ Rdz , and its context has an embedding vector zci ∈ Rdz .

The skip-gram model works under the maximum likelihood
principle, which aims to find the optimal (zi , z

c
i) pairs by

minimizing the objective function:

L = −
∑
vi∈V

∑
vj∈Ni

log p(zcj |zi), (1)

where p(zcj |zi) = exp(zTi zcj)/
∑

vk∈V exp(zTi zck) encodes the local
neighborhood information of node vi .

A variety of methods have been developed based on similar ideas,
see e.g., DeepWalk, LINE, and Node2Vec.

8/22

Deep Neural Graph Representation (DNGR)

DNGR minimizes the objective function:

L =
∑
vi∈V

∥ψdec(zi)− Ui∥2, s.t. zi = ψenc(Ui), (2)

where Ui ∈ R|V | represents the i-th column of the Positive
Pointwise Mutual Information (PPMI) matrix and captures the
neighborhood information of node vi , |V | denotes the cardinality of
the set V , and ψenc(·) and ψdec(·) denote the encoder and decoder
functions, respectively.

9/22

Structural Deep Network Embedding (SDNE)

SDNE minimizes the objective function:

L =
∑
vi∈V

∥(ψdec(zi)− ei)⊙ wi∥2 + α

|V |∑
i ,j=1

eij∥zi − zj∥2 + νLreg ,

s.t. zi = ψenc(ei),
(3)

where ei denotes the ith column of the adjacency matrix E ,

wi = {wi ,j}
|V |
j=1 ∈ R|V | represents a weight vector with wi ,j = 1 if

eij = 0 and wi ,j = β otherwise, and ⊙ denotes Hadamard product.

The Laplacian eigenmap penalty term
∑|V |

i ,j=1 eij∥zi − zj∥2
encourages nearby nodes to have similar embeddings, Lreg is an
L2-norm regularizer term used to prevent overfitting, and α and ν
are regularization coefficients.

10/22

Geometric Deep Learning

Geometric Deep Learning minimizes the objective function:

L = −
∑
vi∈V

|V |∑
j=1

eij log p̂ij , s.t. p̂i = ψdec(zi), zi = ψCNN(ei),

(4)
where p̂i = (p̂i1, p̂i2, . . . , p̂i |V |)

T , ψdec(·) is a fully connected neural
network with the softmax activation function that maps an
embedding vector to predicted labels, and ψCNN(·) represents an
encoder formed by a CNN.

11/22

Deep Decoder

We model the network features using a deep neural network (DNN) represented by a
nonlinear mapping h : zi → qi with shared parameters
θ = {W (k), b(k) : k = 1, 2, . . . , h + 1} for the nodes v1, v2, . . . , vn. Here, q1, q2, . . . , qn
encode the features of the network, the parameter h represents the number of hidden
layers, and W (k) and b(k) denote the weight matrix and bias vector of the k-th layer,
respectively.
We set qi = (qi,1, qi,2, . . . , qi,n)

T with qi,j = Prob(eij = 1) representing the
probability of eij = 1. The representation of each layer in the deep decoder is given by

y
(1)
i = ψ(W (1)zi + b(1)),

y
(k)
i = ψ(W (k)y

(k−1)
i + b(k)), k = 2, . . . , h + 1,

(5)

where y
(k)
i is the output of the k-th layer, y

(h+1)
i = qi , and ψ(x) = 1/(1 + exp(−x)) is

the sigmoid activation function.
The likelihood function of the deep decoder is given by

f (S|z ,θ) =
∏
vi∈V

∏
j ̸=i

(
q
δij eij
i,j (1− qi,j)

δij (1−eij)
)
, (6)

where z = (zT1 , z
T
2 , . . . , z

T
n)T ∈ Rndz , qi = h(zi ;θ), and δij = 1 if j ∈ Si and 0

otherwise.

12/22

Prior Distribution of the Embedding Vector

Motivated by the LINE method, we impose a prior distribution on
the embedding vectors with a log-density function given by

log π(z) =C + λ1
∑
vi∈V

[∑
j∈Si ,eij=1

logψ(zTj · zi)

+ λ2
∑

j∈Si ,eij=0

logψ(−zTj · zi)
]
,

(7)

where ψ(·) represents the sigmoid function, C is a constant, and
λ1 and λ2 are prior hyperparameters.

13/22

Sparsity Penalty on the Deep Decoder

Mathematically, the penalty function is defined as follows:

ρ(θ) =

p∑
g=1

λ̃g∥W (1)
g ∥2 +

h+1∑
j=1

λ̃†j ∥W̃
(j)∥1. (8)

Here, W
(1)
g ∈ Rd1 represents the g -th column of W (1), which

corresponds to the weights from the g -th input neuron to the
neurons in the first hidden layer, d1 is the width of the first hidden
layer, and W̃ (j) encompasses both the weight matrix W (j) and bias
vector b(j).
If λ̃g is set to 0 for g = 1, 2, . . . , p, ρ(θ) is reduced to the Lasso
penalty for all decoder parameters.

14/22

Training Algorithm

To simulate z = (zT1 , z
T
2 , . . . , z

T
n)T ∈ Rndz and estimate θ simultaneously, we use the

following adaptive stochastic gradient MCMC algorithm:

(a) Update z by simulating a sample from π(z |S,θ) ∝ f (S|z ,θ)π(z) using a
stochastic gradient Markovian transition kernel. For example, the stochastic
gradient Hamilton Monte Carlo (SGHMC) algorithm can be employed, and the
update equations are as follows:

v (k) =(1− ϵkη)v (k−1) + ϵk∇z (log π(z(k−1)) + log f (S|z(k−1),θ(k−1))) +
√

2ϵkητe(k),

z(k) =z(k−1) + ϵkv (k−1),

where η represents the friction coefficient, τ denotes the temperature, k indexes
iterations, ϵk is the learning rate, and e(k) ∼ N(0, Indz).

(b) Update θ by setting

θ(k) = θ(k−1) + γk∇θ(log f (S|z(k),θ(k−1)) + λρ(θ(k−1))),

where γk is the step size, and λ is the regularization parameter for the sparsity
penalty.

15/22

Dimension Selection

We compute the following gradient for each dimension j at each
iteration of Algorithm 1 after fixing the value of λ:

Gj = ∥1
n

n∑
i=1

gij∥2, j = 1, . . . , dz , (9)

where gij = (
∂qi,1
∂zi,j

, . . . ,
∂qi,n
∂zi,j

)T represents the jth column of the

gradient matrix

∂qi
∂zi

=

∂qi,1
∂zi,1

∂qi,1
∂zi,2

· · · ∂qi,1
∂zi,dz

∂qi,2
∂zi,1

∂qi,2
∂zi,2

· · · ∂qi,2
∂zi,dz

.
.

∂qi,n
∂zi,1

∂qi,n
∂zi,2

· · · ∂qi,n
∂zi,dz

n×dz

.

A smaller gradient Gj indicates the dimension j is less significant
compared to the other dimensions.

16/22

Theoretical Analysis

Theorem 1
Suppose regularity conditions hold. For almost every observed
network, as n → ∞ and t → ∞, the following results hold:

(i) ∥θ̂(t)
n − θ∗∥ p→ 0, where θ̂

(t)
n denotes the estimate of θ∗

obtained at iteration t of Algorithm 1, and
p→ denotes

convergence in probability.

(ii) d̂
(t)
z,n − d∗

z
p→ 0, where d̂

(t)
z,n = #{j : ∥Gj(θ̂

(t)
n , zn)∥ > c

√
rn} is

the selected embedding dimension at iteration t, and {rn} is a
sequence converging to 0 as specified in the appendix.

17/22

Theoretical Analysis

Theorem 2
Suppose regularity conditions hold. Then for any integrable

function ϕ(·), ÊKϕ(z)− Eϕ(z) p→ 0 as K → ∞.

18/22

Network Examples

▶ Karate: The social network consists of 34 members, who are
divided into two known groups, in a university karate club.
There are 78 edges in the network, where an undirected edge
(i , j) represents a friendship tie between member i and
member j .

▶ Dolphin: The network consists of 62 dolphins living in New
Zealand. There are two communities and a total of 159 edges
in the network, where an undirected edge (i , j) represents
frequent contacts between dolphin i and dolphin j .

19/22

Node Clustering: Karate

(a) (b)

(c) (d) (e)

Figure 1: Node clustering results for the Karate network with
20-dimensional embedding vectors: (a) true clusters, (b) sparse decoder,
(c) DNGR, (d) SNDE, and (e) Node2Vec.

20/22

Node Clustering: Dolphin

(a) (b)

(c) (d) (e)

Figure 2: Node clustering results for the Dolphin network with
20-dimensional embedding vectors: (a) true clusters, (b) sparse decoder,
(c) DNGR, (d) SNDE, and (e) Node2Vec.

21/22

Conclusion

▶ We have proposed a rigorous statistical framework for network
embedding: we treat the embedding vectors as missing data,
reconstruct network features with a sparse decoder, and
simultaneously impute the embedding vectors and train the
sparse decoder using an adaptive stochastic gradient MCMC
algorithm.

▶ Under mild conditions, we show that the sparse decoder
provides a parsimonious mapping from the embedding space
to network features, which leads to an effective selection for
the embedding dimension.

▶ This work lays down the first theoretical foundation for
network embedding under the framework of missing data
imputation. The proposed method serves as a prototype for
deep network embedding, which highlights the importance of
decoder sparsity and dimension selection, and enables
uncertainty quantification in downstream statistical inference.

22/22

Reference

1. Tianning Dong, Yan Sun and Faming Liang (2024).
Deep Network Embedding with Dimension Selection.
Neural Networks, 179, 106512.

2. Liang, S., Sun, Y., and Liang, F. (2022). Nonlinear
sufficient dimension reduction with a stochastic
neural network. NeurIPS 2022 (see also
arXiv:2210.04349).

	Introduction
	Related Works
	Sparse Deep Embedding

